|
| 1 | +""" |
| 2 | +Test functions that use tricks to speed up their code produce the same result as the |
| 3 | +slower method |
| 4 | +""" |
| 5 | + |
| 6 | +from haversine import haversine_vector, Unit |
| 7 | +import numpy as np |
| 8 | +import xarray as xr |
| 9 | + |
| 10 | +import huracanpy |
| 11 | + |
| 12 | + |
| 13 | +def test_accel_sel_id(tracks_csv): |
| 14 | + result = huracanpy.sel_id(tracks_csv, tracks_csv.track_id, 0) |
| 15 | + |
| 16 | + expected = tracks_csv.groupby("track_id")[0] |
| 17 | + |
| 18 | + xr.testing.assert_identical(result, expected) |
| 19 | + |
| 20 | + |
| 21 | +def test_accel_trackswhere(): |
| 22 | + # TODO accelerate trackswhere |
| 23 | + pass |
| 24 | + |
| 25 | + |
| 26 | +def test_accel_get_gen_vals(tracks_csv): |
| 27 | + result = huracanpy.calc.get_gen_vals( |
| 28 | + tracks_csv, tracks_csv.time, tracks_csv.track_id |
| 29 | + ) |
| 30 | + |
| 31 | + expected = tracks_csv.groupby("track_id").first() |
| 32 | + |
| 33 | + xr.testing.assert_identical(result, expected) |
| 34 | + |
| 35 | + |
| 36 | +def test_accel_get_apex_vals(tracks_csv): |
| 37 | + result = huracanpy.calc.get_apex_vals( |
| 38 | + tracks_csv, tracks_csv.wind10, tracks_csv.track_id |
| 39 | + ) |
| 40 | + |
| 41 | + expected = tracks_csv.sortby("wind10", ascending=False).groupby("track_id").first() |
| 42 | + |
| 43 | + xr.testing.assert_identical(result, expected) |
| 44 | + |
| 45 | + |
| 46 | +def test_accel_get_time_from_genesis(tracks_csv): |
| 47 | + result = huracanpy.calc.get_time_from_genesis(tracks_csv.time, tracks_csv.track_id) |
| 48 | + |
| 49 | + track_groups = tracks_csv.groupby("track_id") |
| 50 | + expected = [] |
| 51 | + for track_id, track in track_groups: |
| 52 | + expected.append(track.time - track.time[0]) |
| 53 | + |
| 54 | + expected = xr.concat(expected, dim="record") |
| 55 | + expected = expected.rename("time_from_genesis") |
| 56 | + |
| 57 | + xr.testing.assert_identical(result, expected) |
| 58 | + |
| 59 | + |
| 60 | +def test_accel_get_time_from_apex(tracks_csv): |
| 61 | + result = huracanpy.calc.get_time_from_apex( |
| 62 | + tracks_csv.time, tracks_csv.track_id, tracks_csv.wind10 |
| 63 | + ) |
| 64 | + |
| 65 | + track_groups = tracks_csv.groupby("track_id") |
| 66 | + expected = [] |
| 67 | + for track_id, track in track_groups: |
| 68 | + idx = track.wind10.argmax() |
| 69 | + expected.append(track.time - track.time[idx]) |
| 70 | + |
| 71 | + expected = xr.concat(expected, dim="record") |
| 72 | + expected = expected.rename("time_from_extremum") |
| 73 | + |
| 74 | + xr.testing.assert_identical(result, expected) |
| 75 | + |
| 76 | + |
| 77 | +def test_accel_match(): |
| 78 | + ref = huracanpy.load(huracanpy.example_csv_file) |
| 79 | + tracks = ref.where(ref.track_id < 2, drop=True) |
| 80 | + tracks = tracks.where(tracks.time.dt.hour == 0, drop=True) |
| 81 | + tracks["lon"] = tracks.lon + 0.5 |
| 82 | + tracks["lat"] = tracks.lat + 0.5 |
| 83 | + |
| 84 | + result = huracanpy.assess.match([tracks, ref]) |
| 85 | + |
| 86 | + max_dist = 300 |
| 87 | + track_id1 = [] |
| 88 | + track_id2 = [] |
| 89 | + npoints = [] |
| 90 | + dist = [] |
| 91 | + |
| 92 | + for track_id, track in tracks.groupby("track_id"): |
| 93 | + for track_id_ref, track_ref in ref.groupby("track_id"): |
| 94 | + # Match times |
| 95 | + track_ = track.where(track.time.isin(track_ref.time), drop=True) |
| 96 | + |
| 97 | + if len(track_.time) > 0: |
| 98 | + track_ref_ = track_ref.where(track_ref.time.isin(track.time), drop=True) |
| 99 | + |
| 100 | + yx_track = np.array([track_.lat, track_.lon]).T |
| 101 | + yx_ref = np.array([track_ref_.lat, track_ref_.lon]).T |
| 102 | + |
| 103 | + dists = haversine_vector(yx_track, yx_ref, Unit.KILOMETERS) |
| 104 | + |
| 105 | + matches = dists < max_dist |
| 106 | + if matches.any(): |
| 107 | + track_id1.append(track_id) |
| 108 | + track_id2.append(track_id_ref) |
| 109 | + |
| 110 | + dists_track = dists[matches] |
| 111 | + npoints.append(len(dists_track)) |
| 112 | + dist.append(np.mean(dists_track)) |
| 113 | + |
| 114 | + np.testing.assert_equal(result.id_1, np.array(track_id1)) |
| 115 | + np.testing.assert_equal(result.id_2, np.array(track_id2)) |
| 116 | + np.testing.assert_equal(result.temp, np.array(npoints)) |
| 117 | + np.testing.assert_allclose(result.dist, np.array(dist), rtol=1e-12) |
| 118 | + |
| 119 | + |
| 120 | +def test_accel_overlap(): |
| 121 | + ref = huracanpy.load(huracanpy.example_csv_file) |
| 122 | + tracks = ref.where(ref.track_id < 2, drop=True) |
| 123 | + tracks = tracks.where(tracks.time.dt.hour == 0, drop=True) |
| 124 | + tracks["lon"] = tracks.lon + 0.5 |
| 125 | + tracks["lat"] = tracks.lat + 0.5 |
| 126 | + |
| 127 | + result = huracanpy.assess.overlap(tracks, ref) |
| 128 | + |
| 129 | + delta_start = [] |
| 130 | + delta_end = [] |
| 131 | + |
| 132 | + for n, row in result.iterrows(): |
| 133 | + track = tracks.where(tracks.track_id == row.id_1, drop=True) |
| 134 | + track_ref = ref.where(ref.track_id == row.id_2, drop=True) |
| 135 | + |
| 136 | + delta_start.append((track_ref.time[0] - track.time[0]) / np.timedelta64(1, "D")) |
| 137 | + delta_end.append((track_ref.time[-1] - track.time[-1]) / np.timedelta64(1, "D")) |
| 138 | + |
| 139 | + np.testing.assert_equal(result.delta_start, np.array(delta_start)) |
| 140 | + np.testing.assert_equal(result.delta_end, np.array(delta_end)) |
0 commit comments