forked from turboderp/exllama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
1087 lines (731 loc) · 41.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import sys
min_version = (3, 9)
if sys.version_info < min_version:
print("")
print(f" ## Warning: this project requires Python {min_version[0]}.{min_version[1]} or higher.")
print("")
import torch
from torch import nn
import torch.nn.functional as F
from safetensors import safe_open
import cuda_ext
import json
import math
import gc
from enum import Enum
try:
from flash_attn import flash_attn_func
except:
pass
class ParsedEnum(Enum):
def __str__(self):
return self.name.lower()
def __repr__(self):
return str(self)
@classmethod
def argparse(cls, s):
try:
return cls[s.upper()]
except KeyError:
return s
class ExLlamaConfig:
# Load config from Llama config.json
def __init__(self, model_config_path):
with open(model_config_path) as f:
read_config = json.load(f)
# Loaded/automatic settings
self.bos_token_id = read_config["bos_token_id"] # Note that the HF LlamaTokenizer doesn't seem to recognize these automatically
self.eos_token_id = read_config["eos_token_id"]
self.pad_token_id = read_config["pad_token_id"]
self.hidden_size = read_config["hidden_size"]
self.initializer_range = read_config["initializer_range"]
self.intermediate_size = read_config["intermediate_size"]
self.num_attention_heads = read_config["num_attention_heads"]
self.num_hidden_layers = read_config["num_hidden_layers"]
self.rms_norm_eps = read_config["rms_norm_eps"]
self.vocab_size = read_config["vocab_size"]
if "num_key_value_heads" in read_config:
self.num_key_value_heads = read_config["num_key_value_heads"]
self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads
else:
self.num_key_value_heads = self.num_attention_heads
self.num_key_value_groups = 1
self.rotary_embedding_base = 10000 # Constant used for pretrained models, leave as is unless retraining
self.head_dim = self.hidden_size // self.num_attention_heads
self.groupsize = None # Autodetected
self.act_order = False # Autodetected
self.empty_g_idx = False # Autodetected
# Required settings
self.model_path = None
self.device_map = ExLlamaDeviceMap(self.num_hidden_layers)
# Optional settings
self.max_seq_len = 2048 # Reduce to save memory. Can also be increased, ideally while also using compress_pos_emn and a compatible model/LoRA
self.max_input_len = 2048 # Maximum length of input IDs in a single forward pass. Sequences longer than this will be processed in multiple steps
self.max_attention_size = 2048**2 # Sequences will be processed in chunks to keep the size of the attention weights matrix <= this
self.compress_pos_emb = 1.0 # Increase to compress positional embeddings applied to sequence
self.alpha_value = 1.0 # Alpha value for NTK RoPE scaling. Similar to compress_pos_emb, higher values increaste ctx but add Perplexity.
self.gpu_peer_fix = False # Apparently Torch can have problems transferring tensors directly one GPU to another sometimes. Enable this to expliticly move tensors via system RAM instead, where needed
self.auto_map = None # List of floats with memory allocation in GB, per CUDA device, overrides device_map
# Tuning
self.use_flash_attn_2 = False
self.matmul_recons_thd = 8
self.fused_mlp_thd = 2
self.sdp_thd = 8
self.fused_attn = True
self.matmul_fused_remap = False
self.rmsnorm_no_half2 = False
self.rope_no_half2 = False
self.matmul_no_half2 = False
self.silu_no_half2 = False
self.concurrent_streams = False
# Copy tuning params to C++ extension
def set_tuning_params(self):
cuda_ext.exllama_ext.set_tuning_params(self.matmul_recons_thd,
self.fused_mlp_thd,
self.sdp_thd,
self.matmul_fused_remap,
self.rmsnorm_no_half2,
self.rope_no_half2,
self.matmul_no_half2,
self.silu_no_half2,
self.concurrent_streams)
# Parse and set list of GPU VRAM allocations
def set_auto_map(self, map_string):
if map_string is None: self.auto_map = None
else: self.auto_map = [float(alloc) for alloc in map_string.split(",")]
def calculate_rotary_embedding_base(self):
self.rotary_embedding_base = self.rotary_embedding_base * self.alpha_value ** (self.head_dim / (self.head_dim-2))
# 4-bit linear layer implementation
class Ex4bitLinear:
def __init__(self, config, in_features, out_features, has_bias, tensors, key):
self.config = config
self.key = key
self.in_features = in_features
self.out_features = out_features
self.qweight = tensors[key + ".qweight"]
self.qzeros = tensors[key + ".qzeros"]
self.scales = tensors[key + ".scales"]
self.g_idx = tensors[key + ".g_idx"].cpu() if key + ".g_idx" in tensors else None
self.bias = tensors[key + ".bias"] if has_bias else None
if self.g_idx is not None and (self.g_idx == 0).all():
self.config.empty_g_idx = True
self.g_idx = None
self.device = self.qweight.device
self.device_index = self.device.index
self.q4 = cuda_ext.ext_make_q4(self.qweight,
self.qzeros,
self.scales,
self.g_idx,
self.device_index)
self.height = tensors[key + ".qweight"].shape[0] * 8
self.width = tensors[key + ".qweight"].shape[1]
# Infer groupsize from height of qzeros
self.groupsize = None
if self.qzeros.shape[0] > 1:
self.groupsize = (self.qweight.shape[0] * 8) // self.qzeros.shape[0]
if self.config.groupsize is None:
self.config.groupsize = self.groupsize
# Handle act-order matrix
if self.g_idx is not None:
if self.groupsize is None: raise ValueError("Found group index but no groupsize. What do?")
self.config.act_order = True
def lora_applies(self, lora):
if lora is None: return False
return self.key + ".lora_A.weight" in lora.tensors
def lora_apply(self, lora, x):
lora_a = lora.tensors[self.key + ".lora_A.weight"]
lora_b = lora.tensors[self.key + ".lora_B.weight"]
out = torch.matmul(x, lora_a)
out = torch.matmul(out, lora_b)
# out = cuda_ext.ext_half_matmul(x, lora_a.contiguous(), cublas = True)
# out = cuda_ext.ext_half_matmul(out, lora_b.contiguous(), cublas = True)
return out
def get_lora_tensors_or_meta(self, lora):
if not self.lora_applies(lora):
return cuda_ext.none_tensor, cuda_ext.none_tensor
else:
lora_a = lora.tensors[self.key + ".lora_A.weight"]
lora_b = lora.tensors[self.key + ".lora_B.weight"]
return lora_a, lora_b
def forward(self, x, lora):
if self.lora_applies(lora):
lora_a = lora.tensors[self.key + ".lora_A.weight"]
lora_b = lora.tensors[self.key + ".lora_B.weight"]
out = cuda_ext.ext_q4_matmul(x, self.q4, self.width, lora_a, lora_b)
else:
out = cuda_ext.ext_q4_matmul(x, self.q4, self.width)
# out = cuda_ext.ext_q4_matmul(x, self.q4, self.width)
# if self.lora_applies(lora):
# out += self.lora_apply(lora, x)
if self.bias is not None: out.add_(self.bias)
return out
# Llama MLP
class ExLlamaMLP:
def __init__(self, config, tensors, key):
self.config = config
self.gate_proj = Ex4bitLinear(config, self.config.hidden_size, self.config.intermediate_size, False, tensors, key + ".gate_proj")
self.up_proj = Ex4bitLinear(config, self.config.hidden_size, self.config.intermediate_size, False, tensors, key + ".up_proj")
self.down_proj = Ex4bitLinear(config, self.config.intermediate_size, self.config.hidden_size, False, tensors, key + ".down_proj")
self.act_fn = nn.SiLU()
def fused(self, x, buffer, post_attention_layernorm, lora):
bsz, q_len, _ = x.size()
gate_a, gate_b = self.gate_proj.get_lora_tensors_or_meta(lora)
up_a, up_b = self.up_proj.get_lora_tensors_or_meta(lora)
down_a, down_b = self.down_proj.get_lora_tensors_or_meta(lora)
temp_size = 0
if not gate_a.is_meta: temp_size = max(temp_size, bsz * q_len * gate_a.shape[1])
if not up_a.is_meta: temp_size = max(temp_size, bsz * q_len * up_a.shape[1])
if not down_a.is_meta: temp_size = max(temp_size, bsz * q_len * down_a.shape[1])
if temp_size > 0: lora_temp = torch.empty((1, temp_size), dtype = torch.float16, device = x.device)
else: lora_temp = cuda_ext.none_tensor
cuda_ext.exllama_ext.q4_mlp(x.view(-1, x.shape[-1]),
post_attention_layernorm.weight,
self.config.rms_norm_eps,
self.gate_proj.q4,
self.up_proj.q4,
self.down_proj.q4,
gate_a, gate_b,
up_a, up_b,
down_a, down_b,
lora_temp)
def forward(self, x, buffer, lora):
y = self.gate_proj.forward(x, lora)
y = self.act_fn(y)
y *= self.up_proj.forward(x, lora)
y = self.down_proj.forward(y, lora)
return y
# RMS Layer norm.
class ExLlamaRMSNorm:
def __init__(self, config, tensors, key):
self.config = config
self.variance_epsilon = self.config.rms_norm_eps
self.weight = tensors[key]
def forward(self, hidden_states, buffer):
hidden_states = cuda_ext.ext_rms_norm(hidden_states, self.weight, self.variance_epsilon)
return hidden_states
# Llama attention
class ExLlamaAttention:
def __init__(self, config, tensors, key, sin, cos, index):
self.config = config
self.sin = sin
self.cos = cos
self.index = index
self.q_proj = Ex4bitLinear(config, self.config.hidden_size, self.config.num_attention_heads * self.config.head_dim, False, tensors, key + ".q_proj")
self.k_proj = Ex4bitLinear(config, self.config.hidden_size, self.config.num_key_value_heads * self.config.head_dim, False, tensors, key + ".k_proj")
self.v_proj = Ex4bitLinear(config, self.config.hidden_size, self.config.num_key_value_heads * self.config.head_dim, False, tensors, key + ".v_proj")
self.o_proj = Ex4bitLinear(config, self.config.num_attention_heads * self.config.head_dim, self.config.hidden_size, False, tensors, key + ".o_proj")
def repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
# TODO: This seems inefficient. It should be possible to broadcast in the attention matmul to avoid building
# temporary K/V tensors like this
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1: return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def fused(self, hidden_states, cache, buffer, input_layernorm, lora):
bsz, q_len, _ = hidden_states.size()
past_len = cache.current_seq_len
# Lora tensors
q_a, q_b = self.q_proj.get_lora_tensors_or_meta(lora)
k_a, k_b = self.k_proj.get_lora_tensors_or_meta(lora)
v_a, v_b = self.v_proj.get_lora_tensors_or_meta(lora)
o_a, o_b = self.o_proj.get_lora_tensors_or_meta(lora)
temp_size = 0
if not q_a.is_meta: temp_size = max(temp_size, bsz * q_len * q_a.shape[1])
if not k_a.is_meta: temp_size = max(temp_size, bsz * q_len * k_a.shape[1])
if not v_a.is_meta: temp_size = max(temp_size, bsz * q_len * v_a.shape[1])
if not o_a.is_meta: temp_size = max(temp_size, bsz * q_len * o_a.shape[1])
if temp_size > 0: lora_temp = torch.empty((1, temp_size), dtype = torch.float16, device = hidden_states.device)
else: lora_temp = cuda_ext.none_tensor
# Project q, k, v, apply position embeddings to k and v, update cache
query_states = torch.empty((bsz, q_len, self.config.num_attention_heads * self.config.head_dim), dtype = torch.float16, device = hidden_states.device)
key_states = torch.empty((bsz, q_len, self.config.num_key_value_heads * self.config.head_dim), dtype = torch.float16, device = hidden_states.device)
value_states = torch.empty((bsz, q_len, self.config.num_key_value_heads * self.config.head_dim), dtype = torch.float16, device = hidden_states.device)
cuda_ext.exllama_ext.q4_attn(hidden_states,
input_layernorm.weight,
self.config.rms_norm_eps,
query_states,
key_states,
value_states,
self.q_proj.q4,
self.k_proj.q4,
self.v_proj.q4,
self.sin,
self.cos,
q_len,
past_len,
self.config.num_attention_heads,
self.config.num_key_value_heads,
self.config.head_dim,
cache.key_states[self.index],
cache.value_states[self.index],
self.config.max_seq_len,
q_a, q_b,
k_a, k_b,
v_a, v_b,
lora_temp)
query_states = query_states.view(bsz, q_len, self.config.num_attention_heads, self.config.head_dim)
# Get k, v with past
key_states = cache.key_states[self.index].narrow(2, 0, past_len + q_len).narrow(0, 0, bsz)
value_states = cache.value_states[self.index].narrow(2, 0, past_len + q_len).narrow(0, 0, bsz)
# Repeat K/V heads if num_key_value_headsn_kv_heads < n_heads
query_states.transpose_(1, 2)
key_states = self.repeat_kv(key_states, self.config.num_key_value_groups)
value_states = self.repeat_kv(value_states, self.config.num_key_value_groups)
# Attention
# TODO: Figure out if we can use cublasHgemmStridedBatched() to do this matmul without reshaping. Torch uses
# gemmStridedBatchedEx() internally, so it should be possible.
# -- Flash Attention 2.0
if self.config.use_flash_attn_2 and (past_len == 0 or q_len == 1):
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
query_states = query_states.transpose(1, 2)
attn_output = flash_attn_func(query_states, key_states, value_states, causal = (past_len == 0))
# -- HF Transformers regular attention, faster on shorter sequences, same VRAM usage
else:
key_states.transpose_(2, 3)
attn_weights = torch.matmul(query_states, key_states)
attn_weights /= math.sqrt(self.config.head_dim)
attn_weights = nn.functional.softmax(attn_weights, dim = -1, dtype = torch.float16)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.config.hidden_size)
# Output projection
cuda_ext.exllama_ext.q4_attn_2(hidden_states,
attn_output,
self.o_proj.q4,
o_a, o_b,
lora_temp)
# return hidden_states
def forward(self, hidden_states, cache, buffer, lora):
bsz, q_len, _ = hidden_states.size()
past_len = cache.current_seq_len
# Project q, k, v, apply position embeddings to k and v
query_states = self.q_proj.forward(hidden_states, lora)
key_states = self.k_proj.forward(hidden_states, lora)
cuda_ext.exllama_ext.rope_(query_states, self.sin, self.cos, past_len, self.config.num_attention_heads, self.config.head_dim)
cuda_ext.exllama_ext.rope_(key_states, self.sin, self.cos, past_len, self.config.num_key_value_heads, self.config.head_dim)
query_states = query_states.view(bsz, q_len, self.config.num_attention_heads, self.config.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.config.num_key_value_heads, self.config.head_dim).transpose(1, 2)
value_states = self.v_proj.forward(hidden_states, lora).view(bsz, q_len, self.config.num_key_value_heads, self.config.head_dim).transpose(1, 2)
# Add keys and values to cache
new_keys = cache.key_states[self.index].narrow(2, past_len, q_len).narrow(0, 0, bsz)
new_values = cache.value_states[self.index].narrow(2, past_len, q_len).narrow(0, 0, bsz)
new_keys.copy_(key_states)
new_values.copy_(value_states)
# Key/value tensors with past
key_states = cache.key_states[self.index].narrow(2, 0, past_len + q_len).narrow(0, 0, bsz)
value_states = cache.value_states[self.index].narrow(2, 0, past_len + q_len).narrow(0, 0, bsz)
# Attention
# -- Flash Attention 2.0
if self.config.use_flash_attn_2 and (past_len == 0 or q_len == 1):
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
query_states = query_states.transpose(1, 2)
attn_output = flash_attn_func(query_states, key_states, value_states, causal = (past_len == 0))
# -- HF Transformers regular attention, faster on shorter sequences, same VRAM usage
elif self.config.sdp_thd == 0 or q_len < self.config.sdp_thd:
key_states = self.repeat_kv(key_states, self.config.num_key_value_groups)
value_states = self.repeat_kv(value_states, self.config.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
attn_weights /= math.sqrt(self.config.head_dim)
if buffer.attn_mask is not None: attn_weights = attn_weights + buffer.attn_mask
attn_weights = nn.functional.softmax(attn_weights, dim = -1, dtype = torch.float16)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2)
# -- Scaled dot-product attention from PyTorch 2, should be comparable to xformers (?)
else:
# Torch's SDP attention has a built-in causal mask feature which we can use only when there is no past, i.e.
# it can only apply a square attention mask. It saves quite a bit of VRAM but in practice Torch seems to use
# the same amount of memory at peak anyway.
#
# TODO: Apparently flash attention is disabled when supplying an attention mask tensor. Figure out if this
# is true and maybe drop SDP altogether. If causal masking in flash-attn is updated eventually there should
# be no need for this anyway.
key_states = self.repeat_kv(key_states, self.config.num_key_value_groups)
value_states = self.repeat_kv(value_states, self.config.num_key_value_groups)
if past_len > 0 or (bsz > 1 and buffer.attn_mask is not None):
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = buffer.attn_mask, is_causal = False)
else:
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = None, is_causal = True)
attn_output = attn_output.transpose(1, 2)
# Output projection
attn_output = attn_output.reshape(bsz, q_len, self.config.hidden_size)
attn_output = self.o_proj.forward(attn_output, lora)
return attn_output
def _rows(x):
xdp = 1
for y in x.shape[:-1]: xdp *= y
return xdp
class ExLlamaDecoderLayer:
def __init__(self, config, tensors, key, index, sin, cos):
self.config = config
self.index = index
self.self_attn = ExLlamaAttention(self.config, tensors, key + ".self_attn", sin, cos, self.index)
self.mlp = ExLlamaMLP(self.config, tensors, key + ".mlp")
self.input_layernorm = ExLlamaRMSNorm(self.config, tensors, key + ".input_layernorm.weight")
self.post_attention_layernorm = ExLlamaRMSNorm(self.config, tensors, key + ".post_attention_layernorm.weight")
def forward(self, hidden_states, cache, buffer, lora):
# Self-attention
if self.config.fused_attn and _rows(hidden_states) == 1:
self.self_attn.fused(hidden_states, cache, buffer, self.input_layernorm, lora)
else:
residual = hidden_states
hidden_states = self.input_layernorm.forward(hidden_states, buffer)
hidden_states = self.self_attn.forward(hidden_states, cache, buffer, lora)
hidden_states = residual + hidden_states
# MLP
if self.config.fused_mlp_thd > 0 and _rows(hidden_states) <= self.config.fused_mlp_thd:
self.mlp.fused(hidden_states, buffer, self.post_attention_layernorm, lora)
else:
residual = hidden_states
hidden_states = self.post_attention_layernorm.forward(hidden_states, buffer)
hidden_states = self.mlp.forward(hidden_states, buffer, lora)
hidden_states = residual + hidden_states
return hidden_states
# Persistent cache for inference. Allocate the whole thing up front.
class ExLlamaCache:
def __init__(self, model, batch_size = 1, max_seq_len = -1, copy_from = None):
self.model = model
self.config = self.model.config
self.max_seq_len = max_seq_len if max_seq_len != -1 else self.config.max_seq_len
self.batch_size = batch_size
self.key_states = []
self.value_states = []
self.current_seq_len = 0
# Preallocate full-length cache
for i in range(self.config.num_hidden_layers):
if copy_from is None:
p_key_states = torch.zeros(self.batch_size, self.config.num_key_value_heads, self.max_seq_len, self.config.head_dim, dtype = torch.float16, device = self.model.config.device_map.layers[i])
p_value_states = torch.zeros(self.batch_size, self.config.num_key_value_heads, self.max_seq_len, self.config.head_dim, dtype = torch.float16, device = self.model.config.device_map.layers[i])
else:
p_key_states = copy_from.key_states[i].clone()
p_value_states = copy_from.value_states[i].clone()
self.key_states.append(p_key_states)
self.value_states.append(p_value_states)
def zero(self):
for i in range(self.config.num_hidden_layers):
self.key_states[i].zero_()
self.value_states[i].zero_()
def clone(self):
new = ExLlamaCache(self.model, batch_size = self.batch_size, max_seq_len = self.max_seq_len, copy_from = self)
return new
def roll_left(self):
for i in range(self.config.num_hidden_layers):
self.key_states[i] = torch.roll(self.key_states[i], shifts = -1, dims = 2)
self.value_states[i] = torch.roll(self.value_states[i], shifts = -1, dims = 2)
self.current_seq_len -= 1
def copy_states(self, target, from_column, from_columns, to_column, to_columns, from_row, from_rows, to_row, to_rows):
assert from_rows == 1
assert from_columns == to_columns
assert to_column + to_columns <= target.max_seq_len
assert from_column + from_columns <= self.max_seq_len
for i in range(self.config.num_hidden_layers):
source_view_k = self.key_states[i].narrow(0, from_row, from_rows).narrow(2, from_column, from_columns)
source_view_v = self.value_states[i].narrow(0, from_row, from_rows).narrow(2, from_column, from_columns)
target_view_k = target.key_states[i].narrow(0, to_row, to_rows).narrow(2, to_column, to_columns)
target_view_v = target.value_states[i].narrow(0, to_row, to_rows).narrow(2, to_column, to_columns)
if to_rows > 1:
source_view_k = source_view_k.expand_as(target_view_k)
source_view_v = source_view_v.expand_as(target_view_v)
target_view_k.copy_(source_view_k)
target_view_v.copy_(source_view_v)
# Device map for the model.
class ExLlamaDeviceMap:
def __init__(self, num_layers):
self.num_layers = num_layers
self.embed_tokens = "cpu" # Embedding table on CPU saves 400 MB on the 30B model with no measurable impact on performance
self.lm_head = "cuda:0"
self.norm = "cuda:0"
self.layers = ["cuda:0"] * self.num_layers
def get_layers_devs(self):
return sorted(list(set(self.layers)))
def get_all_devs(self):
return sorted(list(set(self.layers + [self.lm_head, self.norm, self.embed_tokens])))
def map(self, key):
if key.startswith("lm_head."): return self.lm_head
if key.startswith("model.embed_tokens."): return self.embed_tokens
if key.startswith("model.norm."): return self.norm
if key.startswith("model.layers."):
num = int(key.split(".")[2])
return self.layers[num]
raise ValueError("Unknown key: " + key)
class ExLlamaBuffer:
config: ExLlamaConfig
def __init__(self, config):
self.config = config
# Attention mask
attn_mask: torch.Tensor = None
# Move to device
def to(self, device):
new = ExLlamaBuffer(self.config)
new.attn_mask = None if self.attn_mask is None else _move_tensor(self.attn_mask, device, "attn_mask", self.config)
return new
def _device_to_int(device):
return int(device[device.find(":") + 1:])
def _skip_key(key):
if key.endswith("_proj.bias"): return True
if key.endswith(".rotary_emb.inv_freq"): return True
return False
def _move_tensor(tensor, new_device, name, config):
device = str(tensor.device)
if device == new_device: return tensor
if config.gpu_peer_fix:
if str(device).startswith("cuda:") and str(new_device).startswith("cuda:"):
tensor = tensor.to("cpu")
return tensor.to(new_device)
def _layer_dtype_size(key):
if key.endswith(".weight"): return 2
if key.endswith(".qweight"): return 4
if key.endswith(".qzeros"): return 4
if key.endswith(".scales"): return 2
if key.endswith(".g_idx"): return 0
raise ValueError("Unrecognized layer: " + key)
class ExLlama:
def __init__(self, config):
self.config = config
# Copy tuning parameters to C++ extension
self.config.set_tuning_params()
# Load model weights
tensors = {}
with safe_open(self.config.model_path, framework = "pt", device = "cpu") as f:
# Begin auto mapping if enabled
decoder_size = 0
norm_size = 0
head_size = 0
half_element_size = torch.tensor([], dtype = torch.float16).element_size()
if self.config.auto_map is not None:
self.config.device_map.embed_tokens = "cpu"
self.config.device_map.layers = ["cuda:0"] + ["?"] * (self.config.num_hidden_layers - 1)
for key in f.keys():
if _skip_key(key): continue
if key.startswith("model.layers.0."):
tensor_slice = f.get_slice(key)
shape = tensor_slice.get_shape()
decoder_size += math.prod(shape) * _layer_dtype_size(key)
del tensor_slice
if key.startswith("model.norm."):
tensor_slice = f.get_slice(key)
shape = tensor_slice.get_shape()
norm_size += math.prod(shape) * _layer_dtype_size(key)
del tensor_slice
if key.startswith("lm_head."):
tensor_slice = f.get_slice(key)
shape = tensor_slice.get_shape()
head_size += math.prod(shape) * _layer_dtype_size(key)
del tensor_slice
# Assign layers automatically
device_usage = 0
device_index = 0
layer_index_device = 0
max_usage = self.config.auto_map[device_index] * (1024 ** 3)
for layer in range(self.config.num_hidden_layers + 2):
this_layer_size = decoder_size
if layer == self.config.num_hidden_layers + 0: this_layer_size = norm_size
elif layer == self.config.num_hidden_layers + 1: this_layer_size = head_size
while device_usage + this_layer_size > max_usage:
device_index += 1
device_usage = 0
layer_index_device = 0
max_usage = self.config.auto_map[device_index] * (1024 ** 3)
if device_index >= len(self.config.auto_map): raise ValueError("Model too large for device allocation scheme.")
target = f"cuda:{device_index}"
if layer == self.config.num_hidden_layers + 0: self.config.device_map.norm = target
elif layer == self.config.num_hidden_layers + 1: self.config.device_map.lm_head = target
else: self.config.device_map.layers[layer] = f"cuda:{device_index}"
device_usage += this_layer_size
layer_index_device += 1
# Read tensor list from file
load_keys = []
with safe_open(self.config.model_path, framework = "pt", device = "cpu") as f:
for key in f.keys():
load_keys.append(key)
# Load up to 1 GB of tensors at a time, closing and reopening the file in between each chunk
max_dq_buffer_size = 0
f = None
st_mem = 0
MAX_ST_MEM = 1024**3
for key in load_keys:
if _skip_key(key): continue
device = self.config.device_map.map(key)
if f is None or st_mem > MAX_ST_MEM:
if f is not None: del f
f = safe_open(self.config.model_path, framework = "pt", device = "cpu")
st_mem = 0
tensor = f.get_tensor(key)
size = tensor.numel() * tensor.element_size()
st_mem += size
if key.endswith(".scales"): tensor = tensor.half()
if key == "lm_head.weight": tensor = tensor.float() if device == "cpu" else tensor.half()
if key == "model.norm.weight": tensor = tensor.half()
if key.endswith(".embed_tokens.weight"): tensor = tensor.half()
if key.endswith(".input_layernorm.weight"): tensor = tensor.half()
if key.endswith(".post_attention_layernorm.weight"): tensor = tensor.half()
tensor = tensor.to(device, non_blocking = True)
if key.endswith(".qweight"): max_dq_buffer_size = max(max_dq_buffer_size, tensor.numel() * 8)
tensors[key] = tensor
del f
# Head
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias = False, device = "meta")
self.lm_head.weight = nn.Parameter(tensors["lm_head.weight"])
# self.lm_head_data = tensors["lm_head.weight"].transpose(0, 1).contiguous()
# Token embeddings
self.embed_tokens = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.config.pad_token_id, device = "meta")
self.embed_tokens.weight = nn.Parameter(tensors["model.embed_tokens.weight"])
with torch.no_grad():
self.embed_tokens.weight[self.config.pad_token_id] = 0
# Norm
self.norm = ExLlamaRMSNorm(self.config, tensors, "model.norm.weight")
# Prepare position embeddings for max seq length
devs = self.config.device_map.get_layers_devs()
self.sincos = {}
for device in devs:
inv_freq = 1.0 / (self.config.rotary_embedding_base ** (torch.arange(0, self.config.head_dim, 2, device = device).float() / self.config.head_dim))
t = torch.arange(self.config.max_seq_len, device = device, dtype = torch.float32)
if self.config.compress_pos_emb != 1.0: t /= self.config.compress_pos_emb
freqs = torch.einsum("i,j->ij", t, inv_freq)
emb = torch.cat((freqs, freqs), dim = -1)
sin = emb.sin()[None, None, :, :].half()
cos = emb.cos()[None, None, :, :].half()
self.sincos[device] = (sin, cos)
# Decoder layers
modules = []
device_layer_index = [0] * len(devs)
for i in range(self.config.num_hidden_layers):
device = self.config.device_map.layers[i]
sin, cos = self.sincos[device]
layer = ExLlamaDecoderLayer(self.config, tensors, f"model.layers.{i}", i, sin, cos)
modules.append(layer)
self.layers = modules
# Prepare CUDA buffers
self.buffers = []
for dev in self.config.device_map.get_layers_devs():
device_buffers = {}
self.buffers.append(device_buffers)
temp_state = torch.zeros((config.max_input_len, config.intermediate_size), dtype = torch.float16, device = dev)
temp_mlp = torch.zeros((config.fused_mlp_thd * 2, config.intermediate_size), dtype = torch.float16, device = dev)
temp_zeros_float = torch.zeros((1, 65536), dtype = torch.float32, device = dev)
temp_dq = torch.zeros((1, max_dq_buffer_size), dtype = torch.float16, device = dev)
device_buffers["temp_state"] = temp_state
device_buffers["temp_mlp"] = temp_mlp
device_buffers["temp_zeros_float"] = temp_zeros_float
device_buffers["temp_dq"] = temp_dq
cuda_ext.exllama_ext.prepare_buffers(torch.device(dev),
temp_state,
temp_mlp,
temp_zeros_float,
temp_dq)
# Clear the cache
torch.cuda.empty_cache()
def forward(self,
input_ids,
cache,
last_id_only = True,
preprocess_only = False,
lora = None,
output_device = None,
input_mask = None):
q_len = input_ids.shape[-1]
remaining_q_len = q_len
bsz = input_ids.shape[0]
assert input_mask is None or (input_mask.shape[-1] >= input_ids.shape[-1] and input_mask.shape[-2] == input_ids.shape[-2])
# The buffers can only fit max_input_len tokens, so with larger batch sizes we reduce our work size correspondingly.
effective_max_input_len = self.config.max_input_len // bsz
# Split sequence
result = None
chunk_begin = 0
while chunk_begin < q_len:
# Limit chunk_size to max_input_len
chunk_size = min(remaining_q_len, effective_max_input_len)
# Limit chunk_size to keep size of attention operation <= max_attention_size, unless using flash-attn
if not self.config.use_flash_attn_2 or chunk_begin > 0:
past_len = cache.current_seq_len
attn_size = (past_len + remaining_q_len) * remaining_q_len
max_a = self.config.max_attention_size
if attn_size > max_a:
cs = (math.sqrt(past_len ** 2 + 4 * max_a) - past_len) / 2
chunk_size = min(chunk_size, math.floor(cs))
# Process chunk
chunk_end = min(chunk_begin + chunk_size, q_len)
_last_id_only = last_id_only
_preprocess_only = preprocess_only or (chunk_end < q_len and last_id_only)
r = self._forward(input_ids[:, chunk_begin : chunk_end],
cache,
_last_id_only,
_preprocess_only,
lora,
output_device,
input_mask)
if not _preprocess_only:
result = r if result is None else torch.cat((result, r), dim = 1)
chunk_begin = chunk_end
remaining_q_len -= chunk_size
return result
def _forward(self,
input_ids,
cache,
last_id_only = True,
preprocess_only = False,
lora = None,
output_device = None,
input_mask = None):
# if torch.is_grad_enabled():
# raise ValueError("Forward pass called with gradients enabled. Back propagation is not supported yet.")
with torch.no_grad():
batch_size, seq_len = input_ids.shape
past_len = cache.current_seq_len
if output_device is None: output_device = input_ids.device