-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNetworkEvaluation.py
67 lines (58 loc) · 3.12 KB
/
NetworkEvaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import argparse
import numpy as np
from keras.engine.saving import load_model
from sklearn.metrics import roc_auc_score
from DataParser import DataParser
class NetworkEvaluation:
def __init__(self, folders, batch_size, models):
self.models = []
self.parsers_by_type = {}
self.models_by_type = {}
for model in models:
if model[0] not in self.parsers_by_type:
self.parsers_by_type[model[0]] = DataParser("testing", folders, model[0], batch_size=batch_size)
self.models_by_type[model[0]] = []
self.models_by_type[model[0]].append(load_model(model[1]))
print(self.parsers_by_type)
print(self.models_by_type)
def evaluate(self):
i = 0
score = 0
reference_parser = self.parsers_by_type[list(self.parsers_by_type.keys())[0]]
generator = reference_parser.get_dataset_file_names_generator()
n_iterations = len(reference_parser.graph_files_name) // reference_parser.batch_size
while i < n_iterations:
output_pos = [0] * reference_parser.batch_size
(names, referenceOutput) = next(generator)
for key, value in self.models_by_type.items():
iteration_parser = self.parsers_by_type[key]
graphs = iteration_parser.find_graphs_from_graphs(names)
for model in value:
output = model.predict(np.array(iteration_parser.get_input_graphs_data(graphs)),
batch_size=reference_parser.batch_size)
output_pos = np.amax([output_pos, list(map(lambda x: x[1], output))], axis=0)
output_classes = list(map(lambda x: [1 - x, x], output_pos))
output_classes = np.array(output_classes).argmax(axis=-1)
score += roc_auc_score(referenceOutput, output_pos)
i += 1
print(score / i)
def main(models, folders, batch_size):
evaluator = NetworkEvaluation(folders, batch_size, models)
evaluator.evaluate()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Customization options for the network evaluation script")
parser.add_argument("models", nargs='?',
default="spectrogram,leonetv2_spectrogram_ww_b20.h5 melspectrogram-energy,"
"leonetv2_melspectrogram-energy_ww_b20.h5",
help='Set models that will be used to '
'make the predictions (e.g: "type_graph1,model1.h5 type_graph2,model2.h5")')
parser.add_argument("folders", nargs='?', default="ff1010bird",
help='Set of folders that will be used as the source of the graphs')
parser.add_argument("batch_size", nargs='?', default=30,
help='Batch size of the files used to evaluate model')
args = parser.parse_args()
models = str(args.models.strip())
if models.endswith(","):
models = models[:-1]
main([(item.strip().split(",")[0], item.strip().split(",")[1]) for item in models.split(" ")],
[item for item in args.folders.strip().split(',')], args.batch_size)