-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataValidator.py
168 lines (156 loc) · 6.77 KB
/
DataValidator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sn
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import KFold
from DataLearner import BoatLearner
class DataValidator:
def __init__(self, set, split, mode, vstype="Water", kernel="linear"):
self.set = set
self.split = split
self.mode = mode
self.vstype = vstype.strip()
self.kernel = kernel
def defaultvalidate(self):
from DataLoader import Mode
testing = list(filter(lambda x: x.partOfTestingSet == True, self.set))
training = list(filter(lambda x: x.partOfTestingSet == False, self.set))
print(testing)
print(training)
if self.mode == Mode.detection:
self._defaultvalidatedetection(testing, training)
else:
self._defaultvalidateclassification(testing, training)
def kcrossvalidate(self):
from DataLoader import Mode
if self.mode == Mode.detection:
self._kcrossvalidatedetection()
else:
self._kcrossvalidateclassification()
def _defaultvalidatedetection(self, testing, training):
print("Validating using default testing set...")
truepositive, truenegative, falsepositive, falsenegative = [0] * 4
learner = BoatLearner(training, self.kernel)
learner.learn()
result = self._validatedetection(testing, learner)
print(result)
truepositive += result[0]
truenegative += result[1]
falsepositive += result[2]
falsenegative += result[3]
print("Precision: {}".format((truepositive / (truepositive + falsepositive))))
print("Recall: {}".format((truepositive / (truepositive + falsenegative))))
print("False positive rate: {}".format((falsepositive / (falsepositive + truenegative))))
print("Accuracy: {}".format(
(truenegative + truepositive) / (falsepositive + truenegative + truepositive + falsenegative)))
def _defaultvalidateclassification(self, testing, training):
print("Validating using default testing set...")
order = set()
for elem in self.set:
order.add(elem.boatType)
order = list(order)
learner = BoatLearner(training, self.kernel)
learner.learn()
y_true, y_pred, matrix = self._validateclassification(testing, learner, order)
print(classification_report(y_true, y_pred, labels=order))
np.set_printoptions(suppress=True)
df = pd.DataFrame(matrix, index=order, columns=order)
plt.figure(figsize=(30, 14))
sn.set(font_scale=1.5)
sn.heatmap(df, annot=True, fmt='g')
plt.show()
def _kcrossvalidatedetection(self):
kf = KFold(n_splits=self.split, shuffle=True)
kf.get_n_splits(self.set)
truepositive, truenegative, falsepositive, falsenegative = [0] * 4
print("Validating using kcross...")
for train_index, test_index in kf.split(self.set):
X_train, X_test = [], []
for index in train_index:
X_train.append(self.set[index])
for index in test_index:
X_test.append(self.set[index])
learner = BoatLearner(X_train, self.kernel)
learner.learn()
result = self._validatedetection(X_test, learner)
print(result)
truepositive += result[0]
truenegative += result[1]
falsepositive += result[2]
falsenegative += result[3]
truepositive /= self.split
truenegative /= self.split
falsepositive /= self.split
falsenegative /= self.split
print("Precision: {}".format((truepositive / (truepositive + falsepositive))))
print("Recall: {}".format((truepositive / (truepositive + falsenegative))))
print("False positive rate: {}".format((falsepositive / (falsepositive + truenegative))))
print("Accuracy: {}".format(
(truenegative + truepositive) / (falsepositive + truenegative + truepositive + falsenegative)))
def _validatedetection(self, testing, learner):
truepositive, truenegative, falsepositive, falsenegative = [0] * 4
for elem in testing:
tmp = [elem.features.flatten()]
prediction = learner.classifier.predict(tmp)
# print(prediction,"but its type is: ", elem.boatType)
prediction = prediction[0].strip()
if prediction == elem.boatType:
if prediction == self.vstype:
truepositive += 1
else:
truenegative += 1
else:
if prediction != self.vstype and elem.boatType != self.vstype:
truenegative += 1
elif elem.boatType == self.vstype:
falsepositive += 1
else:
falsenegative += 1
return truepositive, truenegative, falsepositive, falsenegative
def _validateclassification(self, testing, learner, order):
y_true = []
y_prediction = []
for elem in testing:
tmp = [elem.features.flatten()]
prediction = learner.classifier.predict(tmp)
y_true.append(elem.boatType)
y_prediction.append(prediction)
matrix = confusion_matrix(y_true, y_prediction, labels=order)
return y_true, y_prediction, matrix
def _kcrossvalidateclassification(self):
kf = KFold(n_splits=self.split, shuffle=True)
kf.get_n_splits(self.set)
matrix = None
order = set()
for elem in self.set:
order.add(elem.boatType)
order = list(order)
print("Validating using kcross...")
all_true = []
all_pred = []
for train_index, test_index in kf.split(self.set):
X_train, X_test = [], []
for index in train_index:
X_train.append(self.set[index])
for index in test_index:
X_test.append(self.set[index])
learner = BoatLearner(X_train, self.kernel)
learner.learn()
tmp_true, tmp_pred, tmp_matrix = self._validateclassification(X_test, learner, order)
all_true = all_true+tmp_true
all_pred = all_pred+tmp_pred
if matrix is None:
matrix = tmp_matrix
else:
matrix += tmp_matrix
print(classification_report(all_true, all_pred, labels=order))
matrix = matrix / self.split
matrix = matrix.round()
np.set_printoptions(suppress=True)
df = pd.DataFrame(matrix, index=order, columns=order)
plt.figure(figsize=(30, 14))
sn.set(font_scale=1.5)
sn.heatmap(df, annot=True, fmt='g')
plt.show()