forked from leoluopy/pytorch_arcface_cosface_partialFC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_ijbc.py
483 lines (406 loc) · 16.9 KB
/
eval_ijbc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# coding: utf-8
import os
import pickle
import matplotlib
import pandas as pd
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import timeit
import sklearn
import argparse
from sklearn.metrics import roc_curve, auc
from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap
from prettytable import PrettyTable
from pathlib import Path
import sys
import warnings
sys.path.insert(0, "../")
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description='do ijb test')
# general
parser.add_argument('--model-prefix', default='', help='path to load model.')
parser.add_argument('--image-path', default='', type=str, help='')
parser.add_argument('--result-dir', default='.', type=str, help='')
parser.add_argument('--batch-size', default=128, type=int, help='')
parser.add_argument('--network', default='iresnet50', type=str, help='')
parser.add_argument('--job', default='insightface', type=str, help='job name')
parser.add_argument('--target', default='IJBC', type=str, help='target, set to IJBC or IJBB')
args = parser.parse_args()
target = args.target
model_path = args.model_prefix
image_path = args.image_path
result_dir = args.result_dir
gpu_id = None
use_norm_score = True # if Ture, TestMode(N1)
use_detector_score = True # if Ture, TestMode(D1)
use_flip_test = True # if Ture, TestMode(F1)
job = args.job
batch_size = args.batch_size
import cv2
import numpy as np
import torch
from skimage import transform as trans
import backbones
class Embedding(object):
def __init__(self, prefix, data_shape, batch_size=1):
image_size = (112, 112)
self.image_size = image_size
weight = torch.load(prefix)
resnet = eval("backbones.{}".format(args.network))(False).cuda()
resnet.load_state_dict(weight)
model = torch.nn.DataParallel(resnet)
self.model = model
self.model.eval()
src = np.array([
[30.2946, 51.6963],
[65.5318, 51.5014],
[48.0252, 71.7366],
[33.5493, 92.3655],
[62.7299, 92.2041]], dtype=np.float32)
src[:, 0] += 8.0
self.src = src
self.batch_size = batch_size
self.data_shape = data_shape
def get(self, rimg, landmark):
assert landmark.shape[0] == 68 or landmark.shape[0] == 5
assert landmark.shape[1] == 2
if landmark.shape[0] == 68:
landmark5 = np.zeros((5, 2), dtype=np.float32)
landmark5[0] = (landmark[36] + landmark[39]) / 2
landmark5[1] = (landmark[42] + landmark[45]) / 2
landmark5[2] = landmark[30]
landmark5[3] = landmark[48]
landmark5[4] = landmark[54]
else:
landmark5 = landmark
tform = trans.SimilarityTransform()
tform.estimate(landmark5, self.src)
M = tform.params[0:2, :]
img = cv2.warpAffine(rimg,
M, (self.image_size[1], self.image_size[0]),
borderValue=0.0)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_flip = np.fliplr(img)
img = np.transpose(img, (2, 0, 1)) # 3*112*112, RGB
img_flip = np.transpose(img_flip, (2, 0, 1))
input_blob = np.zeros((2, 3, self.image_size[1], self.image_size[0]), dtype=np.uint8)
input_blob[0] = img
input_blob[1] = img_flip
return input_blob
@torch.no_grad()
def forward_db(self, batch_data):
imgs = torch.Tensor(batch_data).cuda()
imgs.div_(255).sub_(0.5).div_(0.5)
feat = self.model(imgs)
feat = feat.reshape([self.batch_size, 2 * feat.shape[1]])
return feat.cpu().numpy()
# 将一个list尽量均分成n份,限制len(list)==n,份数大于原list内元素个数则分配空list[]
def divideIntoNstrand(listTemp, n):
twoList = [[] for i in range(n)]
for i, e in enumerate(listTemp):
twoList[i % n].append(e)
return twoList
def read_template_media_list(path):
# ijb_meta = np.loadtxt(path, dtype=str)
ijb_meta = pd.read_csv(path, sep=' ', header=None).values
templates = ijb_meta[:, 1].astype(np.int)
medias = ijb_meta[:, 2].astype(np.int)
return templates, medias
# In[ ]:
def read_template_pair_list(path):
# pairs = np.loadtxt(path, dtype=str)
pairs = pd.read_csv(path, sep=' ', header=None).values
# print(pairs.shape)
# print(pairs[:, 0].astype(np.int))
t1 = pairs[:, 0].astype(np.int)
t2 = pairs[:, 1].astype(np.int)
label = pairs[:, 2].astype(np.int)
return t1, t2, label
# In[ ]:
def read_image_feature(path):
with open(path, 'rb') as fid:
img_feats = pickle.load(fid)
return img_feats
# In[ ]:
def get_image_feature(img_path, files_list, model_path, epoch, gpu_id):
batch_size = args.batch_size
data_shape = (3, 112, 112)
files = files_list
print('files:', len(files))
rare_size = len(files) % batch_size
faceness_scores = []
batch = 0
img_feats = np.empty((len(files), 1024), dtype=np.float32)
batch_data = np.empty((2 * batch_size, 3, 112, 112))
embedding = Embedding(model_path, data_shape, batch_size)
for img_index, each_line in enumerate(files[:len(files) - rare_size]):
name_lmk_score = each_line.strip().split(' ')
img_name = os.path.join(img_path, name_lmk_score[0])
img = cv2.imread(img_name)
lmk = np.array([float(x) for x in name_lmk_score[1:-1]],
dtype=np.float32)
lmk = lmk.reshape((5, 2))
input_blob = embedding.get(img, lmk)
batch_data[2 * (img_index - batch * batch_size)][:] = input_blob[0]
batch_data[2 * (img_index - batch * batch_size) + 1][:] = input_blob[1]
if (img_index + 1) % batch_size == 0:
print('batch', batch)
img_feats[batch * batch_size:batch * batch_size +
batch_size][:] = embedding.forward_db(batch_data)
batch += 1
faceness_scores.append(name_lmk_score[-1])
batch_data = np.empty((2 * rare_size, 3, 112, 112))
embedding = Embedding(model_path, data_shape, rare_size)
for img_index, each_line in enumerate(files[len(files) - rare_size:]):
name_lmk_score = each_line.strip().split(' ')
img_name = os.path.join(img_path, name_lmk_score[0])
img = cv2.imread(img_name)
lmk = np.array([float(x) for x in name_lmk_score[1:-1]],
dtype=np.float32)
lmk = lmk.reshape((5, 2))
input_blob = embedding.get(img, lmk)
batch_data[2 * img_index][:] = input_blob[0]
batch_data[2 * img_index + 1][:] = input_blob[1]
if (img_index + 1) % rare_size == 0:
print('batch', batch)
img_feats[len(files) -
rare_size:][:] = embedding.forward_db(batch_data)
batch += 1
faceness_scores.append(name_lmk_score[-1])
faceness_scores = np.array(faceness_scores).astype(np.float32)
# img_feats = np.ones( (len(files), 1024), dtype=np.float32) * 0.01
# faceness_scores = np.ones( (len(files), ), dtype=np.float32 )
return img_feats, faceness_scores
# In[ ]:
def image2template_feature(img_feats=None, templates=None, medias=None):
# ==========================================================
# 1. face image feature l2 normalization. img_feats:[number_image x feats_dim]
# 2. compute media feature.
# 3. compute template feature.
# ==========================================================
unique_templates = np.unique(templates)
template_feats = np.zeros((len(unique_templates), img_feats.shape[1]))
for count_template, uqt in enumerate(unique_templates):
(ind_t,) = np.where(templates == uqt)
face_norm_feats = img_feats[ind_t]
face_medias = medias[ind_t]
unique_medias, unique_media_counts = np.unique(face_medias,
return_counts=True)
media_norm_feats = []
for u, ct in zip(unique_medias, unique_media_counts):
(ind_m,) = np.where(face_medias == u)
if ct == 1:
media_norm_feats += [face_norm_feats[ind_m]]
else: # image features from the same video will be aggregated into one feature
media_norm_feats += [
np.mean(face_norm_feats[ind_m], axis=0, keepdims=True)
]
media_norm_feats = np.array(media_norm_feats)
# media_norm_feats = media_norm_feats / np.sqrt(np.sum(media_norm_feats ** 2, -1, keepdims=True))
template_feats[count_template] = np.sum(media_norm_feats, axis=0)
if count_template % 2000 == 0:
print('Finish Calculating {} template features.'.format(
count_template))
# template_norm_feats = template_feats / np.sqrt(np.sum(template_feats ** 2, -1, keepdims=True))
template_norm_feats = sklearn.preprocessing.normalize(template_feats)
# print(template_norm_feats.shape)
return template_norm_feats, unique_templates
# In[ ]:
def verification(template_norm_feats=None,
unique_templates=None,
p1=None,
p2=None):
# ==========================================================
# Compute set-to-set Similarity Score.
# ==========================================================
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int)
for count_template, uqt in enumerate(unique_templates):
template2id[uqt] = count_template
score = np.zeros((len(p1),)) # save cosine distance between pairs
total_pairs = np.array(range(len(p1)))
batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation
sublists = [
total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize)
]
total_sublists = len(sublists)
for c, s in enumerate(sublists):
feat1 = template_norm_feats[template2id[p1[s]]]
feat2 = template_norm_feats[template2id[p2[s]]]
similarity_score = np.sum(feat1 * feat2, -1)
score[s] = similarity_score.flatten()
if c % 10 == 0:
print('Finish {}/{} pairs.'.format(c, total_sublists))
return score
# In[ ]:
def verification2(template_norm_feats=None,
unique_templates=None,
p1=None,
p2=None):
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int)
for count_template, uqt in enumerate(unique_templates):
template2id[uqt] = count_template
score = np.zeros((len(p1),)) # save cosine distance between pairs
total_pairs = np.array(range(len(p1)))
batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation
sublists = [
total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize)
]
total_sublists = len(sublists)
for c, s in enumerate(sublists):
feat1 = template_norm_feats[template2id[p1[s]]]
feat2 = template_norm_feats[template2id[p2[s]]]
similarity_score = np.sum(feat1 * feat2, -1)
score[s] = similarity_score.flatten()
if c % 10 == 0:
print('Finish {}/{} pairs.'.format(c, total_sublists))
return score
def read_score(path):
with open(path, 'rb') as fid:
img_feats = pickle.load(fid)
return img_feats
# # Step1: Load Meta Data
# In[ ]:
assert target == 'IJBC' or target == 'IJBB'
# =============================================================
# load image and template relationships for template feature embedding
# tid --> template id, mid --> media id
# format:
# image_name tid mid
# =============================================================
start = timeit.default_timer()
templates, medias = read_template_media_list(
os.path.join('%s/meta' % image_path,
'%s_face_tid_mid.txt' % target.lower()))
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
# In[ ]:
# =============================================================
# load template pairs for template-to-template verification
# tid : template id, label : 1/0
# format:
# tid_1 tid_2 label
# =============================================================
start = timeit.default_timer()
p1, p2, label = read_template_pair_list(
os.path.join('%s/meta' % image_path,
'%s_template_pair_label.txt' % target.lower()))
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
# # Step 2: Get Image Features
# In[ ]:
# =============================================================
# load image features
# format:
# img_feats: [image_num x feats_dim] (227630, 512)
# =============================================================
start = timeit.default_timer()
img_path = '%s/loose_crop' % image_path
img_list_path = '%s/meta/%s_name_5pts_score.txt' % (image_path, target.lower())
img_list = open(img_list_path)
files = img_list.readlines()
# files_list = divideIntoNstrand(files, rank_size)
files_list = files
# img_feats
# for i in range(rank_size):
img_feats, faceness_scores = get_image_feature(img_path, files_list,
model_path, 0, gpu_id)
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
print('Feature Shape: ({} , {}) .'.format(img_feats.shape[0],
img_feats.shape[1]))
# # Step3: Get Template Features
# In[ ]:
# =============================================================
# compute template features from image features.
# =============================================================
start = timeit.default_timer()
# ==========================================================
# Norm feature before aggregation into template feature?
# Feature norm from embedding network and faceness score are able to decrease weights for noise samples (not face).
# ==========================================================
# 1. FaceScore (Feature Norm)
# 2. FaceScore (Detector)
if use_flip_test:
# concat --- F1
# img_input_feats = img_feats
# add --- F2
img_input_feats = img_feats[:, 0:img_feats.shape[1] //
2] + img_feats[:, img_feats.shape[1] // 2:]
else:
img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2]
if use_norm_score:
img_input_feats = img_input_feats
else:
# normalise features to remove norm information
img_input_feats = img_input_feats / np.sqrt(
np.sum(img_input_feats ** 2, -1, keepdims=True))
if use_detector_score:
print(img_input_feats.shape, faceness_scores.shape)
img_input_feats = img_input_feats * faceness_scores[:, np.newaxis]
else:
img_input_feats = img_input_feats
template_norm_feats, unique_templates = image2template_feature(
img_input_feats, templates, medias)
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
# # Step 4: Get Template Similarity Scores
# In[ ]:
# =============================================================
# compute verification scores between template pairs.
# =============================================================
start = timeit.default_timer()
score = verification(template_norm_feats, unique_templates, p1, p2)
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
# In[ ]:
save_path = os.path.join(result_dir, args.job)
# save_path = result_dir + '/%s_result' % target
if not os.path.exists(save_path):
os.makedirs(save_path)
score_save_file = os.path.join(save_path, "%s.npy" % target.lower())
np.save(score_save_file, score)
# # Step 5: Get ROC Curves and TPR@FPR Table
# In[ ]:
files = [score_save_file]
methods = []
scores = []
for file in files:
methods.append(Path(file).stem)
scores.append(np.load(file))
methods = np.array(methods)
scores = dict(zip(methods, scores))
colours = dict(
zip(methods, sample_colours_from_colourmap(methods.shape[0], 'Set2')))
x_labels = [10 ** -6, 10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2, 10 ** -1]
tpr_fpr_table = PrettyTable(['Methods'] + [str(x) for x in x_labels])
fig = plt.figure()
for method in methods:
fpr, tpr, _ = roc_curve(label, scores[method])
roc_auc = auc(fpr, tpr)
fpr = np.flipud(fpr)
tpr = np.flipud(tpr) # select largest tpr at same fpr
plt.plot(fpr,
tpr,
color=colours[method],
lw=1,
label=('[%s (AUC = %0.4f %%)]' %
(method.split('-')[-1], roc_auc * 100)))
tpr_fpr_row = []
tpr_fpr_row.append("%s-%s" % (method, target))
for fpr_iter in np.arange(len(x_labels)):
_, min_index = min(
list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr)))))
tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100))
tpr_fpr_table.add_row(tpr_fpr_row)
plt.xlim([10 ** -6, 0.1])
plt.ylim([0.3, 1.0])
plt.grid(linestyle='--', linewidth=1)
plt.xticks(x_labels)
plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True))
plt.xscale('log')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC on IJB')
plt.legend(loc="lower right")
fig.savefig(os.path.join(save_path, '%s.pdf' % target.lower()))
print(tpr_fpr_table)