This document is used to list steps of reproducing TensorFlow Intel® Neural Compressor tuning zoo result of bert base model on mrpc task.
# Install Intel® Neural Compressor
pip install neural-compressor
Check your python version and use pip install 1.15.0 up2 from links below:
https://storage.googleapis.com/intel-optimized-tensorflow/intel_tensorflow-1.15.0up2-cp36-cp36m-manylinux2010_x86_64.whl
https://storage.googleapis.com/intel-optimized-tensorflow/intel_tensorflow-1.15.0up2-cp37-cp37m-manylinux2010_x86_64.whl
https://storage.googleapis.com/intel-optimized-tensorflow/intel_tensorflow-1.15.0up2-cp35-cp35m-manylinux2010_x86_64.whl
Run the prepare_dataset.sh
script located in examples/tensorflow/nlp/bert_base_mrpc/quantization/ptq
.
Usage:
cd examples/tensorflow/nlp/bert_base_mrpc/quantization/ptq
python prepare_dataset.py --tasks='MRPC' --output_dir=./data
Run the prepare_model.sh
script located in examples/tensorflow/nlp/bert_base_mrpc/quantization/ptq
.
NOTICE: This will need you first prepare your dataset as mrpc task need do train for good accuracy.
Usage:
cd examples/tensorflow/nlp/bert_base_mrpc/quantization/ptq
bash prepare_model.sh --dataset_location=./data --output_dir=./model
Make sure the data and model have been generated successfully which located at ./data and ./model respectively. And your output_model will be located at ./output_model like the command below
python run_classifier.py \
--task_name=MRPC \
--data_dir=data/MRPC \
--vocab_file=model/vocab.txt \
--bert_config_file=model/bert_config.json \
--init_checkpoint=model/model.ckpt-343 \
--max_seq_length=128 \
--train_batch_size=32 \
--learning_rate=2e-5 \
--num_train_epochs=3.0 \
--output_dir=model \
--output_model=output_model \
--config=mrpc.yaml \
--tune
If you want the model without iterator inside the graph, you can add --strip_iterator like:
python run_classifier.py \
--task_name=MRPC \
--data_dir=data/MRPC \
--vocab_file=model/vocab.txt \
--bert_config_file=model/bert_config.json \
--init_checkpoint=model/model.ckpt-343 \
--max_seq_length=128 \
--train_batch_size=32 \
--learning_rate=2e-5 \
--num_train_epochs=3.0 \
--output_dir=model \
--output_model=output_model \
--config=mrpc.yaml \
--tune \
--strip_iterator
python run_classifier.py --task_name=MRPC --data_dir=data/MRPC --vocab_file=model/vocab.txt --bert_config_file=model/bert_config.json --init_checkpoint=model/model.ckpt-343 --max_seq_length=128 --train_batch_size=32 --learning_rate=2e-5 --num_train_epochs=3.0 --output_dir=model --output_model=output_model --config=bert.yaml --tune
This is a tutorial of how to enable bert model with Intel® Neural Compressor.
-
User specifies fp32 model, calibration dataset q_dataloader, evaluation dataset eval_dataloader and metric in tuning.metric field of model-specific yaml config file.
-
User specifies fp32 model, calibration dataset q_dataloader and a custom eval_func which encapsulates the evaluation dataset and metric by itself.
For bert, we applied the first one as we already have write dataset and metric for bert mrpc task.
In examples directory, there is a mrpc.yaml. We could remove most of items and only keep mandatory item for tuning. We also implement a calibration dataloader and have evaluation field for creation of evaluation function at internal neural_compressor.
model:
name: bert
framework: tensorflow
inputs: input_file, batch_size
outputs: loss/Softmax:0, IteratorGetNext:3
evaluation:
accuracy: {}
performance:
iteration: 20
warmup: 5
configs:
num_of_instance: 1
cores_per_instance: 28
kmp_blocktime: 1
quantization:
calibration:
sampling_size: 500
model_wise:
weight:
granularity: per_channel
op_wise: {
'loss/MatMul': {
'activation': {'dtype': ['fp32']},
'weight': {'dtype': ['fp32']},
}
}
tuning:
accuracy_criterion:
relative: 0.01
exit_policy:
timeout: 0
max_trials: 100
random_seed: 9527
Here we set the input tensor and output tensors name into inputs and outputs field. In this case we calibrate and quantize the model, and use our calibration dataloader initialized from a 'Dataset' object.
After prepare step is done, we add tune and benchmark code to generate quantized model and benchmark.
from neural_compressor.experimental import Quantization, common
quantizer = Quantization(FLAGS.config)
dataset = Dataset(eval_file, FLAGS.eval_batch_size)
quantizer.model = common.Model(estimator, input_fn=estimator_input_fn)
quantizer.calib_dataloader = common.DataLoader(dataset, collate_fn=collate_fn)
quantizer.eval_dataloader = common.DataLoader(dataset, collate_fn=collate_fn)
quantizer.metric = Accuracy()
q_model = quantizer.fit()
q_model.save(FLAGS.output_model)
from neural_compressor.experimental import Benchmark, common
from neural_compressor.model.model import get_model_type
evaluator = Benchmark(FLAGS.config)
dataset = Dataset(eval_file, FLAGS.eval_batch_size)
evaluator.b_dataloader = common.DataLoader(\
dataset, batch_size=FLAGS.eval_batch_size, collate_fn=collate_fn)
model_type = get_model_type(FLAGS.input_model)
evaluator.metric = Accuracy()
if model_type == 'frozen_pb':
evaluator.model = FLAGS.input_model
else:
evaluator.model = common.Model(estimator, input_fn=estimator_input_fn)
evaluator(FLAGS.mode)
The Intel® Neural Compressor quantizer.fit() function will return a best quantized model under time constraint.