From 4c954927a11ce599b10540fd8a15de127145765a Mon Sep 17 00:00:00 2001 From: kclaudeeager Date: Wed, 3 Jan 2024 15:52:29 +0200 Subject: [PATCH] Make it run for current versions Make it run for current versions --- .DS_Store | Bin 0 -> 6148 bytes tutorial_deep_learning_basics/.DS_Store | Bin 0 -> 6148 bytes .../deep_learning_basics.ipynb | 444 +++++++++++++----- 3 files changed, 333 insertions(+), 111 deletions(-) create mode 100644 .DS_Store create mode 100644 tutorial_deep_learning_basics/.DS_Store diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..791139d86eb30aa2865c8c6cec23f4574f681195 GIT binary patch literal 6148 zcmeHK!D`z;5S?}0MkW+|Xd#!vLav6|Y0?sU5pMbeRY(qLaimBjBI>TO_ zWz(vxo8j=g>g;qMJ>HFWqrK>3a%&e!lQ#2uoX#$}cV=yst?e{BFN?*b|MaajOS>FP?UVFVxACfNS^);}014oXkvR%?+xoXINJj6b6I=VPIPs2>VsEx2+E- z&m{~91OJQx-XAoSF%H;zbXx}+{(a=}E+Y$UzDqFbfN{XqBSs*~rviPd3Reu})8W@4 zE)Ljw^y#GB%%~G)R^f)C-0bjc7fvenD6KFc3_N6D$9MaD{=fVE{r_Q-^n?Ln;J;!( zbx)JiFH1@V-^m;4Wg<&0T*E43hX&L&p$$qDprKhvt+--jT7}7np#A3 zem<@ulZcFPQ@L2!n>{z**++&mCkOWA81W14cNZlEfg7;MkzE(HCqgga^y>{tEnwC%0;vJ&^%eQ zLs35+`xjp>T0=1.21.2 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from opencv-python) (1.23.5)\r\n", + "Collecting absl-py>=1.0.0 (from tensorflow)\r\n", + " Downloading absl_py-2.0.0-py3-none-any.whl.metadata (2.3 kB)\r\n", + "Collecting astunparse>=1.6.0 (from tensorflow)\r\n", + " Downloading astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\r\n", + "Collecting flatbuffers>=23.5.26 (from tensorflow)\r\n", + " Downloading flatbuffers-23.5.26-py2.py3-none-any.whl.metadata (850 bytes)\r\n", + "Collecting gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 (from tensorflow)\r\n", + " Downloading gast-0.5.4-py3-none-any.whl (19 kB)\r\n", + "Collecting google-pasta>=0.1.1 (from tensorflow)\r\n", + " Downloading google_pasta-0.2.0-py3-none-any.whl (57 kB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m57.5/57.5 kB\u001B[0m \u001B[31m249.4 kB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0ma \u001B[36m0:00:01\u001B[0m\r\n", + "\u001B[?25hRequirement already satisfied: h5py>=2.9.0 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from tensorflow) (3.7.0)\r\n", + "Collecting libclang>=13.0.0 (from tensorflow)\r\n", + " Downloading libclang-16.0.6-py2.py3-none-macosx_10_9_x86_64.whl.metadata (5.2 kB)\r\n", + "Collecting ml-dtypes~=0.2.0 (from tensorflow)\r\n", + " Downloading ml_dtypes-0.2.0-cp310-cp310-macosx_10_9_universal2.whl.metadata (20 kB)\r\n", + "Collecting opt-einsum>=2.3.2 (from tensorflow)\r\n", + " Downloading opt_einsum-3.3.0-py3-none-any.whl (65 kB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m65.5/65.5 kB\u001B[0m \u001B[31m439.5 kB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0ma \u001B[36m0:00:01\u001B[0m\r\n", + "\u001B[?25hRequirement already satisfied: packaging in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from tensorflow) (22.0)\r\n", + "Collecting protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 (from tensorflow)\r\n", + " Downloading protobuf-4.25.1-cp37-abi3-macosx_10_9_universal2.whl.metadata (541 bytes)\r\n", + "Requirement already satisfied: setuptools in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from tensorflow) (65.6.3)\r\n", + "Requirement already satisfied: six>=1.12.0 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from tensorflow) (1.16.0)\r\n", + "Collecting termcolor>=1.1.0 (from tensorflow)\r\n", + " Downloading termcolor-2.4.0-py3-none-any.whl.metadata (6.1 kB)\r\n", + "Requirement already satisfied: typing-extensions>=3.6.6 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from tensorflow) (4.8.0)\r\n", + "Requirement already satisfied: wrapt<1.15,>=1.11.0 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from tensorflow) (1.14.1)\r\n", + "Collecting tensorflow-io-gcs-filesystem>=0.23.1 (from tensorflow)\r\n", + " Downloading tensorflow_io_gcs_filesystem-0.35.0-cp310-cp310-macosx_10_14_x86_64.whl.metadata (14 kB)\r\n", + "Collecting grpcio<2.0,>=1.24.3 (from tensorflow)\r\n", + " Downloading grpcio-1.60.0.tar.gz (24.8 MB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m24.8/24.8 MB\u001B[0m \u001B[31m4.1 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m00:01\u001B[0m00:01\u001B[0mm\r\n", + "\u001B[?25h Preparing metadata (setup.py) ... \u001B[?25ldone\r\n", + "\u001B[?25hCollecting tensorboard<2.16,>=2.15 (from tensorflow)\r\n", + " Downloading tensorboard-2.15.1-py3-none-any.whl.metadata (1.7 kB)\r\n", + "Collecting tensorflow-estimator<2.16,>=2.15.0 (from tensorflow)\r\n", + " Downloading tensorflow_estimator-2.15.0-py2.py3-none-any.whl.metadata (1.3 kB)\r\n", + "Collecting keras<2.16,>=2.15.0 (from tensorflow)\r\n", + " Downloading keras-2.15.0-py3-none-any.whl.metadata (2.4 kB)\r\n", + "Requirement already satisfied: wheel<1.0,>=0.23.0 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from astunparse>=1.6.0->tensorflow) (0.38.4)\r\n", + "Collecting google-auth<3,>=1.6.3 (from tensorboard<2.16,>=2.15->tensorflow)\r\n", + " Downloading google_auth-2.25.2-py2.py3-none-any.whl.metadata (4.7 kB)\r\n", + "Collecting google-auth-oauthlib<2,>=0.5 (from tensorboard<2.16,>=2.15->tensorflow)\r\n", + " Downloading google_auth_oauthlib-1.2.0-py2.py3-none-any.whl.metadata (2.7 kB)\r\n", + "Requirement already satisfied: markdown>=2.6.8 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow) (3.4.1)\r\n", + "Collecting protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 (from tensorflow)\r\n", + " Downloading protobuf-4.23.4-cp37-abi3-macosx_10_9_universal2.whl.metadata (540 bytes)\r\n", + "Requirement already satisfied: requests<3,>=2.21.0 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow) (2.31.0)\r\n", + "Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard<2.16,>=2.15->tensorflow)\r\n", + " Downloading tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl.metadata (1.1 kB)\r\n", + "Requirement already satisfied: werkzeug>=1.0.1 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow) (2.2.2)\r\n", + "Collecting cachetools<6.0,>=2.0.0 (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow)\r\n", + " Downloading cachetools-5.3.2-py3-none-any.whl.metadata (5.2 kB)\r\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow) (0.2.8)\r\n", + "Collecting rsa<5,>=3.1.4 (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow)\r\n", + " Downloading rsa-4.9-py3-none-any.whl (34 kB)\r\n", + "Requirement already satisfied: requests-oauthlib>=0.7.0 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow) (1.3.1)\r\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow) (2.0.4)\r\n", + "Requirement already satisfied: idna<4,>=2.5 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow) (3.4)\r\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow) (1.26.14)\r\n", + "Requirement already satisfied: certifi>=2017.4.17 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow) (2023.7.22)\r\n", + "Requirement already satisfied: MarkupSafe>=2.1.1 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from werkzeug>=1.0.1->tensorboard<2.16,>=2.15->tensorflow) (2.1.1)\r\n", + "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow) (0.4.8)\r\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /Users/claudekwizera/anaconda3/lib/python3.10/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow) (3.2.2)\r\n", + "Downloading tensorflow-2.15.0-cp310-cp310-macosx_10_15_x86_64.whl (239.1 MB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m239.1/239.1 MB\u001B[0m \u001B[31m3.2 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m00:01\u001B[0m00:01\u001B[0m\r\n", + "\u001B[?25hDownloading absl_py-2.0.0-py3-none-any.whl (130 kB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m130.2/130.2 kB\u001B[0m \u001B[31m2.4 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0ma \u001B[36m0:00:01\u001B[0m\r\n", + "\u001B[?25hDownloading flatbuffers-23.5.26-py2.py3-none-any.whl (26 kB)\r\n", + "Downloading keras-2.15.0-py3-none-any.whl (1.7 MB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m1.7/1.7 MB\u001B[0m \u001B[31m5.3 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m00:01\u001B[0m00:01\u001B[0m\r\n", + "\u001B[?25hDownloading libclang-16.0.6-py2.py3-none-macosx_10_9_x86_64.whl (24.5 MB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m24.5/24.5 MB\u001B[0m \u001B[31m5.5 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m00:01\u001B[0m00:01\u001B[0m\r\n", + "\u001B[?25hDownloading ml_dtypes-0.2.0-cp310-cp310-macosx_10_9_universal2.whl (1.2 MB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m1.2/1.2 MB\u001B[0m \u001B[31m5.2 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m00:01\u001B[0m00:01\u001B[0m\r\n", + "\u001B[?25hDownloading tensorboard-2.15.1-py3-none-any.whl (5.5 MB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m5.5/5.5 MB\u001B[0m \u001B[31m5.8 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m00:01\u001B[0m00:01\u001B[0m\r\n", + "\u001B[?25hDownloading protobuf-4.23.4-cp37-abi3-macosx_10_9_universal2.whl (400 kB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m400.3/400.3 kB\u001B[0m \u001B[31m4.3 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m00:01\u001B[0m00:01\u001B[0m\r\n", + "\u001B[?25hDownloading tensorflow_estimator-2.15.0-py2.py3-none-any.whl (441 kB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m442.0/442.0 kB\u001B[0m \u001B[31m4.4 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m00:01\u001B[0m00:01\u001B[0m\r\n", + "\u001B[?25hDownloading tensorflow_io_gcs_filesystem-0.35.0-cp310-cp310-macosx_10_14_x86_64.whl (1.7 MB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m1.7/1.7 MB\u001B[0m \u001B[31m5.8 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m00:01\u001B[0m00:01\u001B[0m\r\n", + "\u001B[?25hDownloading termcolor-2.4.0-py3-none-any.whl (7.7 kB)\r\n", + "Downloading google_auth-2.25.2-py2.py3-none-any.whl (184 kB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m184.2/184.2 kB\u001B[0m \u001B[31m3.7 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0ma \u001B[36m0:00:01\u001B[0m\r\n", + "\u001B[?25hDownloading google_auth_oauthlib-1.2.0-py2.py3-none-any.whl (24 kB)\r\n", + "\u001B[33mWARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError(\"HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed out. (read timeout=15)\")': /packages/b7/85/dabeaf902892922777492e1d253bb7e1264cadce3cea932f7ff599e53fea/tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl\u001B[0m\u001B[33m\r\n", + "\u001B[0mDownloading tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl (4.8 MB)\r\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m4.8/4.8 MB\u001B[0m \u001B[31m3.7 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m00:01\u001B[0m00:01\u001B[0m0m\r\n", + "\u001B[?25hDownloading cachetools-5.3.2-py3-none-any.whl (9.3 kB)\r\n", + "Building wheels for collected packages: grpcio\r\n", + " Building wheel for grpcio (setup.py) ... \u001B[?25ldone\r\n", + "\u001B[?25h Created wheel for grpcio: filename=grpcio-1.60.0-cp310-cp310-macosx_10_10_x86_64.whl size=4335142 sha256=937f569648175f40f497db81f1dabff2516ec6e877d2984faaaf5eaaa5879e0d\r\n", + " Stored in directory: /Users/claudekwizera/Library/Caches/pip/wheels/95/99/28/4e3391b171168454a02d5e33906ff7e234e872c237df9d652d\r\n", + "Successfully built grpcio\r\n", + "Installing collected packages: libclang, flatbuffers, termcolor, tensorflow-io-gcs-filesystem, tensorflow-estimator, tensorboard-data-server, rsa, protobuf, opt-einsum, ml-dtypes, keras, grpcio, google-pasta, gast, cachetools, astunparse, absl-py, google-auth, google-auth-oauthlib, tensorboard, tensorflow\r\n", + "Successfully installed absl-py-2.0.0 astunparse-1.6.3 cachetools-5.3.2 flatbuffers-23.5.26 gast-0.5.4 google-auth-2.25.2 google-auth-oauthlib-1.2.0 google-pasta-0.2.0 grpcio-1.60.0 keras-2.15.0 libclang-16.0.6 ml-dtypes-0.2.0 opt-einsum-3.3.0 protobuf-4.23.4 rsa-4.9 tensorboard-2.15.1 tensorboard-data-server-0.7.2 tensorflow-2.15.0 tensorflow-estimator-2.15.0 tensorflow-io-gcs-filesystem-0.35.0 termcolor-2.4.0\r\n" + ] + } + ], + "source": [ + "!pip install opencv-python tensorflow" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-01-03T08:08:32.903250Z", + "start_time": "2024-01-03T07:59:36.805859Z" + } + }, + "execution_count": 3 + }, + { + "cell_type": "code", + "execution_count": 4, "metadata": { "colab": {}, "colab_type": "code", - "id": "" + "id": "", + "ExecuteTime": { + "end_time": "2024-01-03T12:58:20.759355Z", + "start_time": "2024-01-03T12:57:18.797414Z" + } }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-01-03 14:57:44.300772: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "1.12.0\n" + "2.15.0\n" ] } ], "source": [ - "# TensorFlow and tf.keras\n", - "import tensorflow as tf\n", - "from tensorflow import keras\n", - "from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense\n", - "\n", - "# Commonly used modules\n", - "import numpy as np\n", "import os\n", - "import sys\n", "\n", + "import IPython\n", + "import cv2\n", "# Images, plots, display, and visualization\n", "import matplotlib.pyplot as plt\n", + "# Commonly used modules\n", + "import numpy as np\n", "import pandas as pd\n", - "import seaborn as sns\n", - "import cv2\n", - "import IPython\n", + "# TensorFlow and tf.keras\n", + "import tensorflow as tf\n", "from six.moves import urllib\n", + "from tensorflow import keras\n", + "from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense\n", "\n", "print(tf.__version__)" ] @@ -133,9 +267,23 @@ }, { "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2024-01-03T13:15:38.074937Z", + "start_time": "2024-01-03T13:15:36.703542Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/boston_housing.npz\n", + "57026/57026 [==============================] - 0s 3us/step\n" + ] + } + ], "source": [ "(train_features, train_labels), (test_features, test_labels) = keras.datasets.boston_housing.load_data()\n", "\n", @@ -169,7 +317,11 @@ "metadata": { "colab": {}, "colab_type": "code", - "id": "" + "id": "", + "ExecuteTime": { + "end_time": "2024-01-03T13:16:36.909220Z", + "start_time": "2024-01-03T13:16:35.361422Z" + } }, "outputs": [], "source": [ @@ -179,7 +331,7 @@ " Dense(1)\n", " ])\n", "\n", - " model.compile(optimizer=tf.train.AdamOptimizer(), \n", + " model.compile(optimizer=\"Adam\",\n", " loss='mse',\n", " metrics=['mae', 'mse'])\n", " return model" @@ -205,11 +357,15 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": { "colab": {}, "colab_type": "code", - "id": "" + "id": "", + "ExecuteTime": { + "end_time": "2024-01-03T13:19:00.098054Z", + "start_time": "2024-01-03T13:18:30.469836Z" + } }, "outputs": [ { @@ -224,8 +380,9 @@ "....................................................................................................\n", "....................................................................................................\n", "....................................................................................................\n", - ".............................................................................................\n", - "Final Root Mean Square Error on validation set: 2.359\n" + "....................................................................................................\n", + "...\n", + "Final Root Mean Square Error on validation set: 2.288\n" ] } ], @@ -236,17 +393,18 @@ " if epoch % 100 == 0: print('')\n", " print('.', end='')\n", "\n", + "\n", "model = build_model()\n", "\n", "early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=50)\n", - "history = model.fit(train_features, train_labels, epochs=1000, verbose=0, validation_split = 0.1,\n", + "history = model.fit(train_features, train_labels, epochs=1000, verbose=0, validation_split=0.1,\n", " callbacks=[early_stop, PrintDot()])\n", "\n", "hist = pd.DataFrame(history.history)\n", "hist['epoch'] = history.epoch\n", "\n", "# show RMSE measure to compare to Kaggle leaderboard on https://www.kaggle.com/c/boston-housing/leaderboard\n", - "rmse_final = np.sqrt(float(hist['val_mean_squared_error'].tail(1)))\n", + "rmse_final = np.sqrt(float(hist['val_mse'].tail(1)))\n", "print()\n", "print('Final Root Mean Square Error on validation set: {}'.format(round(rmse_final, 3)))" ] @@ -260,21 +418,21 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": { - "scrolled": true + "scrolled": true, + "ExecuteTime": { + "end_time": "2024-01-03T13:20:09.763428Z", + "start_time": "2024-01-03T13:20:08.699879Z" + } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VPW5+PHPk1my7wlrgIAiqCCIgKC4a11x39AqWlvba1u1tK61rXLt79rb3l711lZtXSuK2qpYrVut+4aguCHIImDYEggJ2TMzeX5/nJMQMcCcZIaZSZ736zWvOefkzDlPyDDPfHdRVYwxxpjtpSU6AGOMMcnJEoQxxpguWYIwxhjTJUsQxhhjumQJwhhjTJcsQRhjjOmSPxE3FZFVQB0QAcKqOlFEioBHgXJgFXC2qm5JRHzGGGMSW4I4QlXHq+pEd/9a4GVVHQm87O4bY4xJkGSqYjoFeMDdfgA4NYGxGGNMnyeJGEktIl8CWwAF7lLVu0WkRlULOp2zRVULu3jtpcClANnZ2QeMHj16d4X9TdUrIRKC0lGsqW6kORRhr/65iYvHGGN2YeHChZtUtTSacxPSBgEcrKrrRKQf8JKILIn2hap6N3A3wMSJE3XBggXxinHXHpsJlYvhR+/z08c+4p0Vm3j7uqMSF48xxuyCiKyO9tyEVDGp6jr3uRJ4EpgMbBSRgQDuc2UiYvMkkAmhZgCy0300hiIJDsgYY2JntycIEckWkdz2beBbwKfA08BM97SZwLzdHZtn/nQIOwkiM+ijsdUShDGm90hEFVN/4EkRab//w6r6vIi8DzwmIpcAa4CzEhCbN/7MjgSRFfDTGm4jHGnD70umtn9jjOme3Z4gVHUlMK6L45uB1KrAD2RAqAlwqpgAGkMR8ixBGLNLoVCIiooKmpubEx1Kr5SRkUFZWRmBQKDb10hUI3Xv4M+AthC0RcgMOgmiqTVCXkb3/yDG9BUVFRXk5uZSXl6OW6NgYkRV2bx5MxUVFQwfPrzb17Gvuj3hz3CeQ01kuQnC2iGMiU5zczPFxcWWHOJARCguLu5x6cwSRE8Es53nUCNZQacw1tASTmBAxqQWSw7xE4t/W0sQPRHIcp5bGzpKEE3W1dUY00tYguiJoJsgQo1WxWRMitm8eTPjx49n/PjxDBgwgMGDB3fst7a2RnWNiy++mKVLl0Z9z7/85S+UlpZ23Gf8+PGeXr+7WSN1TwRznOfWbVVMjVbFZExKKC4uZtGiRQDceOON5OTk8LOf/exr56gqqkpaWtffpe+77z7P9z3//PO59dZbd/jzcDiM37/to3lXMXQWiUTw+XyeY9oRK0H0RHsVU6jBShDG9BLLly9nzJgx/OAHP2DChAmsX7+eSy+9lIkTJ7Lvvvsye/bsjnOnTZvGokWLCIfDFBQUcO211zJu3DimTp1KZWX0k0H861//4uijj+bcc89l//337zKGhx56iLFjxzJmzBiuv/56gI773nDDDUyePJn58+fH9N8iqhKEu1bDrrSpak0P40kt7VVMrY0d3Vxtug1jvLvpH5+xeN3WmF5zn0F5/Gr6vt167eLFi7nvvvu48847AbjlllsoKioiHA5zxBFHcOaZZ7LPPvt87TW1tbUcdthh3HLLLcyaNYt7772Xa6/95qoFc+bM4dVXX+3Yb/9Qf/fdd1m8eDFDhw5l+fLlX4uhoqKCG264gQULFpCfn8/RRx/NM888w3HHHUdtbS0TJkzg5ptv7tbvujPRVjGtcx87axb3AUN7HFEqCbi9mFobyHarmJparYrJmFS3xx57MGnSpI79Rx55hHvuuYdwOMy6detYvHjxNxJEZmYmxx9/PAAHHHAAb7zxRpfX3lEV09SpUxk6dNtHaOcY3nvvPY488khKSkoAOO+883j99dc57rjjCAaDnHbaaT37hXcg2gTxuaruv7MTROTDGMSTWoLbqpgyA04Jor7FShDGeNXdb/rxkp2d3bG9bNkybrvtNubPn09BQQHf/va3uxxfEAwGO7Z9Ph/hsLcvi53vuf3+zpZlyMzMjFt34WjbIKbG6JzeJbCtiiktTchJ99s4CGN6ma1bt5Kbm0teXh7r16/nhRde2O0xTJkyhVdeeYXNmzcTDoeZO3cuhx12WNzvG1UJQlV3ORwvmnN6nfZeTKEGAHLS/dQ3W4IwpjeZMGEC++yzD2PGjGHEiBEcfPDBPbre9m0Qd9111y5fU1ZWxuzZszn88MNRVaZPn86JJ57ouZTi1S5XlBORY4CzgTtUdZGIXOou2pNwCV8wCGB2MRx0ORz9K47+/WuM6p/LHedPSGxMxqSAzz//nL333jvRYfRqXf0bi8hCVZ0YzeujKUFcBlwM3OD2ZhrvOcreLJANoUbAKUHUWRWTMaaXiKYNokpVa1T1ZziL+0za1Qv6lGAWtNYDkJvhp645lOCAjDEmNqJJEM+2b6jqtcCD8QsnBQWyoHVbCcLaIIwxvcUuE4Sqdiz9KSJnAfe72zeIyBMi0rcr3INZHVVMuRl+6q2KyRjTS3idauMXqlonItOAY4EHgD/FPqwUEsyB1vZeTAErQRhjeg2vCaJ9FNiJwJ/c0kVwJ+f3foFtJYicDD/1rWHa2nbeM8wYY1KB1wSxVkTuwun2+k8RSe/GNXqX4LY2iNx0P6o2H5MxqeDwww//xqC3W2+9lcsuu2ynr8vJyenyuM/n+9o03rfcckvMYk2UqKf7Fmcs92XAROB3qlojIgOBq+IVXEoIZG+rYspw/jnrmkPkpNtM6sYksxkzZjB37lyOPfbYjmNz587lt7/9bbeul5mZ2TF9+I5sPx339lN770i058Va1N/+1RlR96SqPqGqy9xj61X1xbhFlwqCWV8bSQ1YO4QxKeDMM8/kmWeeoaWlBYBVq1axbt06pk2bRn19PUcddRQTJkxg7NixzJs3bxdX27Hy8nJmz57NtGnTePzxxzn88MO5/vrrOeyww7jttttYvXo1Rx11FPvttx9HHXUUa9asAeCiiy5i1qxZHHHEEVxzzTUx+Z298pqS3hWRSar6flyiSUWdurnmtpcgrCeTMd48dy1s+CS21xwwFo7fcTVPcXExkydP5vnnn+eUU05h7ty5nHPOOYgIGRkZPPnkk+Tl5bFp0yamTJnCySefvNNJ8Zqamhg/fts44uuuu45zzjkHgIyMDN58800A7rzzTmpqanjttdcAmD59OhdeeCEzZ87k3nvv5fLLL+epp54C4IsvvuBf//pXTBcB8sJrgjgC+L6IrAYacKb/VlXdL+aRpYpgNoSboK2tI0FYCcKY1NBezdSeIO69917AmT31+uuv5/XXXyctLY21a9eyceNGBgwYsMNr7ayKqT1RdLX/zjvv8MQTTwBwwQUXcPXVV3f87KyzzkpYcgDvCeL4uESRyoLulLyhRnLSAwA2FsIYr3byTT+eTj31VGbNmsUHH3xAU1MTEyY4w7rmzJlDVVUVCxcuJBAIUF5e3uUU39Ha2VTe2+tcStnZebuDpx5Iqroa2Ar0B4Z1evRdHcuONnY0UlsJwpjUkJOTw+GHH853vvMdZsyY0XG8traWfv36EQgEeOWVV1i9enXcYjjooIOYO3cu4CSmadOmxe1eXnkqQYjId4ErgDJgETAFeAc4MvahpYj2EkRrPTmZhQBstfmYjEkZM2bM4PTTT+/4kAZn1bfp06czceJExo8fz+jRo3d5ne3bII477riourrefvvtfOc73+G3v/0tpaWl3Hfffd37ReLAaxXTFTiT9b2rqkeIyGjgptiHlUI6LRqUU+CWIKyKyZiUcdppp31jxbaSkhLeeeedLs+vr6/v8ngk0vX4p1WrVn1tv/NaEOD0cvr3v//9jdfdf//9XQe8G3kd5NbcvjCQiKSr6hJgVOzDSiHpuc5zSx2+NCE76LMqJmNMr+C1BFEhIgXAU8BLIrIFWBf7sFJIRr7z3LIVcKfbsBKEMaYX8JQgVPU0d/NGEXkFyAeej3lUqaQ9QTS7CSLdb20QxkRJVXc6tsB0365WC41Gt8duq+prPb57b5Ce5zw31wCQnxmgtskShDG7kpGRwebNmykuLrYkEWOqyubNm8nIyOjRdaJKECJSB3SVjtoHyuX1KIpUluH+6m4VU35mgKr6lgQGZExqKCsro6KigqqqqkSH0itlZGRQVlbWo2tElSBUNbdHd+nN/BngC3ZUMeVnBlhe1XUvB2PMNoFAgOHDhyc6DLMTfXuq7lgQcaqZmmsBt4qp0aqYjDGpz2sVU1cVhd2qYhIRH7AAWKuqJ4nIcGAuUAR8AFygqq1er5sQGXlfq2Kqa3EWDUpLs3pVY0zqiqoEoaq5qprnPm//6G77wxXA5532fwP8r6qOBLYAl3Tzurtfel5HFVNeZgBVqLOxEMaYFOe5iklExonIj9xHt2ZxFZEynGVL/+LuC850HX9zT3kAOLU7106IjPyOEkRBlrMCq/VkMsakOk8JQkSuAOYA/dzHHBH5cTfueytwNdDm7hcDNara/rW7Ahi8gxguFZEFIrIgaXo/ZHy9DQIsQRhjUp/XEsQlwIGq+ktV/SXOZH3f83IBETkJqFTVhZ0Pd3Fql6M8VPVuVZ2oqhNLS0u93Dp+0vO/1osJLEEYY1Kf14FyAnSekSpC1x/uO3MwcLKInABkAHk4JYoCEfG7pYgyUmkKj05VTO0JoqYpNdrXjTFmR7yWIO4D3hORG0XkRuBd4B4vF1DV61S1TFXLgXOBf6vq+cArwJnuaTOB7i8Cu7tl5EFrPUTCVoIwxvQaXhcM+j1wMVCN09PoYlW9NUaxXAPMEpHlOG0SnhJPQqVvG01dmO0kiC0NVoIwxqS27szF9BXwiKr2uIVYVV8FXnW3VwKTe3rNhOg0o2t6VhG56X421VuCMMaktqhKEOK4UUQ2AUuAL0SkSkR+Gd/wUkT7fExuQ3VRTpBqK0EYY1JctFVMV+I0Lk9S1WJVLQQOBA4WkZ/ELbpU0TGjq9PVtTg7yOYGm7DPGJPaok0QFwIzVPXL9gNuldC33Z/1bdstGlSUnc5mq2IyxqS4aBNEQFU3bX/QbYcIxDakFJRZ4Dw3bQGgJCfIZqtiMsakuGgTxM4+7eyTMKvYeW6sBqA4J8iWhlba2nq+opMxxiRKtL2YxonI1i6OC85gt74tmOOsCdHoFLKKstMJtylbm0MdczMZY0yqiXbBIF+8A0lpIpBVAo2bAaeKCWBTfaslCGNMyrIFg2IlqxganARRlO0kBevqaoxJZZYgYiWrqKMEUZydDsBmW5vaGJPCLEHESva2KqZit4rJejIZY1JZtEuOztrZz905mvq2rOKORupCt93BxkIYY1JZtL2Yct3nUcAk4Gl3fzrweqyDSklZJc5I6kiIoD9AfmaAahtNbYxJYdH2YroJQEReBCaoap27fyPweNyiSyVZRc5z0xbI6UdxdpBNVsVkjElhXtsghvL1gXGtQHnMokll7YPlGpxqpuKcINVWxWSMSWFep/v+KzBfRJ50908FHoxtSCkqu8R5btzW1fXLTQ0JDMgYY3rGU4JQ1V+LyHPAIThrRl+sqh/GJbJU0zHdRnsJIp0Fq7YkMCBjjOkZT1VMIpIOjAaygQJguq0J4cr6egmiX2461Y2ttIbbEhiUMcZ0n9c2iHnAKUAYaOj0MO2N1O6EfYMLMlGF9bVNCQzKGGO6z2sbRJmqHheXSFKdLwDp+R2N1IMLMgFYu6WJYcXZiYzMGGO6xWsJ4m0RGRuXSHqD7OKOKqbBhU6CqKixEoQxJjV5LUFMAy4SkS+BFpzpvlVV94t5ZKkoa1uCGJifiQisswRhjElRXhPE8XGJorfIKoGtFQAE/Wn0y01n7RZLEMaY1OS1m+vqeAXSK2QXw/pFHbuDCjJZayUIY0yK8lqCQEQKgZF0WklOVW0+JoCcAVBfCW0RSPMxuCCTT9bWJjoqY4zpFq/jIL6LMznfC8BN7vONsQ8rReUOAI1s68lUmMn6mmZbm9oYk5K89mK6Amc219WqegSwP1AV86hSVe5A57luPQBlBZm0RtqosoWDjDEpyGuCaFbVZnBGVavqEpwpwA10ShAbAKcNArB2CGNMSvKaICpEpAB4CnhJROYB62IfVorKHeA8uyWI9rEQ1pPJGJOKvPZiOs3dvFFEXgHycNohDEBOP0A6ShDto6krLEEYY1KQ10bqs0SkfXW5Q4GLgX1jHlWq8gUguxTqnEJVbkaAouwga6ptuipjTOrxWsX0C1WtE5FpwDHAA8CdsQ8rheUPhtq1HbvDS7JZWWUJwhiTerwmiIj7fCJwp6rOA4KxDSnFFQyDLas6dkeUZLPSFg4yxqQgrwlirYjcBZwD/NNdH8LrNXq3wnKo/QranHUghpdmU1XXQl1zKLFxGWOMR14/3M/GaZQ+VlVrgCLgqphHlcoKh0GktaMn04gSZ6rvVZsaExmVMcZ45nWqjZ+5z2NEpPPxF6O9gIhk4IzGTnfv/zdV/ZWIDAfm4iSdD4ALVLXVY3yJVzDMea5ZDfmDGV6SA8DKTfWMLctPYGDGGOON1xJE51XkIjizu5Z7vEYLcKSqjgPGA8eJyBTgN8D/qupIYAtwicfrJofCcufZbYcYVpyFCHxp7RDGmBTjdRzE/3TeF5HfAU97vIYC9e5uwH0ocCRwnnv8AZw5nv7k5dpJoWAopAVg0xcAZAScSftWWE8mY0yK6WkDcxYwwuuLRMQnIouASuAlYAVQo6ph95QKYPAOXnupiCwQkQVVVUk4DZQvACV7QeXnHYdGD8hl6YatCQzKGGO88zpQ7hMR+dh9fAYsBW7zelNVjajqeKAMmAzs3dVpO3jt3ao6UVUnlpaWer317tFvb6hc3LE7ekAeK6oaaAlHdvIiY4xJLl4bqU/qtB0GNnb61u+ZqtaIyKvAFKBARPzu9cpI5Tme+u0Nn/4NWuogPZfRA3OJtCnLK+vZd5A1VBtjUoOnEoS7olwBMB04DdjH6w1FpNSd8A8RyQSOBj4HXgHOdE+bCczzeu2k0c/9Z6laCjglCIAl6+sSFZExxnjmtYrpCmAO0M99zBGRH3u850DgFRH5GHgfeElVnwGuAWaJyHKgGLjH43WTR7/RzrNbzVRenEW6P40l1g5hjEkhXquYLgEOVNUGABH5DfAO8H/RXkBVP8ZZaGj74ytx2iNSX0E5+DM7Gqr9vjT26p/L51aCMMakEK+9mIRt8zHhbssOzu270tKcUkSnhuoxg/P5qKLGlh81xqQMrwniPuA9EblRRG4E3iWVq4Liqd8+sHFbgpg4rJC65jDLKut38iJjjEkeXhupf4+zBkQ1zmjni1X11ngElvIGjoOGyo6pvyeWFwKwYHV1IqMyxpioeR4op6ofqOrtqnqbqn4Yj6B6hbKJznPFfACGFmVRkhNk4aotCQzKGGOi56mR2p3e+wyc+Zc6Xquqs2MbVi/Qfyz4M6BiAex7GiLCAcMKWbDaEoQxJjV4LUHMA07BGSTXeeI+sz1/EAaOh4r3Ow4dOLyYNdWNfFVtU38bY5Kf126uZap6XFwi6Y3KJsL8P0O4FfxBDt2rBIA3lm3ivAOHJjg4Y4zZOa8liLdFZGxcIumNRhwOkRZY+iwAe5TmMCg/g9e/SMJJBo0xZjtRJYj2SfqAacAHIrLUnbCv/bjpyh5HQl4ZLHoEABHh0L1KeWvFJsKRtgQHZ4wxOxdtFdPpQOqt7pZoaT4Ycxq8+ydorIasIg4ZWcrc97/io4oaDhhWlOgIjTFmh6KtYnpUVVfv6BHXCFPdmDOhLQyLnbkHp+1ZQprAy59XJjgwY4zZuWgThE2n0V0Dx0Hp3vDm7yHcQn5WgGkjS3n6o3U27YYxJqlFW8VUKiKzdvRDd4S16YoIfOs/Yc6Z8PGjMOFCTh0/iFmPfcTCNVuYVG7VTMaY5BRtCcIH5AC5O3iYndnjKCibBC/PhuZajt13AJkBH099uDbRkRljzA5FW4JYb6OleyAtDU74Ldx9OPzrJrJP/B++tW9/nv1kPb+avi9Bf0+XBjfGmNizNojdZdD+cNCPYcE98N5dnLr/YGoaQ/x7iTVWG2OSU7QJ4qi4RtFXHD0bRh4LL8/mkIHKoPwM7n3ry0RHZYwxXYo2QfxrVyeIyAc9jKX3S0uDY38N4Wb8b/w3l0wbzvwvq/lgjU3gZ4xJPtG2Qey9ixHTAuTHIJ7er2QkTLwY3v8LF46p486Mk7nrtRXcdcHEREdmjDFfE22CGB3FOZFdn2IAOP6/IauEwGu38ETeMg5d/FNWVNWzR2lOoiMzxpgOUSUIGy0dY2k+OOI6SM9hyIs3MDd4M/98vpEfX3B2oiMzxpgO1r8ykab+CKbfxlh/BT9e8T0a/vkLUBtdbYxJDlEnCHEMiWcwfY4IHHARmy96k6VtQ8iefzt8NDfRURljDOAhQaiqAk/FMZY+a8iQch6eMIf32kaj834IL/zcShLGmITzWsX0rohMikskfdxlR47iysiVLM8cB+/8AT79e6JDMsb0cV4TxBHAOyKywhYMiq3+eRmcPG08x1X/hLricfD3S5x1JIwxJkG8rkl9fFyiMABcedRe/POT9VzU9BMe2/NhfM9fB6WjYfhhziA7Y4zZjTx96rjdXQuA6e6jwLrAxk5m0Mf/O20sC6uD/LHwasjpD389Ff58BIRbEh2eMaaP8ZQgROQKYA7Qz308JCI/jkdgfdUhI0s5Y0IZt75VxeLTX4JDr4b1i+DDvyY6NGNMH+O13uIS4EBV/aWq/hKYAnwv9mH1bb88aR+Ks4PMenoVLYdcA2WT4fnrYN2HiQ7NGNOHeE0Qwten1IhgU4HHXH5WgFvOGMuSDXX85vkv4Jy/QmYh/O0SqPkq0eEZY/oIrwniPuA9EblRRG4E3gXuiXlUhiNH9+eig8q5960veblC4PQ/Q0MVPHgKbFmV6PCMMX2Ap5HUwOPAxUA1sAW4WFVvjVNsfd61x49m74F5XPW3j6nuPxVmzIUtX8KLv0h0aMaYPsDzSGpV/UBVb1fV21TVKsXjKCPg49ZzxrO1KcTsf3yGDjsIJsyEz5+Gt25PdHjGmF7ORlInuVEDcvnRkXvy1KJ1PPD2Kmeq8H1OhZd+AU9dBm02y7oxJj68DpQ7Avi+iKwGGnAaqFVV94v2Au6Efw8CA4A24G5VvU1EioBHgXJgFXC2qtpSa8DlR47k07Vbmf3MYoYUZXHUaXdBMAcWPQR16532ieySRIdpjOllvLZB/ADYAzgSZ6DcSe6zF2Hgp6q6N0432R+KyD7AtcDLqjoSeNndN0BamnD7jPHsOyifHz/yIZ9WtsCpdzilidVvw5Pfh7a2RIdpjOllvLZB/K+qrt7+4eWGqrpeVT9wt+uAz4HBwCnAA+5pDwCnerlub5cV9HPPzIkUZgX5zv3vs66mCQ78PnzrZlj+L3jl15YkjDExldA2CBEpB/YH3gP6q+p6cJIIzkjtrl5zqYgsEJEFVVVVsQolJfTLy+DeiybR1BrhO/e/T11zCCZ9F/aeDm/8Dh67ALauT3SYxpheojuzub4bi9lcRSQH+DtwpapujfZ1qnq3qk5U1YmlpaXduXVKGzUglz9+ewLLK+v54cMfEmpTOOsBOOpXsOxFuOtQqK1IdJjGmF7Aa4I4HhhBz9ogEJEATnKYo6pPuIc3ishA9+cDgUqv1+0rDhlZyq9PG8PrX1Txy3mfoZIGh8yCS1+Fljr459W24JAxpseiShAicjV0zOY6ebv2h+97uaHb2H0P8Lmq/r7Tj54GZrrbM4F5Xq7b15wzaSg/PGIPHpm/hrteX+kc7L8vHHEdLH3WFhwyxvRYtCWIczttX7fdz47zeM+DgQuAI0Vkkfs4AbgFOEZElgHHuPtmJ356zCimjxvELc8t4fEF7hxNU37oTO735Pfhk78lNkBjTEqLdhyE7GC7q/2dUtU3d/Kao7xcq69LSxN+d9Z+1DS2ct0TnzC8JJuJ5UVw7sPwyDnw9OUweAIUjUh0qMaYFBRtCUJ3sN3VvtmN0v0+/nDeBMoKM/nBQx9QsaURckrh7AfB54dnZiU6RGNMioo2QYwTka0iUgfs526374+NY3wmCvmZAf584URawhEuvGc+1Q2tkF/mLDa08hVY+MCuL2KMMduJKkGoqk9V81Q1V1X97nb7fiDeQZpdG9k/l3svmkRFTROXzVlISzjijJEYciD88yqoXpnoEI0xKcZrN1eTxCaVF/HfZ+zHuyur+cmji4j40p0xEr4gPGczlxhjvLEE0cucuv9gbjhxb/75yQZ+Me9TNHcATLsSlr0A8/9s4yOMMVHzOpurSQHfPWQE1Q2t/PHVFRRlBfnZId+Bjx+Df/7MWZXuiOsTHaIxJgVYguilrjp2FFsaW/nDK8upbwnzq8veRZ7+Ebz2G6cBe8KFiQ7RGJPkPCUIdxT0+cAIVZ0tIkOBAao6Py7RmW4TEW4+dSwBXxr3v72KgE+49sRb8dVtgH9cCVklMPqERIdpjEliXtsg/ghMBWa4+3XAHTGNyMSML0246eR9+faUofz5jS+55qnPiZx5PwwYA4+eDytfTXSIxpgk5jVBHKiqPwSaAdwV34Ixj8rEjIjwn6eM4SdH78XfFlYwa94KWs+fBwXDYO75ULU00SEaY5KU1wQREhEf7uhpESnFWTbUJDER4YqjR3L1caOYt2gd331sGY3nzQN/Otx7LFR/megQjTFJyGuCuB14EugnIr8G3gT+X8yjMnFx2eF78pszxvLmsirOf7yC+hlPQVsEHj7HFhoyxnyD1zWpXweuBv4LWA+cqqqPxyk2EwfnTBrKH88/gE8qajnmoSrWHv1HZ4Ghe78FGz5JdHjGmCTidU3qp1R1iareoap/UNXP4xibiZPjxgzg0e9PpTkU4eTnM/hg6u3QVAtzzobKJYkOzxiTJBK6JrVJnAOGFTL30qkMLMjgzJcyeX3ag85qdPccA1Vf2IhrY0y31qR+JxZrUpvEGzUgl0cvncr4IQVc+GwDD+39J2jZCndMgofPtiRhTB/ndST18XGJwiRMdrqfh783hZ8/+Sk3vFdB45DrmZkzn/RlL8JnT8CYMxIdojEmQTwlCFVdLSKFwEggo9OPVsdt06WjAAAat0lEQVQ0KrNbZQR8/O6s/divLJ//fEZ4LH8880qqyH7i+9B/DJSOSnSIxpgE8FTFJCLfxenJ9AJwk/t8Y+zDMrubiDDzoHIevGQyNSEfR669lCZfNtwx2VlPwqqbjOlzvLZBXAFMAlar6hHA/kBVzKMyCXPQHiW8etXhjN9nNCfXu7O+zr8b/vUriIQTG5wxZrfymiCaVbUZQETSVXUJYPUPvUxOup87v30A3z39eA7lLzzRdii8dRv64MkQbkl0eMaY3cRrgqgQkQLgKeAlEZkHrIt9WCbRRIRzJg3lsZ9M5+nhv+Ca0PeQ1W+x+dU/JTo0Y8xuItrNumUROQzIB55T1VBMo4rSxIkTdcGCBYm4dZ8SaVMefncVI16YyWQ+5dl9f8/xp19Aut+X6NCMMR6JyEJVnRjVuV4ShIj8sqvjqjo76ovEkCWI3auqqpLmv5zAgOaV3Jz5U4454/tMG1mS6LCMMR54SRBeq5gaOj0iOOMiyj1ew6So0tJ+DLn8BSI5A/lp8x/59/038pNH3qeyrjnRoRlj4qDbVUzgNFQDT6vqsbELKXpWgkiQVW+iD56CtIW5P3I8/+O7mKuPHcV5Bw7DlyaJjs4YsxPxLEFsLwsY0cNrmFRTPg25ajlkl3KR7znuzryD+59+kdP/+Bafrq1NdHTGmBjxOlDuE3cOpo9F5DNgKXBbfEIzSS2zEGYtgcOuYWrTa7yQ9UuKtnzESf/3JpfNWch7KzcnOkJjTA95baQe1mk3DGxU1YSNnrIqpiRRtRTmnEnEl8kf9/gTd7xTSXOojRmTh3L2xDL2H1qY6AiNMa649WJKNpYgksiSZ2HueQA0HPt7bl4/mb8vrKA10sb0cYP4wWEj2HdQfoKDNMbEs5vrrJ39XFV/H/XFYsASRJJZ9SbcfyLk9Icz72PrgMnc8cpy/vrOahpbI4wdnM8PDtuDY/ftj9/X0+YvY0x3xDNBPIwzF9PT7qHpOJP3fQWgqjd5C7VnLEEkoY2LYe4M2LIKEDhkFrUHXcfc+WuY+/5XfLmpgdLcdE6fMJizDhjCnv1yEh2xMX1KPBPEi8AZqlrn7ucCj6vqcd2KtIcsQSSp1gZ4/lr48CHQNrhwHow4nFCkjVeXVvHo+1/xytJKIm1KeXEWp+4/mDMPKKOsMCvRkRvT68UzQSwBxqlqi7ufDnykqqO7FWkPWYJIcuEWuG0cIDDlB1AyCsomQnYJlXXNPL1oHa8sreTtFU6PpwlDCxmQn8H0/QZxxOhSm8rDmDiIZ4L4OXA28KR76DTgUVX9fx6ucS9wElCpqmPcY0XAozijslcBZ6vqll1dyxJECqhYAM9dA2vdv1NhOcz8B+QOAp+zXlXFlkb+vnAtz326niUb6gDIzwxw9N792a8sn6l7FLNnaQ5pNgjPmB6Lay8mEZkAHAIo8Iaqfujx9YcC9cCDnRLEfwPVqnqLiFwLFKrqNbu6liWIFLL2A5j/Z1g8z6l20jY4ZrZTsuiksTXM859u4OUllby2tIr6FqcXdbo/jRPGDmRIYSaDCjKZNrLEqqSM6YaYJwgRmQR8paob3P2ZwBk43/ZvVNVqjwGWA890ShBLgcNVdb2IDAReVdVdrjNhCSIF1ayBN/4HFt4PCIw6AcbPgL2nf+PU1nAbX2ysY9FXNXxcUcPzn26gviVMm0LQl8b+QwsYUZrNyH65TB5exJCiLPIzA7v9VzImlcQjQXwAHK2q1W4JYC7wY2A8sLeqnukxwHK+niBqVLWg08+3qGqXo6tE5FLgUoChQ4cesHq1LYedklobYN4P4TO3tnLid2DceTBk0k5ftqWhlfdXVfPm8k18sraWVZsa2NLozDYf8AkjSnIYNSCXQQWZFGUHOGRkKXuU5hD0W7daYyA+CeIjVR3nbt8BVKnqje7+IlUd7zHAcrqZIDqzEkSKU4W1C+HZn8L6Rc4x8cEZf4Exp0d9mYotjSxcvYXP1m1lRWU9H6+tpaaxlVDEeW/704RBBZmUFWayX1kBtU0h8jL9nDxuEHkZAQqyAuRmWMnD9A1eEoQ/ymv6RMTvTqtxFO43eI/X2JmNIjKwUxVTZQyuaZKdiNOraeY/4L27oKESPpoLz/zEadweczoMHAe+nX94lxVmUVaYxSnjB3ccU1VWb27k/VXVrNrcwOfr61hRVc+7KzfjT0ujNdLGXa+tBCA76GPM4HwGF2ZSmBUkO+hjSFEWgwoyycsI0C8vnX656YhYI7npW6L9cH8EeE1ENgFNwBsAIrInEIvpO58GZgK3uM/zYnBNkyoy8uCwq5ztSd+DeZfBu3c4j7QA5A6AaVfCpO86pQ5wkstOiAjlJdmUl2R/7XikTWkJR/joq1oq65qpqmtheWU9K6saeHfFZjY1tNIabvvG9bKDPoYWZ5OT7mNYcTZBfxr5mQGGF2eTnxVgj9JsCrKClOSkx+SfxJhkEHUvJhGZAgwEXlTVBvfYXkCOqn4Q9Q1FHgEOB0qAjcCvcNa4fgwYCqwBzoqm4duqmHqxzSuchuzNy53Hpi8gswja3Lkhp1wGmQWw+Gk4+HLotw/kD4G0nrc1NIcifLmpgZrGEHXNIdbVNLF4/VY2bG2hqTXMV9VN1DaFaApFvvHavAw/xTnpNLVG2KNfNkMKs+iXm05pXgb9ctPJTfdTmpvekWRU1UomZreyyfpM79JU44zM/uwpCDft+LzikXDMTTD6xLiHpKo0h9pYVllHfXOYNdWN1LeEWV5ZT01jiIA/jRWV9VTWtbC5oYWu/psVZQcJRdooyAqwZ2kO/d0kUpqXQWlOOiU5QRpbIwT9aeRm+CkvziY7PRY1uqYvswRheqdwi9OI/d6fnAF3oWZo2QqLn4IvX9923pn3wp7HQONmZ7xF8R4JCxkgHGljc0MrVXUtbNza7D63sLGumXCkjVWbGtnaHGJTfesOkwlAmkBxTjr5mQEKMgPsNSCXvIwAuRl+BuRlMKggE4BhxVmU5qbjTxMrnZhvsARh+p4Nn8IXz8Fb/wct2zWL/WgBlIx0qq0yCyGrKDExRiEcaaO6oZVKN5lsbQ6xZEMdDS1h0v0+GlrC1DaF+GRtLZvqWwhHlHBb1/+Hc9P95GUGKMkJkp8VxCfQPy+DSJtSmB2kX246e5TmMKQoiwH5GWQGnKlNfGlCbWOI/Czr2dUbWYIwfVdrA3w1H/55FWxetu147iCoWweSBsV7QrgZSveGqT+EwRMgPRfCrc7PGyohb1DifgcPQpE2aptCLN1QR21TCAEq61qoaQxRWddMY2uETfUtVDe00hSKUN3QSo07bqQrvjRhWHEWK6saOHSvUkpygoQjyuDCTBpbwozsn8vgwkwy/D7qW8KM7JdDVtDHRxW1HL13PyuxpIB4zsWUjjOCupxOPaBUdbbHGGPCEoTZpaovnCqpzSuc6qh1HmaGOfcRGH0CNNeCP8PpUQUxaQhPFFWlJdxGfUuYSJvTFXhtTSMV1U00hyNsbQqztqaJmsZWqhtaqW8JU98Spjn0zZ5d28sM+CgrzKQ4J4gqBP1pFGcH8aWlMbK/M617+7iT7HQ/JTlBctL9rNrcSHlxFkOLsmgJtxHwpeGzebfiJp4J4nmcbq0LgY4uHKr6P16DjAVLEMYTVfjiBcgphYH7w9YKmHM2VH3u/HzAfk5V1Kd/3/aaQRNgndtJLz0PBoyFGY/Aq79xpggpHA7pOd+8T936lCmF7Eo40kZzuA1/mrCmupG65jAtoUhHw3x9S5hlG+spzglSudUprQA0hSKsqKqnsfWbvb26khnwEYq0EfSnUZAZoKwwi4KsAEXZTiJZU92IL01QhX0G5dHQGqasIJO9+ufSPy+D/MwAfp+QmxGgJRwh6EuzEk0X4pkgPm0f/ZwMLEGYuGhthJrV8P498OFfYc+jncTStoOqGX8mDNwPWuohmA0V853jl70L/fbefXEnqUibUtccItKmNLZGqG8Js7UpxPraZupawqDK1uYw1Q2t+NOELY2tLNlQR4bfR21TiC2NrWxtDkVVigHICKTRHGojO+ijMDsIQE66n+x0P3kZfgYVZFLTFKIlFGHPfrk0tIRZvH4rR47ux579cvCnCWkiZAV9DCrIxO8TstP95Kb7e0XCiWeCuBv4P1X9pLvBxZIlCBN3bRFI821bIe+r92DZi06jeHvJY0cGjIWt62DwAc5+IBN86dBQ5WyPPx++eheqv4TDroHar2D4obDyNee1hcPi/dulnMZWZxxMe/VYdUMrkTZlw9Zm6pvD1LWEaQ5F8KUJNY2t1LdEaAlFaFNla1OYrc0hNm5tJj8zQE1TiIaWMKrssKG/s3R/GkF/GnkZAZpCEfxpwoD8DMqLsynKDpIeSCPoS6MwK+iMws/0k+5PI+BLI9KmVDe0Mnl4Ef60NNLSSNh6J/FMEIuBPYEvgRZAAFXV/boTaE9ZgjAJ1VjtdKNdeD+MPskZ0LflS+fDfd2H8Mb/Oj2qAtkQavB+/QH7OY/cAVA6Cl79LxhzJhz5cwg1wZbVzv1LRjpjRbJLoHolFI1wRpqrOtOsDxzXsfZGh8+fgUH7Q/7gru/dx7S1KbVNIdbWNBFpUxTYVNfClsZWwm4JaFO9M8p+fW0TgrC5oYXmUBtbm0NUuyPwWyNtO+ymvL2i7KBbZaZkBf1kBX18sbGOieVFhCJtCDBqQB7pnQZUjh6QS3MowvKqem4+dWy3ftd4Joguv9KoakKmVLUEYVLG4qedUeCjT4L6DVC3AT55HObfDSOOcD7wyybC+o9g42fQ5GkG/a8rGuGs3rfmbaeBvV2aHwqGAgLVK5zk8+2/O6WZ9Fxo2OTEVTrKmf+qboOTnIwnX1U3UtsUYmtziMaWCA2tTpVav7wMllfWkyZCbVOIzfUt+H1CY2uElpCTeJZV1jMgP4OsoI/q+la3Cg7S0oSmUKRjGphR/XN57AdTuzW9fbwXDCoERgIZ7cdU9fUdvyJ+LEGYXqmtDRY/6VRN+YJOctn0BbTUAeoklvR8Zw2NRQ998/XBHGit93bPNP+2aUwAcvpD/UY45j+h/74QaoQhU5zpTVTh47mQkQ97HOV0LQ5mf7Ox3sRUc8jpsgwwKD+z2yssxrME8V3gCqAMWARMAd5R1SO7E2hPWYIwfdKm5U5PrIx8J5nUb4Dcgc74j4HjnOlI1n3ozE2V09/58F71Bqx5F0YdD4segfwyd4p1gU8ecy8szrnFezglme6YcKFT9QbO/Fhr3oGcfnDoVU6JJG8w+NMhkOV0BFj7gVOqyciHJc8454w8xkmOeYPc7sU+WPaS02OsZE/nnLbIN6vHVHc5iaOJb4L4BJgEvKuq40VkNHCTqp7TvVB7xhKEMTGgCs01TqkkLc0pEXzyN6c67IXrYNWbztQmq99yPsiba6FssvPatvC2bsDxIGkw/DBY+Yqzf/kiuOtQZ0zLaXfD+392qsrWf+T0Mjvtbie+h86AC9xSWFqak1A2feH8HqvecjoEpPlg2MHw0SPOcVWYcIFzn2d/5pTYjvsvWP027HmUUxXX2giNm5w2nPEznETnj2IG37qN8MGDcPAV4A9G//u3d5KIoXgmiPdVdZKILAIOVNWW7iwYFCuWIIzZTVSdkkF2sdNWkVn09QGDm1c4H5Z5A50P68//AZFW51t/3Qbnw3nzcqd0EAnB27c7pZ0DLnLW/2g3+iSnJPENAnRj1gdfOgSzoGlL9OePPmHbSoedq97yBjvVbp2r4nxBp5Qz5gzn91r0kHMsqwSGHeR0f17zHix91jl/+KFOd+g9joAv33Dae1a/5cwrVr/B6VKt6vx80zJnTM7BVzhruW/4GCZf6nSd3uu4bo+ziWeCeBK4GLgSOBLYAgRU9YTuBNpTliCM6QXaIrDi31B+CAQynA/Q1gaItDjf4nMHOoMUFz8F/77Z+WA87S5443fOh3b+EOdDc/VbThIKNTsfsF/Nd77tR0Kw5FlAnbm4Bh/gVGs1VjtdjtsiTndjcBr3m6qdRNFS5/Q+yypxzsvIiz7RxJsvHa5Z5SQ/j3bLXEwichiQDzyvqq3dukgPWYIwxkSltcH5Zg/fXKEw3OpUYe159Nerc9ranGorf/q29o22CHz5mlMlVV8JVUtgn1PdhNbqjJdp2gJZxZBd6jTqh1vgrducc/zpTvfiwmGQUeiUGr6a75yf0x9WvQ6DJzptNyV7OSWF+XfDlP9wEtagCc4cYxs/g7FnduufIp4lCAHOB0ao6mwRGQoMUNX53Yq0hyxBGGOMN14ShNdZx/4ITAVmuPt1wB0er2GMMSYFeF2e6kBVnSAiHwKo6hYR8dAkb4wxJlV4LUGERMSH251AREqB6GbQMsYYk1K8JojbgSeB/iLya+BN4L9iHpUxxpiE81TFpKpzRGQhcJR76BRVXRL7sIwxxiRaVAlCRJ7e/pD7fKyIoKonxzYsY4wxiRZtCWIq8BXwCPAe2xKEMcaYXiraBDEAOAane+t5wLPAI6r6WbwCM8YYk1hRNVKrakRVn1fVmTgzuC4HXhWRH8c1OmOMMQkTdSO1iKQDJ+KUIspxejQ9EZ+wjDHGJFq0jdQPAGOA53Cm9/40rlEZY4xJuGhLEBcADcBewOWybVGO9jWp8+IQmzHGmASKKkGoqtcBdcYYY1KcffAbY4zpkiUIY4wxXbIEYYwxpkuWIIwxxnTJEoQxxpguWYIwxhjTpaRKECJynIgsFZHlInJtouMxxpi+LGkShLtS3R3A8cA+wAwR2SexURljTN+VNAkCmAwsV9WVqtoKzAVOSXBMxhjTZ3laUS7OBuOsOdGuAjhw+5NE5FLgUne3XkSWdvN+JcCmbr42npI1Lkje2JI1Lkje2Cwu75I1Nq9xDYv2xGRKEF0tQqTfOKB6N3B3j28mskBVJ/b0OrGWrHFB8saWrHFB8sZmcXmXrLHFM65kqmKqAIZ02i8D1iUoFmOM6fOSKUG8D4wUkeEiEgTOBbZfC9sYY8xukjRVTKoaFpEfAS8APuDeOC9p2uNqqjhJ1rggeWNL1rggeWOzuLxL1tjiFpeofqOa3xhjjEmqKiZjjDFJxBKEMcaYLvW5BJHo6TxE5F4RqRSRTzsdKxKRl0Rkmftc6B4XEbndjfVjEZkQx7iGiMgrIvK5iHwmIlckQ2wikiEi80XkIzeum9zjw0XkPTeuR92ODYhIuru/3P15eTzi2i5Gn4h8KCLPJEtsIrJKRD4RkUUissA9lvD3mXu/AhH5m4gscd9vUxMdm4iMcv+t2h9bReTKRMfVKb6fuO//T0XkEff/RfzfZ6raZx44jd8rgBFAEPgI2Gc3x3AoMAH4tNOx/waudbevBX7jbp8APIczRmQK8F4c4xoITHC3c4EvcKY8SWhs7vVz3O0A8J57v8eAc93jdwL/4W5fBtzpbp8LPLob/qazgIeBZ9z9hMcGrAJKtjuW8PeZe78HgO+620GgIFlic+/pAzbgDChLeFw4g4i/BDI7vb8u2h3vs7j+QyfbA5gKvNBp/zrgugTEUc7XE8RSYKC7PRBY6m7fBczo6rzdEOM84Jhkig3IAj7AGWG/CfBv/3fF6QU31d32u+dJHGMqA14GjgSecT8wEh4bXSeIhP8tgTz3w06SLbZO9/gW8FayxMW2WSaK3PfNM8Cxu+N91teqmLqazmNwgmLprL+qrgdwn/u5xxMSr1sk3R/n23rCY3OrcBYBlcBLOKXAGlUNd3Hvjrjcn9cCxfGIy3UrcDXQ5u4XJ0lsCrwoIgvFmZ4GkuBviVN6rwLuc6vl/iIi2UkSW7tzgUfc7YTHpaprgd8Ba4D1OO+bheyG91lfSxBRTeeRRHZ7vCKSA/wduFJVt+7s1C6OxSU2VY2o6nicb+uTgb13cu/dFpeInARUqurCzod3cv/d+fc8WFUn4MyO/EMROXQn5+7OuPw4Vax/UtX9gQacqpsd2a3/B9x6/JOBx3d1ahfH4vU+K8SZuHQ4MAjIxvm77uj+MYutryWIZJ3OY6OIDARwnyvd47s1XhEJ4CSHOar6RDLFBqCqNcCrOHW+BSLSPtCz87074nJ/ng9Uxymkg4GTRWQVzuzDR+KUKBIem6quc58rgSdxEmsy/C0rgApVfc/d/xtOwkiG2MD54P1AVTe6+8kQ19HAl6papaoh4AngIHbD+6yvJYhknc7jaWCmuz0Tp/6//fiFbo+JKUBte3E31kREgHuAz1X198kSm4iUikiBu52J85/lc+AV4MwdxNUe75nAv9WtjI01Vb1OVctUtRznvfRvVT0/0bGJSLaI5LZv49Spf0oSvM9UdQPwlYiMcg8dBSxOhthcM9hWvdR+/0THtQaYIiJZ7v/T9n+z+L/P4tnYk4wPnN4HX+DUY/88Afd/BKceMYST6S/BqR98GVjmPhe55wrOIkorgE+AiXGMaxpOMfRjYJH7OCHRsQH7AR+6cX0K/NI9PgKYDyzHqQ5Id49nuPvL3Z+P2E1/18PZ1ospobG59//IfXzW/j5P9N+yU3zjgQXu3/QpoDAZYsPpBLEZyO90LOFxufe7CVji/h/4K5C+O95nNtWGMcaYLvW1KiZjjDFRsgRhjDGmS5YgjDHGdMkShDHGmC5ZgjDGGNMlSxDG7ISIRLab5TNmMwCLSLl0mtXXmGSTNEuOGpOkmtSZ5sOYPsdKEMZ0gzjrLfxGnLUq5ovInu7xYSLysrtGwMsiMtQ93l9EnhRnXYuPROQg91I+EfmzO9f/i+5ocWOSgiUIY3Yuc7sqpnM6/Wyrqk4G/oAzBxPu9oOquh8wB7jdPX478JqqjsOZe+gz9/hI4A5V3ReoAc6I8+9jTNRsJLUxOyEi9aqa08XxVcCRqrrSneRwg6oWi8gmnHUBQu7x9apaIiJVQJmqtnS6RjnwkqqOdPevAQKqenP8fzNjds1KEMZ0n+5ge0fndKWl03YEaxc0ScQShDHdd06n53fc7bdxZnYFOB94091+GfgP6FgAKW93BWlMd9m3FWN2LtNdza7d86ra3tU1XUTew/miNcM9djlwr4hchbNy2sXu8SuAu0XkEpySwn/gzOprTNKyNghjusFtg5ioqpsSHYsx8WJVTMYYY7pkJQhjjDFdshKEMcaYLlmCMMYY0yVLEMYYY7pkCcIYY0yXLEEYY4zp0v8HmnJJAHocGvoAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG2CAYAAAB20iz+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwWUlEQVR4nO3dd3hUZdrH8e+ZZNILoSQh1ITeRaIIgoAFUVGQdS1LFVy7gqxrXRVZVhRXdF0VF5emK4KK+loRRJpioUqVGkIoIUB6L3PePw4ZDSWEzKTM5Pe5rrky85wzz9wPUebmqYZpmiYiIiIiXshW0wGIiIiIVBUlOiIiIuK1lOiIiIiI11KiIyIiIl5LiY6IiIh4LSU6IiIi4rWU6IiIiIjXUqIjIiIiXkuJjoiIiHgtJToiIiLitWptojNp0iQMwyjziI6Odl43TZNJkyYRExNDYGAg/fv3Z9u2bTUYsYiIiNQ2tTbRAejUqRNHjhxxPrZs2eK8Nm3aNKZPn85rr73G2rVriY6O5qqrriIrK6sGIxYREZHapFYnOr6+vkRHRzsfjRo1AqzenFdeeYUnn3ySYcOG0blzZ+bNm0dubi7z58+v4ahFRESktvCt6QDKs3v3bmJiYvD396dnz54899xzxMXFkZCQQHJyMgMHDnTe6+/vT79+/VizZg133XXXWessKCigoKDA+drhcJCamkqDBg0wDKNK2yMiIiLuYZomWVlZxMTEYLOdvd+m1iY6PXv25O2336Zt27YcPXqUKVOm0Lt3b7Zt20ZycjIAUVFRZd4TFRVFYmJiufVOnTqVZ599tsriFhERkeqTlJRE06ZNz3rdME3TrMZ4Ki0nJ4dWrVrxyCOPcMkll3DppZdy+PBhGjdu7Lznz3/+M0lJSSxevPis9Zzao5ORkUHz5s1JSkoiLCysStvgFjs+g0/ugWY9YcSiMpdeWrqTOd/tZ1SvFjwyqH0NBSgiIlL1MjMzadasGenp6YSHh5/1vlrbo3Oq4OBgunTpwu7duxk6dCgAycnJZRKdlJSU03p5TuXv74+/v/9p5WFhYZ6R6NSrD/4G2EvglHgb1KuHzT+IEt9Az2iLiIiIi8417aRWT0b+vYKCAnbs2EHjxo2JjY0lOjqapUuXOq8XFhaycuVKevfuXYNRVgPfk0laccFpl4L8fADILSyuzohERERqrVrbo/Pwww9z/fXX07x5c1JSUpgyZQqZmZmMHj0awzCYMGECzz33HG3atKFNmzY899xzBAUF8ac//ammQ69avgHWz+L80y4F+1u/zpyCkuqMSEREpNaqtYnOwYMHue222zh+/DiNGjXikksu4ccff6RFixYAPPLII+Tl5XHvvfeSlpZGz549WbJkCaGhoTUceRUrTXSKTk901KMjIiJSVq1NdBYsWFDudcMwmDRpEpMmTaqegGqLcnp0gvxO9ugUqkdHROoGh8NBYWFhTYchVcBut+Pj4+NyPbU20ZGzKGeOTvDJHp089eiISB1QWFhIQkICDoejpkORKlKvXj2io6Nd2udOiY6nKa9HR3N0RKSOME2TI0eO4OPjQ7NmzcrdME48j2ma5ObmkpKSAlBmhfX5UqLjaUoTHUcROErA9lu3XrDm6IhIHVFcXExubi4xMTEEBQXVdDhSBQIDAwFr65jIyMhKD2MpBfY09oDfnp8yfBV4MtHRHB0R8XYlJdbfc35+fjUciVSl0iS2qKio0nUo0fE0Pr/b7PCU4avgk5ORC4sdFJVozFpEvJ/OKPRu7vj9KtHxND6+YDs54nhKohMS8NtIZFa+hq9ERESU6Hiis0xItvvYnHvpZOVXvptPREQ8R//+/ZkwYUJNh1FrKdHxROUsMQ892auTmaceHRGR2sQwjHIfY8aMqVS9H330EX//+99dim3MmDFnjGnQoEEu1VsbaNWVJ/K1ZqKfaYl5WICdo5kF6tEREalljhw54ny+cOFCnn76aXbu3OksK11lVKqoqAi73X7OeuvXr++W+AYNGsScOXPKlJ3pEOxSZ4qvojFXpC53UY+OJyrt0TnDMRDOHh3N0RERqVWio6Odj/DwcAzDcL7Oz8+nXr16vP/++/Tv35+AgAD+97//ceLECW677TaaNm1KUFAQXbp04b333itT76lDVy1btuS5555j7NixhIaG0rx5c2bOnHnO+Pz9/cvEGB0dTUREhPO6YRi8+eabDBkyhODgYKZMmcKkSZO44IILmD17NnFxcfj7+2OaJgcOHGDIkCGEhIQQFhbGzTffzNGjR511ne19VUGJjidyztHJO+1SaICVEWeqR0dE6hDTNMktLK6Rhzu/oB999FEefPBBduzYwdVXX01+fj49evTg888/Z+vWrdx5552MHDmSn376qdx6XnrpJeLj49m4cSP33nsv99xzD7/++qvL8T3zzDMMGTKELVu2MHbsWAD27NnD+++/z6JFi9i0aRMAQ4cOJTU1lZUrV7J06VL27t3LLbfcUqauM72vKmjoyhPZT3ZvnqFHJyzQSnS06kpE6pK8ohI6Pv11jXz29slXO88adNWECRMYNmxYmbKHH37Y+fyBBx5g8eLFfPDBB/Ts2fOs9Vx77bXce++9gJU8vfzyy6xYsYL27duf9T2ff/45ISEhZcoeffRRnnrqKefrP/3pT84Ep1RhYSHvvPMOjRo1AmDp0qVs3ryZhIQEmjVrBsA777xDp06dWLt2LRdddNEZ31dVlOh4otJE54w9OtavVHN0REQ8T3x8fJnXJSUlPP/88yxcuJBDhw5RUFBAQUEBwcHB5dbTtWtX5/PSIbLS4xTOZsCAAcyYMaNM2anzf06ND6BFixZlkpUdO3bQrFkzZ5ID0LFjR+rVq8eOHTucic6p76sqSnQ8kbNH5/REJ6x06EqrrkSkDgm0+7B98tU19tnucmoC89JLL/Hyyy/zyiuv0KVLF4KDg5kwYcI5T2w/dWKvYRjnPPw0ODiY1q1bn1d8ZyozTfOMG/2dWn6uZM1dlOh4onISHfXoiEhdZBiG24aPapPVq1czZMgQRowYAYDD4WD37t106NChhiM7u44dO3LgwAGSkpKcvTrbt28nIyOjRuL2vv8q6gL7yQPsinJPuxTmTHTUoyMi4ulat27NokWLWLNmDREREUyfPp3k5OQqSRgKCgpITk4uU+br60vDhg3Pq54rr7ySrl27Mnz4cF555RWKi4u599576dev3xmHvqqaVl15otJVV+VMRtaqKxERz/fUU09x4YUXcvXVV9O/f3+io6MZOnRolXzW4sWLady4cZlHnz59zrsewzD45JNPiIiI4LLLLuPKK68kLi6OhQsXVkHUFYjHrKqF6x4iMzOT8PBwMjIyCAsLq+lwKmbxE/Dj63DpBLjq2TKXvv31KGPnrqNLk3A+e+D8/wMVEfEE+fn5JCQkEBsbS0BAQE2HI1WkvN9zRb+/1aPjicqdo6MeHRERkVJKdDyR/ewbBpauutIcHRERESU6nsk5Gbn8VVd1fFRSREREiY5HKm8fnZOTkYtKTPKLyt8zQURExNsp0fFE5SwvD/bzwXZyPybtpSMiInWdEh1PVM7ycsMwCPHXCeYiIiKgRMczldOjA9pLR0REpJQSHU9Uzhwd+G2JuVZeiYhIXadExxOVs+oKflt5lZmnHh0REanblOh4onL20QHtpSMi4s369+/PhAkTajoMj6FExxOdY+gqTCeYi4jUOtdffz1XXnnlGa/98MMPGIbBhg0bXP6cuXPnYhjGaY+6elSGTi/3RL+fjGyaYBhlLmsysohI7TNu3DiGDRtGYmIiLVq0KHNt9uzZXHDBBVx44YVu+aywsDB27txZpsw45bvi9woLC/Hz8ytTZpomJSUl+PqeX6pQ2fdVFfXoeKLSHh3TASWFp13+bXdkDV2JiNQWgwcPJjIykrlz55Ypz83NZeHChYwbN44TJ05w22230bRpU4KCgujSpQvvvffeeX+WYRhER0eXeURFRTmv9+/fn/vvv5+JEyfSsGFDrrrqKlasWIFhGHz99dfEx8fj7+/P6tWrKSgo4MEHHyQyMpKAgAD69OnD2rVrnXWd7X21hRIdT+Qb+Nvzco+BUKIjInWEaUJhTs08Knjcjq+vL6NGjWLu3Llljuj54IMPKCwsZPjw4eTn59OjRw8+//xztm7dyp133snIkSP56aef3P5HNm/ePHx9ffn+++/5z3/+4yx/5JFHmDp1Kjt27KBr16488sgjLFq0iHnz5rFhwwZat27N1VdfTWpqapn6Tn1fbVE7+pXk/PjYwfABs8RKdALrlblcOhlZq65EpM4oyoXnYmrms584DH7BFbp17NixvPjii6xYsYIBAwYA1rDVsGHDiIiIICIigocffth5/wMPPMDixYv54IMP6NmzZ4VDysjIICQkpExZ7969WbJkifN169atmTZtmvN1cnIyAJMnT+aqq64CICcnhxkzZjB37lyuueYaAN566y2WLl3KrFmz+Otf/+p8/+/fV5so0fFEhmHN0ynMOuOmgdpHR0Skdmrfvj29e/dm9uzZDBgwgL1797J69WpnAlJSUsLzzz/PwoULOXToEAUFBRQUFBAcXLFEqlRoaOhpE5sDAwPLvI6Pjz/je39fvnfvXoqKirj00kudZXa7nYsvvpgdO3ZUqL6apkTHU9kDTiY6ZzrYs/QICPXoiEgdYQ+yelZq6rPPw7hx47j//vt5/fXXmTNnDi1atOCKK64A4KWXXuLll1/mlVdeoUuXLgQHBzNhwgQKC0+fj1kem81G69aty73nbMnT78tLh9hOnchsmuZpZeebjFUXzdHxVKUTkotPP+9KPToiUucYhjV8VBOPclYzncnNN9+Mj48P8+fPZ968edx+++3OpGH16tUMGTKEESNG0K1bN+Li4ti9e3dV/IlVSOvWrfHz8+O7775zlhUVFbFu3To6dOhQY3GdD/XoeKpyzrty7oysHh0RkVonJCSEW265hSeeeIKMjAzGjBnjvNa6dWsWLVrEmjVriIiIYPr06SQnJ593UmGapnPOze9FRkZis1W8jyM4OJh77rmHv/71r9SvX5/mzZszbdo0cnNzGTdu3HnFVFOU6HiqcjYNLJ2MnF1QjMNhYrOd3782RESkao0bN45Zs2YxcOBAmjdv7ix/6qmnSEhI4OqrryYoKIg777yToUOHkpGRcV71Z2Zm0rhx49PKjxw5QnR09HnV9fzzz+NwOBg5ciRZWVnEx8fz9ddfExERcV711BTDNCu4Ls5LZWZmEh4eTkZGBmFhYTUdTsXNvgYOrIE/zoNOQ8tcyi8qof1TiwHYPGmgM/EREfEW+fn5JCQkEBsbW2d3/K0Lyvs9V/T7W3N0PFU5PToBdh/8fKxfrebpiIhIXaZEx1M5E52cM152rrzSXjoiIlKHKdHxVH4nN4IqPH0yMvy28kqJjoiI1GVKdDxV6S6chWfu0Qk/ebBnuhIdERGpwyq16urTTz897/dcddVVp+3KKC7wO7m8vDD7jJcbBFun0KblnN8mUyIinqSOr6fxeu74/VYq0Rk6dOh53W8YBrt37yYuLq4yHydnUjp0dYZ9dADqn0x0TijREREv5OPjA0BhYaH+Ee3FcnOt7zi7vfKrhyu9j05ycjKRkZEVujc0NLSyHyNnc46hq9JEJ1WJjoh4IV9fX4KCgjh27Bh2u/28NsGT2s80TXJzc0lJSaFevXrOxLYyKpXojB49+rwy6BEjRnjWHjWeoHRn5HMkOhq6EhFvZBgGjRs3JiEhgcTExJoOR6pIvXr1znuDw1NVKtGZM2fOed0/Y8aMynyMlMe56urMiU6Ehq5ExMv5+fnRpk2b8z7wUjyD3W53qSenlI6A8FR+5ffoOCcj5+ovABHxXjabTTsjS7nOe1AzLy+PQ4cOnVa+bds2twQkFVQ6R+csk5GdPTrZSnRERKTuOq9E58MPP6Rt27Zce+21dO3alZ9++sl5beTIkW4PTsrhHLo6x/Jy9eiIiEgddl6JzpQpU9iwYQO//PILs2fPZuzYscyfPx/QXgbV7hyTkUt7dHILS8gvKqmuqERERGqV85qjU1RURKNGjQCIj49n1apVDBs2jD179mAYRpUEKGfhXF5+liMg/H2x+xgUlZik5hQSU0/7TIiISN1zXj06kZGRbN682fm6QYMGLF26lB07dpQpl2rgnKOTAw7HaZcNwyAiSHvpiIhI3XZeic4777xz2iaBfn5+vPfee6xcudKtgck5lCY6cM7dkZXoiIhIXXVeQ1dNmzY9rSwvLw/TNLn00ksBSExM5OOPP6Zjx44MHDjQPVHK6XwDAQMwrUTHP+S0WxqEKNEREZG6zeU9s4cMGcLbb78NQHp6Oj179uSll15iyJAh2iiwKtlsv5uQfOaVV/WD/QE4nl1QXVGJiIjUKi4nOhs2bKBv376Atfw8KiqKxMRE3n77bV599VWXA5RynGNCcsMQ7Y4sIiJ1m8uJTm5urvPQziVLljBs2DBsNhuXXHKJzh+pauc42LNhyMkenSz16IiISN3kcqLTunVrPvnkE5KSkvj666+d83JSUlJ0kGdVcyY65W8aqB4dERGpq1xOdJ5++mkefvhhWrZsSc+ePenVqxdg9e50797d5QClHOc4BsLZo6M5OiIiUke5fKjnTTfdRJ8+fThy5AjdunVzll9xxRXceOONrlYv5TnH7silq6503pWIiNRVLvXoFBUVMWDAADIzM+nevTs222/VXXzxxbRv397lAKUc5xi6Ku3ROZZdoCM6RESkTnIp0bHb7WzdurVajn+YOnUqhmEwYcIEZ5lpmkyaNImYmBgCAwPp379/3TpF3XmwZ/lDV4XFDrILiqsrKhERkVrD5Tk6o0aNYtasWe6I5azWrl3LzJkz6dq1a5nyadOmMX36dF577TXWrl1LdHQ0V111FVlZWVUaT63hV/4+OoF+PgT7+QBwXMNXIiJSB7k8R6ewsJD//ve/LF26lPj4eIKDg8tcnz59ukv1Z2dnM3z4cN566y2mTJniLDdNk1deeYUnn3ySYcOGATBv3jyioqKYP38+d911l0uf6xGcPTpnnqMD0CDEn5zUXE5kFxDbMPis94mIiHgjl3t0tm7dyoUXXkhYWBi7du1i48aNzsemTZtcDvC+++7juuuu48orryxTnpCQQHJycpljJvz9/enXrx9r1qw5a30FBQVkZmaWeXgs/5PL9wvO3obSTQO18kpEROoil3t0li9f7o44zmjBggVs2LCBtWvXnnYtOTkZgKioqDLlpTszn83UqVN59tln3RtoTfG3Nmqk4OxDdQ2cS8w1dCUiInWPy4lOqe3bt3PgwAEKC3/7QjUMg+uvv75S9SUlJTF+/HiWLFlCQEDAWe87dSK0aZrlTo5+/PHHmThxovN1ZmYmzZo1q1SMNa4CiY720hERkbrM5URn37593HjjjWzZsgXDMJzLmEuTjZKSkkrVu379elJSUujRo4ezrKSkhFWrVvHaa6+xc+dOwOrZady4sfOelJSU03p5fs/f3x9/f/9KxVTrVCDRiQy12no0U4mOiIjUPS7P0Rk/fjyxsbEcPXqUoKAgtm3bxqpVq4iPj2fFihWVrveKK65gy5YtbNq0yfmIj49n+PDhbNq0ibi4OKKjo1m6dKnzPYWFhaxcuZLevXu72izP4Ex0zrzqCiAqzOoNS8nMr46IREREahWXe3R++OEHvv32Wxo1aoTNZsNms9GnTx+mTp3Kgw8+yMaNGytVb2hoKJ07dy5TFhwcTIMGDZzlEyZM4LnnnqNNmza0adOG5557jqCgIP70pz+52izP4JyMfPYenehwq0cnWYmOiIjUQS4nOiUlJYSEWMucGzZsyOHDh2nXrh0tWrRwDi9VlUceeYS8vDzuvfde0tLS6NmzJ0uWLHGepu71nD06Z191Vdqjo6ErERGpi1xOdDp37szmzZuJi4ujZ8+eTJs2DT8/P2bOnElcXJw7YnQ6dSjMMAwmTZrEpEmT3Po5HuP3c3RME84wCbs00TmRU0BRiQO7j8ujlSIiIh7D5W+9v/3tbzgcDgCmTJlCYmIiffv25csvv+TVV191OUApR2miY5ZAUd4Zb6kf5Ifdx8A0ISVLvToiIlK3uNyjc/XVVzufx8XFsX37dlJTU4mIiKiWM7DqNL9gwABMq1en9EiI37HZDCJDAziUnsfRzHya1Aus9jBFRERqSpWMY9SvX19JTnUwjApNSI4KO7nEPEMTkkVEpG6pVI/O7zfcOxdXz7qSc/APhYKMCk5IVqIjIiJ1S6USnYouGVevTjWowKaBpYlOslZeiYhIHVOpRKcqz7eS81SBRCc6/GSik3HmCcsiIiLeSmuNPV0FEp2mEdYE5KQ0JToiIlK3aI6Op6tAotOifjAAB1JzqyMiERGRWkNzdDxdaaJTePZEp3l9a9n5sawCcguLCfJz26H1IiIitZrm6Hi6CvTohAfZCQvwJTO/mKTUPNpF15EjMkREpM5zyz/t09PTmTVrFjt27MAwDDp27MjYsWMJDw93R/VSngokOgAtGgSz5VAGiSdylOiIiEid4fJk5HXr1tGqVStefvllUlNTOX78ONOnT6dVq1Zs2LDBHTFKeUoTnfyz76MDvw1faZ6OiIjUJS736Dz00EPccMMNvPXWW/j6WtUVFxdzxx13MGHCBFatWuVykFKOwAjrZ356ubc1O5noJCnRERGROsTlRGfdunVlkhwAX19fHnnkEeLj412tXs6lNNHJTS33thYNrEQnUYmOiIjUIS4PXYWFhXHgwIHTypOSkggN1VyQKlea6OSllXubhq5ERKQucjnRueWWWxg3bhwLFy4kKSmJgwcPsmDBAu644w5uu+02d8Qo5TnPROdgah4Oh1nVUYmIiNQKLg9d/fOf/8QwDEaNGkVxcTEAdrude+65h+eff97lAOUcfj9Hx+EA25lz18bhAfjaDApLHCRn5hNTL7D6YhQREakhLic6fn5+/Otf/2Lq1Kns3bsX0zRp3bo1QUFB7ohPziWgnvXTdFgnmAfWO+Ntvj42mkQEkngil8QTuUp0RESkTnDbWVdBQUF06dKFrl27KsmpTvYAsJ/88z7H8FWLBtZREPtP5FR1VCIiIrWCS4mOw+Fg9uzZDB48mM6dO9OlSxduuOEG3n77bUxT80CqTQXn6bRuFALAnpTsqo5IRESkVqh0omOaJjfccAN33HEHhw4dokuXLnTq1InExETGjBnDjTfe6M44pTwVTXQileiIiEjdUuk5OnPnzmXVqlUsW7aMAQMGlLn27bffMnToUN5++21GjRrlcpByDkp0REREzqjSPTrvvfceTzzxxGlJDsDll1/OY489xrvvvutScFJBpROQK5joHErPI7ewuIqDEhERqXmVTnQ2b97MoEGDznr9mmuu4Zdffqls9XI+nD066eXeVj/Yj/rBfgDsO6YJySIi4v0qneikpqYSFRV11utRUVGkpZXfwyBuUsGhK9CEZBERqVsqneiUlJSUOd/qVD4+Ps4NBKWKnUei0ybKSnR2JJd/2rmIiIg3qPRkZNM0GTNmDP7+/me8XlBQUOmg5DydR6LTpUk4AFsOZlRlRCIiIrVCpROd0aNHn/MerbiqJueT6DQ9megcysA0TQzDqMrIREREalSlE505c+a4Mw5xxXkkOm2jQvHztZGVX0ziiVxaNgyu4uBERERqjtuOgJAadB6Jjt3HRofGYYDVqyMiIuLNlOh4g98nOhU4eqNLEyU6IiJSNyjR8QaliY6jCArPvT9O1yb1AE1IFhER76dExxvYg8DH2giwIsNXnU+uvNp6KAOHQ4evioiI91Ki4w0M47z30vH3tZFVUExiam4VByciIlJzKrXqauLEiRW+d/r06ZX5CDlfgRGQffS8JiRvSkpny6EMYrXySkREvFSlEp2NGzeWeb1+/XpKSkpo164dALt27cLHx4cePXq4HqFUTGmPTu6JCt3etWm4legcTOeGbjFVGJiIiEjNqVSis3z5cufz6dOnExoayrx584iIsL5s09LSuP322+nbt697opRzC25o/cw5XqHbS3dI3pSUXkUBiYiI1DyX5+i89NJLTJ061ZnkAERERDBlyhReeuklV6uXigqOtH7mHKvQ7T1aWL+vzQczKCx2VFVUIiIiNcrlRCczM5OjR4+eVp6SkkJWVpar1UtFhZQmOikVuj22YTD1g/0oKHaw9bCWmYuIiHdyOdG58cYbuf322/nwww85ePAgBw8e5MMPP2TcuHEMGzbMHTFKRZQOXWVXrEfHMAwubG716qzff+4JzCIiIp7I5UTnzTff5LrrrmPEiBG0aNGCFi1aMHz4cK655hreeOMNd8QoFRF8fj06APEtrURnXWJqVUQkIiJS4yp9qGepoKAg3njjDV588UX27t2LaZq0bt2a4GAtWa5WIec3RwfgopOJzs8JqTgcJjabTjIXERHv4nKiUyo4OJiuXbu6qzo5X8GNrJ8VHLoC6Nq0HsF+PqTlFrEjOZNOMeFVFJyIiEjNcEuis2zZMpYtW0ZKSgoOR9kVPLNnz3bHR8i5lCY6RTnWeVd+5+5Rs/vYuDi2Pst3HuOHvSeU6IiIiNdxeY7Os88+y8CBA1m2bBnHjx8nLS2tzEOqiX8o+AZYz89j+Kp3K2sS8/d7Krb/joiIiCdxuUfnzTffZO7cuYwcOdId8UhlGYY1ITnjgDV8FdGyQm/r3boBYM3TKSpxYPfR8WciIuI9XP5WKywspHfv3u6IRVzl3B254iuvOkSHUT/Yj5zCEn7RLskiIuJlXE507rjjDubPn++OWMRVpSuvsiue6NhsBr3irF6d7zR8JSIiXsbloav8/HxmzpzJN998Q9euXbHb7WWu6/TyahQSZf3MPn2n6vJc1rYhX2w5wvKdx5hwZdsqCExERKRmuJzobN68mQsuuACArVu3lrlmGNqXpVqFNbF+Zh4+r7f1b2f1BG0+mM7x7AIahvi7OzIREZEa4XKi8/uTzKWGhcVYP88z0YkKC6BTTBjbDmeycucx/tCjaRUEJyIiUv20xMabVDLRAbi8vdWr8+3Ois/vERERqe3ctjPy9u3bOXDgAIWFhWXKb7jhBnd9hJyLc+jq0Hm/dUD7SP797R5W7TqmZeYiIuI1XE509u3bx4033siWLVswDAPTNIHf5ueUlJS4+hFSUWGNrZ/56RXeHblUt6b1qB/sR2pOIWv3pzo3EhQREfFkLv+zffz48cTGxnL06FGCgoLYtm0bq1atIj4+nhUrVrghRKkw/zDwC7GeZx45r7f62Azn8NXS7ee3aktERKS2cjnR+eGHH5g8eTKNGjXCZrNhs9no06cPU6dO5cEHH3RHjFJRhvG7eTrnP3w1sKO1PH3JtqPOnjkRERFP5nKiU1JSQkiI1YvQsGFDDh+2JsK2aNGCnTt3ulq9nC8XJiT3bdOIALuNQ+l57DiS5ebAREREqp/LiU7nzp3ZvHkzAD179mTatGl8//33TJ48mbi4OJcDlPPkwoTkQD8fLmtjnYK+ZHuyO6MSERGpES4nOn/7299wOBwATJkyhcTERPr27cuXX37Jq6++6nKAcp5c6NEBuOrk8NXirUp0RETE87m86urqq692Po+Li2P79u2kpqYSERGhnZFrgouJzpUdorD7GPyanMXuo1m0iQp1Y3AiIiLVy+Uenby8PHJzc52vExMTefvtt1m6dKmrVUtluDB0BRAR7Ee/ttbw1SebKleHiIhIbeFyojNkyBDefvttANLT07n44ot56aWXGDJkCDNmzHA5QDlPLvboAAy5wEqW/m/TYa2+EhERj+ZyorNhwwb69u0LwIcffkh0dLSzV0dzdGpAaY9O7nEoyq9UFVd2iCLYz4eDaXlsOJDmxuBERESql8uJTm5uLqGh1jyOJUuWMGzYMGw2G5dccgmJiYmVrnfGjBl07dqVsLAwwsLC6NWrF1999ZXzummaTJo0iZiYGAIDA+nfvz/btm1ztTmeLzACfAOt55Ucvgr08+HqTtEAfLKx8j1DIiIiNc3lRKd169Z88sknJCUl8fXXXzNw4EAAUlJSCAsLq3S9TZs25fnnn2fdunWsW7eOyy+/nCFDhjiTmWnTpjF9+nRee+011q5dS3R0NFdddRVZWXV8/xfDgIgW1vO0/ZWuZkh3q2foiy1HKCpxuCEwERGR6udyovP000/z8MMP07JlS3r27EmvXr0Aq3ene/fula73+uuv59prr6Vt27a0bduWf/zjH4SEhPDjjz9imiavvPIKTz75JMOGDaNz587MmzeP3Nxc5s+f72qTPF/9k/sXpSVUuopLWzWgYYh19tXq3cfcFJiIiEj1cjnRuemmmzhw4ADr1q1j8eLFzvIrrriCl19+2dXqAWv35QULFpCTk0OvXr1ISEggOTnZ2XsE4O/vT79+/VizZk25dRUUFJCZmVnm4XVKE53Uyic6vj42Bne1JjZr+EpERDyVy4kOQHR0NN27d8dm+626iy++mPbt27tU75YtWwgJCcHf35+7776bjz/+mI4dO5KcbG1mFxUVVeb+qKgo57WzmTp1KuHh4c5Hs2bNXIqxVopoaf1M3edSNUMusBKdpduPklNQ7GJQIiIi1c/lDQMnT55c7vWnn3660nW3a9eOTZs2kZ6ezqJFixg9ejQrV650Xj91Q0LTNM+5SeHjjz/OxIkTna8zMzO9L9lx9ui4luhc0KweLRoEkXgil6XbjzL05LwdERERT+FyovPxxx+XeV1UVERCQgK+vr60atXKpUTHz8+P1q1bAxAfH8/atWv517/+xaOPPgpAcnIyjRs3dt6fkpJyWi/Pqfz9/fH39690TB7h90NXDgfYKtdxZxgGQy5owqvLdvPJpkNKdERExOO4PHS1cePGMo+tW7dy5MgRrrjiCh566CF3xOhkmiYFBQXExsYSHR1dZvflwsJCVq5cSe/evd36mR4pvBnYfKGkALKOuFRV6fDV6t3HOZ5d4I7oREREqo1b5uicKiwsjMmTJ/PUU09Vuo4nnniC1atXs3//frZs2cKTTz7JihUrGD58OIZhMGHCBJ577jk+/vhjtm7dypgxYwgKCuJPf/qTG1vioXx8od7JJeYndrtUVatGIXRpEk6Jw+SzXzQpWUREPIvLQ1dnk56eTkZGRqXff/ToUUaOHMmRI0cIDw+na9euLF68mKuuugqARx55hLy8PO69917S0tLo2bMnS5YscW5eWOdFdYLUvXDkF4jr71JVwy5swpZDGSzacJDbL411T3wiIiLVwDBdPMzo1GMeTNPkyJEjvPPOO1x22WW89957LgVY1TIzMwkPDycjI8OlDQ5rndXTYdmz0OlG+ONcl6o6kV1Az+eWUeww+XrCZbSLVjIpIiI1q6Lf3y736Jy6V47NZqNRo0aMHj2axx9/3NXqpbJiTm7WeHiTy1U1CPHn8vaRLNl+lEUbDvLEtR1crlNERKQ6uJzoJCRUflM6qUIxF1g/0xIgL806A8sFf+jRlCXbj/LRhkM8cnU7fH2qZHqXiIiIW7lljk56ejqzZs1ix44dGIZBx44dGTt2LOHh4e6oXiojMAIiYq1E5/AmaDXApeoGtIukfrAfx7MLWL37OAPaR7onThERkSrk8j/L161bR6tWrXj55ZdJTU3l+PHjTJ8+nVatWrFhwwZ3xCiV5Ry+2uhyVX6+Nm7oZi01/3D9QZfrExERqQ4uJzoPPfQQN9xwA/v37+ejjz7i448/JiEhgcGDBzNhwgQ3hCiV5sZEB+CmHk0B60iI9NxCt9QpIiJSldzSo/Poo4/i6/vbKJivry+PPPII69atc7V6cUXpPJ3DG8G1xXUAdIoJo0PjMApLHOrVERERj+ByohMWFsaBAwdOK09KStKeNjUt5kLw8YeMJDi6zeXqDMNgeM/mAMz/6QAu7kwgIiJS5VxOdG655RbGjRvHwoULSUpK4uDBgyxYsIA77riD2267zR0xSmX5h0Aba4NFdnzmliqHdm9CiL8v+47nsGbvCbfUKSIiUlVcXnX1z3/+E8MwGDVqFMXFxQDY7Xbuuecenn/+eZcDFBe1GQi/fg4JK2GA6/sahfj7MuzCJrz9QyLv/JDIpa0buiFIERGRquHyzsilcnNz2bt3L6Zp0rp1a4KCgtxRbZXz2p2RS6UmwKsXWId8PrIPAlxf8r/raBYDX16Fj81gzWOXExUW4HqcIiIi56Gi399u2/UtKCiILl260LVrV49JcuqEiJbQsB04imH7/7mlyrZRoVzUMoISh8ns77VhpIiI1F5u2TBw2bJlLFu2jJSUFBwOR5lrs2fPdsdHSGUZBlxwG3wzCX54Ay4YDjYfl6u9u18r1u5fx9trErl/QGtCA+yuxyoiIuJmLvfoPPvsswwcOJBly5Zx/Phx0tLSyjykFuhxOwTUg2M7YMsHbqny8vaRtI4MIa+ohM9+OeKWOkVERNzN5R6dN998k7lz5zJy5Eh3xCNVIbAe9Jlwslfndeh2q8tVGobBzfFNee7LX1m4Lok/nVx2LiIiUpu43KNTWFhI79693RGLVKXuI8GwQfJmSEt0S5U3dm+Kr83gl6R0NiWlu6VOERERd3I50bnjjjuYP3++O2KRqhTcEJqfTEh//cItVTYK9WfIBU0AeO3bPW6pU0RExJ0qNXQ1ceJE53OHw8HMmTP55ptv6Nq1K3Z72Ump06dPdy1CcZ8OgyHxO2vzwF73uqXKe/q3YtGGgyz79Sj7j+fQsmGwW+oVERFxh0olOhs3lj0k8oILLgBg69atZcoNw6hcVFI12g+GxY/DgTVwbCc0audyla0jQ+jfrhErdh5j7pr9TLqhkxsCFRERcY9KJTrLly9n7Nix/Otf/9J5Vp6kXjNody3s/AK++AuM+dwt1Y69NJYVO4/xwbok/jKwrZaai4hIrVHpOTrz5s0jLy/PnbFIdRj4d2uX5P2r4fhut1TZt01DWkeGkFNYwgfrdKq5iIjUHpVOdHRytYdq0Apa9rWe/zzTLVUahsHo3i0BmPfDfhwO/bchIiK1g0urrjQHx0NdMNz6+fNM2PSeW6r8w4VNCA3wJfFELit2pbilThEREVe5lOi0bduW+vXrl/uQWqjrH+GSk6uuPrkbNrztcpVBfr7celEzAOZ8v9/l+kRERNzBpZ2Rn332WcLDXT8NW2rAVZOhuADWzYIvHgbfQOhyk3U2ViWN6tWSWd8lsHr3cfakZNE6UhPVRUSkZrmU6Nx6661ERka6KxapTj52uO4lOL7Lmpj80R1weCMMeq7SVTarH8SVHaJYsv0oc9fsZ8rQLm4MWERE5PxVeuhK83O8gGHArfOh71+s1z++DiteABcmmo+5tCUAi9YfIiO3yA1BioiIVJ5WXdV1AWFwxdNw2V+t1yueg/VzK11dr7gGtI8OJa+ohP/95J4ztURERCqr0omOw+HQsJU3GfDkb8nOV4/AgR8rVY1hGNx5WRxgTUrOLypxV4QiIiLnrVKJzubNm3E4HBW+f9u2bRQXF1fmo6S6GAb0fwI6XA8lhbBwJOQcr1RV13eLISY8gOPZBXy04ZCbAxUREam4SiU63bt358SJExW+v1evXhw4cKAyHyXVyWaDG2dCow6QkwIvtoJXukLSz+dVjd3Hxri+Vq/OzFV7KdEGgiIiUkMqterKNE2eeuopgoKCKnR/YWFhZT5GaoJfEFz/Csy+2nqdngjzboC7V0PDNhWu5taLmvHqst3sP5HL55sPM+SCJlUTr4iISDkqlehcdtll7Ny5s8L39+rVi8DAwMp8lNSE5pfAzW/DZxMgLxWK8+CbSXDruxWuItjfl7GXxvLyN7uYtngn13ZpjN3Hpf0pRUREzpth1vHlU5mZmYSHh5ORkUFYWFhNh1P7pOyAGb3BPDkn69p/QveRYA8451vzi0ro88JyjmcX8O/bunN9t5gqDlZEROqKin5/65/YUr7IDnDRn397/eXD8NGfz37/7wTYfRjeszkAc9fsr4LgREREyqdER87tmhfgqr//9nrHp5C8pUJvHd6zOXYfg/WJafzfJq3AEhGR6qVER87NMODSB+HpNGhzcpLy3uUVemtkWAD39G8NwLTFOykuqfi2BCIiIq5SoiMVZ7NBXD/r+fevwNzB8OE4SPm13Lfd278VDYL9OJSexxdbjlR9nCIiIie5lOgUFRUxYMAAdu3a5a54pLbrdhs0aAO5J6zDQLd+CP+9Egqyz/qWALsPo3u3BOCN5dpXR0REqo9LiY7dbmfr1q064LMuCapv7anTZyLYTu5OUJhl7buTefisbxvVqwWhAb7sPJqluToiIlJtXB66GjVqFLNmzXJHLOIp7IFw5TPw9Am4+E6r7OhW69iIs6gX5Mc9/VsB8NKSXRQU6wwsERGpepXaMPD3CgsL+e9//8vSpUuJj48nODi4zPXp06e7+hFSm137IsT2g4XD4dA6yDgI4U3PeOvtvWOZt2Y/h9Lz+N+PBxjXJ7aagxURkbrG5R6drVu3cuGFFxIWFsauXbvYuHGj87Fp0yY3hCi1XofB0LyX9fytK+DwxjPeFujnw0NXtgXgtW93k5lfVF0RiohIHaWdkbUzsnvs/x7evgEcxeAfZi1H7z4KQqPK3FZc4uDqV1ax91gOt13cjOdu7KI5XiIict4q+v3tlkQnPT2dWbNmsWPHDgzDoGPHjowdO5bw8HBXq65ySnTc6Ngu+GAMpGz7rWzkJ9bQlu23zsPlO1MYO3ctpglvj72Yy9o2qvZQRUTEs1XbERDr1q2jVatWvPzyy6SmpnL8+HGmT59Oq1at2LBhg6vViydp1BbuWgUD//Fb2TtD4cfX4ctH4Ic3oKSIAe0iGXVJCwCmfvUr+UWamCwiIlXD5R6dvn370rp1a9566y18fa25zcXFxdxxxx3s27ePVatWuSXQqqIenSry45uw+NHTyy8cBTf8m5SsfK55ZTUncgr5+5BOjOzVstpDFBERz1VtQ1eBgYFs3LiR9u3blynfvn078fHx5ObmulJ9lVOiU4WO74bX4k8vb3oxDHmNubv8mPTZdppGBLLkocsI8nN5EaCIiNQR1TZ0FRYWxoEDB04rT0pKIjQ01NXqxZM1bAN/mAVXT4UHN0KTHlb5wZ/hq0f4Y3wzYsIDOJiWx0tLtLu2iIi4n8uJzi233MK4ceNYuHAhSUlJHDx4kAULFnDHHXdw2223uSNG8WRdboJe90L9OBg6AzoOtcr3rSD4xSZMvcE68HP29wlsOJBWc3GKiIhXcnms4J///CeGYTBq1CiKi4sB62iIe+65h+eff97lAMWLNGoHN8+DT+6DTf+D4nz6pcxndJeLmbcln0c/3MxnD/QhwO5T05GKiIiXcNs+Orm5uezduxfTNGndujVBQUHuqLbKaY5ODchLhxdaOF+aho2htn/zS04Ef+4by5PXday52ERExCNUyxyd359eHhQURJcuXejatavHJDlSQwLrwejPnC8N08H/ldxHGNnM+X4/O45k1lxsIiLiVXR6udSM2MusScq/szngTj70fZJlc54lS8dDiIiIG+j0cqk5ve6FJ4/CVX8Hmx2AC2z7uL/wv/x7wafU8dNJRETEDXR6udQse4B1LlbjrvDhOMg9DsDohL/yxfpuDI5vXcMBioiIJ3M50Sk9vRxg166ye6FoSEsqLK4//HUPZB8l69+X0aTwKB9//gKHWr9Kk3qBNR2diIh4KJ1erlVXtU7xL+/j+/GfAXix3t946IG/4Ovj8iiriIh4kWpfdSXiLr5dbiKvaR8ALk9dyGvL99RwRCIi4qm06kpqH5uNwD/OBKCHbTe/LP+Ab389WsNBiYiIJ9KqK6mdwptAm6sBmGOfxnvvzmJTUnrNxiQiIh5Hq66k9vrjHMyXO2PkpfJ320zGLurDJ/f3wc9X83VERKRitOpKai+/YIwRH8JblxNtpJF5dB9//7w+fx/auaYjExERD+FyorN8+XJ3xCFyZk16WI9D63nS93/sXrecn3Jb0/PWJ8Gmnh0RESlfrf2mmDp1KhdddBGhoaFERkYydOhQdu7cWeYe0zSZNGkSMTExBAYG0r9/f7Zt21ZDEUuVuXA0ANf4rOVB30/oueufHPhufg0HJSIinqDSic61115LRkaG8/U//vEP0tPTna9PnDhBx46VP4V65cqV3Hffffz4448sXbqU4uJiBg4cSE5OjvOeadOmMX36dF577TXWrl1LdHQ0V111FVlZWZX+XKmFeoyGEYsww5o6izJX/JvsguIaDEpERDxBpTcM9PHx4ciRI0RGRgIQFhbGpk2biIuLA+Do0aPExMRQUlLilkCPHTtGZGQkK1eu5LLLLsM0TWJiYpgwYQKPPvooAAUFBURFRfHCCy9w1113VahebRjoQRwlZBzdT9B/LsZOMe/Wu5Nbxj2Cb2ijmo5MRESqWZVvGHhqflTVGyyX9h7Vr18fgISEBJKTkxk4cKDzHn9/f/r168eaNWvOWk9BQQGZmZllHuIhbD6EN25FRvtbABiePhPfl1rDoj+Dw1HDwYmISG1Ua+fo/J5pmkycOJE+ffrQubO14iY5ORmAqKioMvdGRUU5r53J1KlTCQ8Pdz6aNWtWdYFLlWh408vsbnsnBxwne3K2vA/7NCleREROV+lExzCM05aPV9Vy8vvvv5/Nmzfz3nvvnTGO3zNNs9w4Hn/8cTIyMpyPpKQkt8crVczXnzZ/epG58f/HhyWXAZD141yo28e2iYjIGVR6eblpmowZMwZ/f38A8vPzufvuu50bBhYUFLglwAceeIBPP/2UVatW0bTpb5NRo6OjAatnp3Hjxs7ylJSU03p5fs/f398Zs3i2x6/rwJSE67gpbRWhez4lc/PnhHW7vqbDEhGRWqTSPTqjR48mMjLSOQQ0YsQIYmJinK8jIyMZNWpUpQMzTZP777+fjz76iG+//ZbY2Ngy12NjY4mOjmbp0qXOssLCQlauXEnv3r0r/bniOew+Nh4cdzsf+g4G4MjnU8gvLKrhqEREpDap9Kqrqnbvvfcyf/58/u///o927do5y8PDwwkMDATghRdeYOrUqcyZM4c2bdrw3HPPsWLFCnbu3EloaGiFPkerrjxfQsIeoub1JogCNoZcRrcHFmDzDz73G0VExGNV9Pu71iY6Z5tnM2fOHMaMGQNYvT7PPvss//nPf0hLS6Nnz568/vrrzgnLFaFExzskffQUzTa/CsAPUbfR6543azgiERGpSh6f6FQXJTpeIuMgvNwJgGLTxtfXreG6izvUcFAiIlJVqnwfHZFaJbwp3P0dAL6Gg/ZfDGPNtr01HJSIiNQ0JTriPaK7UHznanJsobQyDrNi4b9Yuz+1pqMSEZEapERHvIpvTFf8Bj4FwB3G/7FgzqtsO5BSw1GJiEhNcUuis3r1akaMGEGvXr04dOgQAO+88w7fffedO6oXOS/27sNxhDcj0kjnJeNl0mffxO5kHfUhIlIXuZzoLFq0iKuvvprAwEA2btzo3CgwKyuL5557zuUARc6bfwi2kR9T1HEYAJfyC9PfmsWBE7k1HJiIiFQ3lxOdKVOm8Oabb/LWW29ht9ud5b1792bDhg2uVi9SOQ3bYL95DvkX3A7AjJJJJL8+iKI3+sJHd9ZwcCIiUl1cTnR27tzJZZdddlp5WFgY6enprlYv4pKAXn92Pr/Y8Qv2lM2weSGkJtRgVCIiUl1cTnQaN27Mnj17Tiv/7rvviIuLc7V6EddEdYLG3U4rztv5TQ0EIyIi1c3lROeuu+5i/Pjx/PTTTxiGweHDh3n33Xd5+OGHuffee90Ro4hrbnkXWl1OUVgLZ9GmFR+RU1Bcg0GJiEh1cMvOyE8++SQvv/wy+fn5gHVC+MMPP8zf//53lwOsatoZuW5J+GUVsR9fT6YZxP1N32fmmN4E2H1qOiwRETlP1bIzclFREQMGDGD06NEcP36cn3/+mR9//JFjx455RJIjdU9sl0spCowkzMil+/453D9/A7mF6tkREfFWLiU6drudrVu3YhgGQUFBxMfHc/HFFxMSEuKu+ETcy+aDfdAUAMb7fsSBX9dzy39+pLDYUcOBiYhIVXB5js6oUaOYNWuWO2IRqR5db4bWV2IzTG7y/5EthzKY9Nk2Shx1+nxbERGv5OtqBYWFhfz3v/9l6dKlxMfHExwcXOb69OnTXf0IEfcyDOh6K+z5huEhG5lacBPzfzpAflEJL/2xG4Zh1HSEIiLiJi4nOlu3buXCCy8EYNeuXWWu6QtDaq12g8DHn+Ds/XzaYzNDN1zARxsO0bReIBMHtqvp6ERExE3csurKk2nVVR32yb2w6V0AUiIuZMCR+8ghkIcHtuX+y9vUcHAiIlKeall1JeLRrpsOl/0VgMi0DbzbejkA/1yyizdWnL4JpoiIeB6Xh65Kbd++nQMHDlBYWFim/IYbbnDXR4i4lz0ALv8bRHeB90dxwcH/8ULva3h0jcG0xTuxGQZ392tV01GKiIgLXE509u3bx4033siWLVswDIPSkbDS+TklJSWufoRI1Wp3LQQ1hNzj3HL4BVKums1LS3fx/Fe/4udjY2yf2JqOUEREKsnloavx48cTGxvL0aNHCQoKYtu2baxatYr4+HhWrFjhhhBFqpiPHW55x3qevJkHmu5lwpXWHJ2/f7GdLzYfqcHgRETEFS4nOj/88AOTJ0+mUaNG2Gw2bDYbffr0YerUqTz44IPuiFGk6rXoDfFjreefP8T4AbGM6tUC04QHF2xkxc6Umo1PREQqxeVEp6SkxLkTcsOGDTl8+DAALVq0YOfOna5WL1J9rn4OghpA1mGM90fxTP/6DLkghhKHyQPvbWRPSnZNRygiIufJ5USnc+fObN68GYCePXsybdo0vv/+eyZPnkxcXJzLAYpUG3sg9HvUer7zS3w+uYsX/9CVHi0iyMovZuSsn0hKza3ZGEVE5Ly4nOj87W9/w+GwzgmaMmUKiYmJ9O3bly+//JJXX33V5QBFqlXPu2Ds1+DjBwmr8Ev9lZkje9CqUTBHMvIZ8vr3HExTsiMi4imqZMPA1NRUIiIiPGJnZG0YKGf0v5tgz1Lo/Ae4/lWS830ZM+dnfk3OokPjMObf0ZOIYL+ajlJEpM6q0Q0D69ev7xFJjshZdTy5/9PWRTCjN9FHvmXmiAtpGOLPjiOZDP/vT6TnFpZfh4iI1DiXe3QmT55c7vWnn37aleqrnHp05IwcDvjxDfjhdciyJthz9VR2x43ktrd+5Hh2IR0bh/H2uItpGOJfs7GKiNRBFf3+djnR6d69e5nXRUVFJCQk4OvrS6tWrdiwYYMr1Vc5JTpSrrw0eO82OPAD+IfBHd+w2xHjTHa6NAlnwZ2XEOzvtk3GRUSkAqot0Tnbh48ZM4Ybb7yRkSNHurt6t1KiI+dUXACvXwxp+6HjULh5HnuPZfPHN38gNaeQS1s3YNboiwiw+9R0pCIidUaNztEJCwtj8uTJPPXUU1VRvUj18vWHG/5tPU9YBQ4HrRqFMHvMRQT7+fD9nhPc9+4GCosdNRuniIicpspOL09PTycjI6OqqhepXs17WUNXeanw/kgoyueCZvWYNeYi/H1tLPs1hYcWbqK4RMmOiEht4vLEglP3yjFNkyNHjvDOO+8waNAgV6sXqR187NBnAiybDL9+bk1U7juRS+IaMHNUPH+et44vthzB39fGP//YDZtNqw5FRGoDl+foxMaWPdnZZrPRqFEjLr/8ch5//HFCQ0NdCrCqaY6OVJhpwuLH4acZENwIJv4KPta/FZZsS+aedzdQ4jAZ3LUxr9xyAb4+VdZhKiJS59XoZGRPokRHzktJEbzUHnKPQ4fr4eZ34OSeUZ/9ctgavnKY3BzflOdu7KJkR0SkilT0+9vloauJEydW+N7p06e7+nEiNcvHDpf9FRY/Cjs+g5n94MpnodUAru8Wg93H4J53N/D+uoOk5hTx2p+6azWWiEgNcrlHZ8CAAaxfv56SkhLatWsHwK5du/Dx8eHCCy/87YMMg2+//da1aKuAenSkUtbOgi//CmaJ9XrER9D6CgAWbz3Cgws2UVjsYFCnaP512wX4+yrZERFxp2pbXn799dfTv39/Dh48yIYNG9iwYQNJSUkMGDCAwYMHs3z5cpYvX14rkxyRSrtoHEzYAs16Wq+/f8V5aVDnxswdcxG+NoPF25IZ/tZPHM8uqJk4RUTqOJd7dJo0acKSJUvo1KlTmfKtW7cycOBADh8+7FKAVU09OuKSo9thRi/wC4HHksD2278dVu8+xr3vbiArv5gWDYKYe/vFxDYMrsFgRUS8R7X16GRmZnL06NHTylNSUsjKynK1epHarWFb8PGHwmxISyhzqW+bRnx876U0qx9I4olc/jBjDRsPpNVQoCIidZPLic6NN97I7bffzocffsjBgwc5ePAgH374IePGjWPYsGHuiFGk9vLxhaiTvZl7vjntcuvIED6651K6NAknNaeQ2976kaXbT/+HgYiIVA2Xh65yc3N5+OGHmT17NkVFRQD4+voybtw4XnzxRYKDa3dXvYauxGU/vwVfPmw9b9gW6rWAa1+E+r/tMZVTUMx98zewYucxbAY8c30nRvVqgWFoY0ERkcqo9n10cnJy2Lt3L6Zp0rp161qf4JRSoiMuKymC/14JRzb9VmYPhtu/hJgLnEXFJQ6e/HgrC9clAXBTj6ZM+0NX7aIsIlIJ2jCwgpToiFtkHYWti8DXD9bNgaNboenFcMfSMreZpsnMVft4YfGvOEzo26Yhrw+/kLAAew0FLiLimap8MvJPP/3EV199Vabs7bffJjY2lsjISO68804KCrSkVuqI0CjodS9cdIe1p47NFw7+DAd+KnObYRjc1a8V027qRoDdxurdx7n+399xNDO/hgIXEfFulU50Jk2axObNm52vt2zZwrhx47jyyit57LHH+Oyzz5g6dapbghTxKKFR0H6w9fztG2DLh6fdclOPprwzrieNwwNIPJHL4H9/x4/7TlRzoCIi3q/Sic6mTZu44oornK8XLFhAz549eeutt5g4cSKvvvoq77//vluCFPE4g1+GNgOhOB8+uQeyj512y0Ut67Pwzl60iwrlWFYBf3rrR/67eh91fDRZRMStKp3opKWlERUV5Xy9cuVKBg0a5Hx90UUXkZSU5Fp0Ip4qqD7cthAatIGSQkhYecbbmjcI4pP7LmVY9yY4TJjyxQ4eXLCJrPyiag5YRMQ7VTrRiYqKIiHB2iCtsLCQDRs20KtXL+f1rKws7HZNsJQ6zGaDdtdYzxeNg11fn/G2QD8fXrq5G08P7oiPzeCzXw4z/L8/cSg9rxqDFRHxTpVOdAYNGsRjjz3G6tWrefzxxwkKCqJv377O65s3b6ZVq1ZuCVLEY3UfAbaTCf+H4yAr+Yy3GYbB2D6xvH/XJdQLsrP5YAZDX/+eb7S5oIiISyqd6EyZMgUfHx/69evHW2+9xVtvvYWfn5/z+uzZsxk4cKBbghTxWI3awYiTk5ELs2DVP8u9vUeL+nx2fx+a1w/iWFYBd76zjnlr9mvejohIJbm8j05GRgYhISH4+PiUKU9NTSUkJKRM8lMbaR8dqRYJq2De9dbz+HEQfztEdznr7dkFxUz6dBsfrj8IwG0XN+MfQ7toc0ERkZOq7VDP8PDw05IcgPr169f6JEek2sReZj0A1s2CWQMhLfGst4f4+/LiTV158toO2Ax47+ckbn3rR7ILiqspYBER7+ByoiMiFfTHedBnIgQ1hKJc+Gw8pB846+2GYfDny+L4163dCbT78HNCKrf85wcST+RUY9AiIp5NiY5IdQmqD1c+A7e8A4YN9i2Ht4dASfm9NNd3i2HBnZcQEWRn2+FMBr/6HR9tOKh5OyIiFaBER6S6tegNfzq5mWbqPtjx6Tnf0q1ZPb54sC89WkSQVVDMxPd/4d53N5CRp/12RETKo0RHpCa0uQounWA93/FZhd4SUy+QhXdewsMD2+JrM/hqazKDXlnFh+vVuyMicjZuOb182bJlLFu2jJSUFBwOR5lrs2fPdrX6KqVVV1JjDvwIs6+2nt/6HrS/tsJv3XwwnfvmbyAp1dpU8LK2jZg6rAtN6gVWRaQiIrVOta26evbZZxk4cCDLli3j+PHjpKWllXmIyFk0vRg6DrGefzAGflkIjpIKvbVr03osfagfjwxqh5+vjVW7jnHFSyt45Ztd5BVWrA4RkbrA5R6dxo0bM23aNEaOHOmumKqVenSkRhXlw6wrIXmL9bp+HIz8BCJaVLiKPSnZPPHRFn7enwpA4/AAHrumPTd0i8EwtO+OiHinauvRKSwspHfv3q5WI1I32QNg3FJoefL4lNR98NUj51VF68gQFt51Ca/9qTtN6gVyJCOf8Qs28cc3f2DHkcwqCFpExHO4nOjccccdzJ8/3x2xiNRN9kAY9Snc/b31etdiWPH8eVVhGAaDu8aw7C/9eHhgW4L8fFiXmMbgf3/H2Llr+TVZCY+I1E2+rlaQn5/PzJkz+eabb+jatetpJ5ZPnz7d1Y8Q8X42G0R3hkbt4divsGIq+AZAt1shNLrC1QTYfbj/8jb8oUdTJn+2na+2JvPtryms2JnCZW0b8eAVbbiweUQVNkREpHZxeY7OgAEDzl65YfDtt9+6Un2V0xwdqVW2fwrv/26+m48/3PM9NGxTqer2pGTx0pJdfLX1t1PT41tEcN/lrRnQLtLVaEVEakxFv7/dsry8qqxatYoXX3yR9evXc+TIET7++GOGDh3qvG6aJs8++ywzZ84kLS2Nnj178vrrr9OpU6cKf4YSHal1CrJh+T/gxzes13H9rQnKLkws3pSUzktLdvLD3hMUO6z/5XvG1ucPFzbl6k7RhAfZz1GDiEjtUm2TkatSTk4O3bp147XXXjvj9WnTpjF9+nRee+011q5dS3R0NFdddRVZWVnVHKmIG/mHwKCpcN3JYd99K+CH112q8oJm9XhnXE++f+xy7ugTi4/N4KeEVB5ZtJkL/r6ExxZtJiUr3/XYRURqGbf16Gzfvp0DBw5QWFhYpvyGG25wR/UYhlGmR8c0TWJiYpgwYQKPPvooAAUFBURFRfHCCy9w1113Vahe9ehIrZWbCq90gcJsawjr4j9DYD3oPR58/Vyq+mBaLv+36TDzfzrAofQ8Z/kV7SMZ3bslvVs1wNenVv87SETquGobutq3bx833ngjW7ZswTAM51b0pft3lJS4Z/OyUxOdffv20apVKzZs2ED37t2d9w0ZMoR69eoxb968M9ZTUFBAQUGB83VmZibNmjVToiO1k8MB790Cu5f8VhZ7Gdz4HwiLcbl60zT5cV8q077+lY0H0p3l9YP9uLx9JBe1jOCaLo0JC9DQlojULtU2dDV+/HhiY2M5evQoQUFBbNu2jVWrVhEfH8+KFStcrf6skpOtyZVRUVFlyqOiopzXzmTq1KmEh4c7H82aNauyGEVcZrPBH/4L0V1/K0tYBbMGQlHe2d9XQYZh0KtVAz6+91IWT+jL8J7NqR/sR2pOIR+uP8iji7bQffJSbnzje15Y/Cu7j2bpXC0R8Sgu9+g0bNiQb7/9lq5duxIeHs7PP/9Mu3bt+Pbbb/nLX/7Cxo0b3RPoKT06a9as4dJLL+Xw4cM0btzYed+f//xnkpKSWLx48RnrUY+OeCzThG0fwYdjrdfXTYeLxrn9Y4pLHPyw7wQ/7D3Bl1uOsP9EbpnrTSMC6d48gqs7RdG/XSQh/i7vUiEict4q2qPj8t9QJSUlhISEAFbSc/jwYdq1a0eLFi3YuXOnq9WfVXS0tbdIcnJymUQnJSXltF6e3/P398ff37/K4hKpMoYBnf8A6Qfgm0mw86sqSXR8fWz0bdOIvm0a8cig9uw9ls2mA+l8vvkwK3cd42BaHgfT8vjsl8P4+dq4rE1DruoYRYfGYXSKCcfHpmMnRKT2cDnR6dy5M5s3byYuLo6ePXsybdo0/Pz8mDlzJnFxce6I8YxiY2OJjo5m6dKlzjk6hYWFrFy5khdeeKHKPlekxrW52kp09iyFT+6FK5+FkEZV9nGtGoXQqlEIf+jRlPTcQtbtT2NdYhqLt1q9Pd/sSOGbHSkANKsfSJ/Wjbgkrj4XNo+gWf2gKotLRKQiXB66+vrrr8nJyWHYsGHs27ePwYMH8+uvv9KgQQMWLlzI5ZdfXum6s7Oz2bNnDwDdu3dn+vTpDBgwgPr169O8eXNeeOEFpk6dypw5c2jTpg3PPfccK1asYOfOnYSGhlboM7TqSjyOacLHd8HmhdZrv1C49kXrJHS/6kssTNNk19FsFm9N5vu9x9lxOJOsguIy90QE2YkKC2BQ52iu7BBFy4bBGuoSEbeo0Q0DU1NTiYiIcPnk5BUrVpxx5+XRo0czd+5c54aB//nPf8psGNi5c+cKf4YSHfFIjhL4YiKsn/tbWdOLYOwSawJzDcgrLGH5zhTWJ6axbn8qmw9lcOrfLiH+vgzqHE2byBCu6BBFywZBWsYuIpXiFTsjVwclOuLRElbDvMFly66aDL0eqLGEp1RGXhHbDmfw475Ufth7nPWJaThO+dvGx2YQGepP9+b1CPbzpW1UKCN7tSDA7lMzQYuIx6jWRGf16tX85z//Ye/evXz44Yc0adKEd955h9jYWPr06eNq9VVKiY54vKPbYPVLsHXRb2VtBlp77QTVr7m4TlHiMPl+z3HW7U9lw4F0fko4QVHJ6X/9hPr7EhZo57K2jYhvEUG3ZvWIaxiMTZOcReR3qi3RWbRoESNHjmT48OG88847bN++nbi4ON544w0+//xzvvzyS1eqr3JKdMQrFOZaJ56vefW3sqguMPDv0OrsB+/WpBKHyY4jmSSl5rJ8Zwo7k7NIOJ5DZn7xaffafQy6Na1HiWkSUy+QPq0b0qVJOG2jQvHz1dCXSF1UbYlO9+7deeihhxg1ahShoaH88ssvxMXFsWnTJgYNGlTu5n21gRId8Tr7v4cFf4L8dMCAG16FC0fVdFQVUljsYMuhDPYdy2bt/lT2n8hlfWIaJaeOeZ3k52ujU0wYXZqEExUWQMMQPy5t3ZDI0AAlQCJertoSnaCgILZv307Lli3LJDr79u2jY8eO5OfX7oMCleiIV8o4CF/8BXad3DizzdXQdiBcOBp8POs4h+ISB/tP5LD1UCaH0vPYcSSTH/aeID2v6KwJEEBkqD9tokJoGxVKk3qBXBLXgGb1gwj289EEaBEvUG0bBjZu3Jg9e/bQsmXLMuXfffddle6jIyLlCG8Kt86HldNg5fOw+2vrsWwytB8MxQXWAaFdbobmPWs62nL5+thoHRlK68iyW0aYpkniiVx+OZjOjiNZnMguIOF4DusS0wBIySogJauA7/ecKPO+ID8fWjYIpnVkCA1C/Li0VUMujqtPqL+v87w+V1eMikjt4XKPzrRp05g3bx6zZ8/mqquu4ssvvyQxMZGHHnqIp59+mvvvv99dsVYJ9eiI19u3EubfAsVnORsroiVEdbYmMLe5CgwfCD377uK1XXJGPiWmSUpmPruPZrPpYDp7U7LZnZJNak7hWd9n9zHwsRnYfWwM6hRNy4bBtGoUjMOEQLsP/do20oRokVqkWlddPfnkk7z88svOYSp/f38efvhh/v73v7tadZVToiN1xtaPIHkznNgLST9Ddjnz5zoNg0vHQ1QnjxvqKk9uYTE7jmRyOD2f7UcySc7IZ+3+VA6mnfuAVF+bQUy9QKLDA+gQHUpUeADto0PpHBNOwxB/JUEi1aza99HJzc1l+/btOBwOOnbs6Dz/qrZToiN1kmlCXhr88Bqk7oP8TNi77PT7Wl0ON78Nu5dA20HgF1z9sVYx0zTJKSwhM6+IrPxijmUVsHrPMXYfzWZPSjYHUnPPWUeovy9tokLw9/WhS9NwGgT74WMzaNUohLhGwbRo4H1/biI1rcoTnbFjx1bovtmzZ1em+mqjREfkpKJ82PI+JK6xkp+kn06/p2VfKMyxkp7+j1Z/jDUkv6iExBO5HEzLJfFELgnHc0jOzOfX5EwOpeWdthHiqYL8fKgXaMdmM2hSL5BOMeE0CvWnef0gLmoZQWiAnQC7TXODRM5DlSc6NpuNFi1a0L17d8qr4uOPP65M9dVGiY7IWez6Gj4cC4XZZ75+wQjrbK1ut0JELBRkQUSL6o2xFigucbDzaBa/HsmioNjBzuRMDqXncyg9j+PZBZzILjhnIgQQGuBLk3qBtIoMoXn9IBqHBxAdFkCTiEDCAuz4+9poGOKPYaCESIRqSHTuvfdeFixYQPPmzRk7diwjRoygfv3aswtrRSnRESnHib2w8ytrT54tH0BsP0jeAoc3nPn+yx6BrrdAw9aQedga8upwQ63aobm65RYWczSzgMQTOeQUlJBbWMy2w5lk5hfxc0LF5gf9XmiAL/WD/YgKCzh5snwwDUL8qBfoh6+PQaeYcCKC7EqGxOtVyxydgoICPvroI2bPns2aNWu47rrrGDduHAMHDvSY/8mU6IicpwM/wfybT25IeBbtroM930BJgXWq+pA3rPk9HvL3QnUxTZNih0luQQmH0vNIzsxj99FsjmTkk5yRz+GMPA6m5ZFdUExxiaNCPUNgDZU1jQikaUQQTSMCaRjiT5CfD+GBdqLDA2jZIJiwQDvhgd4z0VzqnmqfjJyYmMjcuXN5++23KSoqYvv27R4xIVmJjkgllBRZJ6j7+ls9PrsWw+GN1qqu8kR3gWumQYveZcsLc+GTu62l7UENoMNgq/dIiZFTVn4RRzLyycgr4tfkLOw2g82HMjicnkdGXhH7j+eQW1hCQbGjwnU2jQgkPNBOs4ggTEwahwfSNiqU0ABfAuw+JGfmc2WHSOoF+hHop4NWpXap9kTnwIEDzJ07l7lz51JYWMivv/6qREekLnE4rCGtnGOwbg7YA6zT1fNST7/32n/C0a1waIN1PMWXD5+5zk43wg2vgX+INVna199KfkxTSdBZ5BeVcDjd6gmyHrmcyC4ku7CYjNwiDqblsv/EuVeSnapekJ2IID9aNQqhUagfvjYb2QXF9GvbiBB/X7ILimkSEUhUaACNQv2VGEmVq/ahq++++47Bgwdz++23M2jQIGw2z9hiXYmOSBXKTYXMQxDUEI7vhPf+BEU551dH/VYQFgMHfoS4/tDuGvjuFfDxhRtnQrOLqiJyr1biMEnLLWT/8Rwy8orYdywHH5vBgdRcklJzyS4o5nh2AXuPnefv6iS7j0Hz+kHYDANfHxv1Au00rx9EdHgADUP9CQ+0Y5omjUL8iakXSON6Afj7KjGS81Otk5Fvv/12RowYQYMGDSodcE1RoiNSjQ6th4/usnpmGra1hryKTvYuxHSHP30AqXth3g3W/J5zCWsKQ1+3Vn2FN4XifGszxHWz4KI/w/FdUD8WWl9Zte3yUqZpkplXTGZ+EceyC8jOL2bfsWwy84vJKbDKtxzKoLjE5FhWASWmSUGRg7yikvP6HMOAsAA7If6+hAXaCQ3wxccwSMnKp2lEEB0ahxERZMfXx0bP2PqEBdix+xqUOEwaBKv3qK6qluXlzZs3p3v37uVOPP7oo48qU321UaIjUoNME4ryrGXqv+dwgM0G6QesYbCDayEwwhrustmtHp59y0+vz8cPSs5wzMNNc6DzsKppg5RhmiYHUnM5lJYHBhxMzSOvqIQTOYUczy7geFYBmflFGFiJzKH0PPKLKj6v6EyiwqxeIgODrPwiOsaEEdcohMy8IqLDA7D72DAMaBDsR5uoUIL8fIgOC6Cg2EFyRj75RSVc0LyeepU8TJUnOmPGjKnQyqo5c+ZUpvpqo0RHxEPt/Rb+dxOYFew9aHoR9H4AAurBL+9B3AArccpPh/5PQHBD67iLtESo1/y3OUD7vz+5SeLAM9db+leo5gxVimmapOYUkpZbRHZBMem5hWQXFFNQ5OCXg+lkFxSDCXlFJeQXlfBTQqqVH5c4KDFN3DPL1Drio3mDIJrUC8R+8nT7hiF+5BU5aNUomPrBfs5Vao1C/NmRnEWDYD/6t2tkJVn6/Ve7ap+M7KmU6Ih4sPQksPnCkV8A09q7x8cP9iyFrGS44hlrNVf6gXPX5RsAjdpZdfkGQMM2cNVkePeP4CiGu1ZBdFdr3tGW963zwLKOwKJxVg/TiI/KnguW8is0aG3NJZIqUVjsIKegmD3HssnILcIEsguKOJFdyMG0PEIDfDmeXYjDYeIwTfYcy+Z4dgG5BVYPk82ARqH+FBQ7SM8tcikWw4Aguw+N6wXiYxgczy6gXpCdxuGBGAY0qRdI8wZBpOUUEhpgJyLITr0gP+oFWf/N+BgGXZvVI8T/zP+9FBY7MAycSZgo0akwJToiXu74bvj1c6unZssHZ9/p2R2a9IDhH8KGefDNJGsOUe/7ISTSmoNUP+63e0uKlQTVoMz8IoLsPvj62DBNk73HcjiUnsfRjHxMTPKLHGTmFWH3tfFLUjolDpOs/GJyC4vJzC/mQGouBlBc0c2NKsAwsCZw2wwC7D4E2G0E2n0IsPtwIDUXh2lyUcv6hJ2czN0hOgx/uw0Dg8ISB5Gh/vj52mgU6k+ziCD8fW34nXyk5RYREx7gVT1PSnQqSImOSB2Sm2odVZF5CFY8byUmVzwNOcfh0DprLlBAPUjZAb/Md//n3/KutXLsu5fh+3/BjW9CfgaERlt7E4GVDAXWg/BmkJFk/Sz9cso6ai3bDwgvW2/pnCapdtYwWwklpkl6rtWblFNQTFGJA8MwOJFTQInDmqx9KC2PsEA7+UUlpOcWkZZbSHpuEXlFJRSVODiSkV+lsUaF+RPk58uJ7ALiGoXgYzPw87ERUy+QEH8fZxJUP9gPf18bPjaDY1kFNAr1p2PjMCLD/MkvchAZ5o/NMGgQ7Od8T4nDZN+xbFo1CsFmq55kSolOBSnREZEzyjlhJT+x/SA90ZrXs2cZ2IMg/nY49iu0HwxN461DULcsguVTfnt/eHNrYnR2smtx+IVac4ZsPtaGjCHRENcP0vZbewytfQt+ngk977Y2Ymx3rZWwxXS3NmA0HVZyVFmmaSVhvn6utUPO6UR2AUUlJsUOB/lFJeQXWT/zikpwmNa5antSsvH1sZGWU0hKVj7FDmuOk80wnO9PySogu6CIwuKK76ZdGXYfgwBfH/x8bZzIsRYBhAX40r15BLmFxRiGQWZeEa0iQ3h4YDtiGwa79fOV6FSQEh0RcZvUfdY8obAm1rJ2gIxDsPNL+Pktay+hU/mFlB1OM2xWcuIuvgFWT9KvnwMmBNa35h+1utxKhEIaWcNohdmw8X/Wsv/GXa1epmO7YMFtVi/Y4Fes8uO7rR2ugxue/TOP77b+LOo1t/4sAvR3a00pKnFwNDOfUH87O5IzMU3wsVkr3nxtNo5l5ZOZX0x+UQmFJQ6y8ovJyCvC4bASJj8fG0F+PuxKySIzrxibAWmVmM+05rHLiakX6Na2KdGpICU6IlItck7AhrnWMvm8dOuoC0cRdB9l9c4U50Hjbta9B36ErYsgsgNkH7P2A6rXzNo88ZtnIPeEe2KyB0FUZzj48+nXAsKtYbWz6feYFe+W963kLrIjXPOC1Zv07h9/2x+pWU+rl+nQOmh/vbXb9fGdcGSztZ9SXH/rGJGQSKvnyDCs+w3Dep1zzJp03ryne9osLisqsRLxo5n55Bc5KHGYZBcUYxhwNCOfzPwiQgPsFJU48LXZOJKRxx19485R6/lTolNBSnRExKPkZ1g9PplH4MAaaNnXOjA1PwOO7bQ2XCydZxTeFJY9+9t7G7az9iw6ur1iGzLWlLj+VvJ0Ys9vvVtdb7FWsTVqZ7X98EZo0AqSfrJ6zQY8YSWHCSvhD7Os1XcJKyE40tpzycduDee1ugIS18DuJdDvEWu+1pp/W7tsN2r7WwxFedbjh9esxKtpPBzdBgfXQcs+1meXSk2wtipoP/j0bQZM07oW2dEafhS3UaJTQUp0RMSrHfjR+jJv1AGiOlplhbnWcNT6OZC8xSqL7ABdb7XmFR35xUqcjm6BSx+CNa9aK8nASqyOboW8NOt1kx7W8FvCyt8+M24AXP4UzLveOvLDL8Qa6krbb123B1nDXyk7oCCzihpuAOf4ejN8yu7DZA+G9tdZvVS/5+NnxXtovfXaZoe2V1t/Bo3aw/b/g9zjVn2tBljDdcd2Wr1wpglbP4R218Gwmda5baVSEyC4UdkysHqyfMo5WT47xVpF2DTeOl/u+G4rEdy12BqqbDUACrIhJ8XaNbyiK608bCWgEp0KUqIjInIOp26KeHAdrHrROnesxxirLGE1fDbeSpiGvWX1HDlKrC/lkEjr+U9vWsNVF462JkgX5Vsr0AA6XG8lBvtWwvsjf/vsZj2teUvHd5U/ZBfUwOrxSfrpzNdDoiD7qEt/DM7PcWXoMOZCa9+l3UuspNIebCWD9iAoLrASleJ8qzeuYRurV6ukyOrl8rHDriWQddiqq9kl1lBhmU0zDRj6Bix5ykq+ml5kJUGlh+FGdoDEH6z6Yi6AtbPgxG4rsf31CyuRvXS8Na/sh9esOVv5GdZqwCuegY3vWL+rtoOsVYGFOdbQYlx/a7+pfcutIc2EVdamniFRcMk9VnvcTIlOBSnRERFxE3edKn/kF9jwNvR/vOyk55JiSNlmHRJrGLB7qfWFGxr12z3Hd8OOz6yhorZXW0NfST9Ds4utxOLgOgiqD5sXWkv8AXrdb/U6JX5vfTEf2WQlGHED4OI/w9r/WnOFrvq79SU+o7e1WSRY56gFN7J6d3Yt/i2O9oOtXpejJ3vMzjXnydOUJmgVEdYURn9adrjPDZToVJASHRGROqggG1ZMtebftLz0/N57bJfVcxE/tuwQU1GeNXzlKLZ6tNKT4JcF0H2ElQgtusNK1OLHWsNhLftaE8G3fQwdbrASgdDG1n5PuxZbPT+mafWc7PzS6k1qd401NGYPhNXTrR6vPUutz+/3mNUrc3SLNaQ2+GXrmJRzJSRxA6wVdaWJX3gzqxctPfH8/lxOFRhhtTuoAYz5EiLbu1bfKZToVJASHRERqfWykq2tAc60n1FaotVr1eWmkxPVT25xYLNZw4ObF1pDf5c9DJ8/ZA0jBtW3JnGHN4UrJ1mbVJYUWUlWaQ+ZaVrJTki0tR9UzgmI7gwHfrCG2SI7WMN4Pv5W4ldSCG2utiaFtx0EzS6yVg1mH7Xe52ZKdCpIiY6IiIjnqej3t/YMFxEREa+lREdERES8lhIdERER8VpKdERERMRrKdERERERr6VER0RERLyWEh0RERHxWkp0RERExGsp0RERERGvpURHREREvJYSHREREfFaSnRERETEaynREREREa+lREdERES8lhIdERER8VpKdERERMRrKdERERERr6VER0RERLyWEh0RERHxWkp0RERExGsp0RERERGvpURHREREvJYSHREREfFaSnRERETEaynREREREa+lREdERES8lhIdERER8VpKdERERMRrKdERERERr6VER0RERLyWEh0RERHxWkp0RERExGt5RaLzxhtvEBsbS0BAAD169GD16tU1HZKIiIjUAh6f6CxcuJAJEybw5JNPsnHjRvr27cs111zDgQMHajo0ERERqWGGaZpmTQfhip49e3LhhRcyY8YMZ1mHDh0YOnQoU6dOPef7MzMzCQ8PJyMjg7CwsKoMVURERNykot/fvtUYk9sVFhayfv16HnvssTLlAwcOZM2aNWd8T0FBAQUFBc7XGRkZgPUHJiIiIp6h9Hv7XP01Hp3oHD9+nJKSEqKiosqUR0VFkZycfMb3TJ06lWefffa08mbNmlVJjCIiIlJ1srKyCA8PP+t1j050ShmGUea1aZqnlZV6/PHHmThxovO1w+EgNTWVBg0anPU9lZGZmUmzZs1ISkryyiExb28feH8b1T7P5u3tA+9vo9rnGtM0ycrKIiYmptz7PDrRadiwIT4+Pqf13qSkpJzWy1PK398ff3//MmX16tWrqhAJCwvzyv+AS3l7+8D726j2eTZvbx94fxvVvsorryenlEevuvLz86NHjx4sXbq0TPnSpUvp3bt3DUUlIiIitYVH9+gATJw4kZEjRxIfH0+vXr2YOXMmBw4c4O67767p0ERERKSGeXyic8stt3DixAkmT57MkSNH6Ny5M19++SUtWrSo0bj8/f155plnThsm8xbe3j7w/jaqfZ7N29sH3t9Gta96ePw+OiIiIiJn49FzdERERETKo0RHREREvJYSHREREfFaSnRERETEaynRqSJvvPEGsbGxBAQE0KNHD1avXl3TIVXIqlWruP7664mJicEwDD755JMy103TZNKkScTExBAYGEj//v3Ztm1bmXsKCgp44IEHaNiwIcHBwdxwww0cPHiwGltxZlOnTuWiiy4iNDSUyMhIhg4dys6dO8vc48ntA5gxYwZdu3Z1btDVq1cvvvrqK+d1T2/f702dOhXDMJgwYYKzzNPbN2nSJAzDKPOIjo52Xvf09gEcOnSIESNG0KBBA4KCgrjgggtYv36987qnt7Fly5an/Q4Nw+C+++4DPL99xcXF/O1vfyM2NpbAwEDi4uKYPHkyDofDeU+ta6MpbrdgwQLTbrebb731lrl9+3Zz/PjxZnBwsJmYmFjToZ3Tl19+aT755JPmokWLTMD8+OOPy1x//vnnzdDQUHPRokXmli1bzFtuucVs3LixmZmZ6bzn7rvvNps0aWIuXbrU3LBhgzlgwACzW7duZnFxcTW3pqyrr77anDNnjrl161Zz06ZN5nXXXWc2b97czM7Odt7jye0zTdP89NNPzS+++MLcuXOnuXPnTvOJJ54w7Xa7uXXrVtM0Pb99pX7++WezZcuWZteuXc3x48c7yz29fc8884zZqVMn88iRI85HSkqK87qnty81NdVs0aKFOWbMGPOnn34yExISzG+++cbcs2eP8x5Pb2NKSkqZ39/SpUtNwFy+fLlpmp7fvilTppgNGjQwP//8czMhIcH84IMPzJCQEPOVV15x3lPb2qhEpwpcfPHF5t13312mrH379uZjjz1WQxFVzqmJjsPhMKOjo83nn3/eWZafn2+Gh4ebb775pmmappmenm7a7XZzwYIFznsOHTpk2mw2c/HixdUWe0WkpKSYgLly5UrTNL2vfaUiIiLM//73v17TvqysLLNNmzbm0qVLzX79+jkTHW9o3zPPPGN269btjNe8oX2PPvqo2adPn7Ne94Y2nmr8+PFmq1atTIfD4RXtu+6668yxY8eWKRs2bJg5YsQI0zRr5+9QQ1duVlhYyPr16xk4cGCZ8oEDB7JmzZoaiso9EhISSE5OLtM2f39/+vXr52zb+vXrKSoqKnNPTEwMnTt3rnXtz8jIAKB+/fqA97WvpKSEBQsWkJOTQ69evbymfffddx/XXXcdV155ZZlyb2nf7t27iYmJITY2lltvvZV9+/YB3tG+Tz/9lPj4eP74xz8SGRlJ9+7deeutt5zXvaGNv1dYWMj//vc/xo4di2EYXtG+Pn36sGzZMnbt2gXAL7/8wnfffce1114L1M7focfvjFzbHD9+nJKSktMOFY2Kijrt8FFPUxr/mdqWmJjovMfPz4+IiIjT7qlN7TdNk4kTJ9KnTx86d+4MeE/7tmzZQq9evcjPzyckJISPP/6Yjh07Ov8C8eT2LViwgA0bNrB27drTrnnD769nz568/fbbtG3blqNHjzJlyhR69+7Ntm3bvKJ9+/btY8aMGUycOJEnnniCn3/+mQcffBB/f39GjRrlFW38vU8++YT09HTGjBkDeMd/o48++igZGRm0b98eHx8fSkpK+Mc//sFtt90G1M42KtGpIoZhlHltmuZpZZ6qMm2rbe2///772bx5M999991p1zy9fe3atWPTpk2kp6ezaNEiRo8ezcqVK53XPbV9SUlJjB8/niVLlhAQEHDW+zy1fQDXXHON83mXLl3o1asXrVq1Yt68eVxyySWAZ7fP4XAQHx/Pc889B0D37t3Ztm0bM2bMYNSoUc77PLmNvzdr1iyuueYaYmJiypR7cvsWLlzI//73P+bPn0+nTp3YtGkTEyZMICYmhtGjRzvvq01t1NCVmzVs2BAfH5/TstKUlJTTMlxPU7r6o7y2RUdHU1hYSFpa2lnvqWkPPPAAn376KcuXL6dp06bOcm9pn5+fH61btyY+Pp6pU6fSrVs3/vWvf3l8+9avX09KSgo9evTA19cXX19fVq5cyauvvoqvr68zPk9t35kEBwfTpUsXdu/e7fG/P4DGjRvTsWPHMmUdOnTgwIEDgPf8PwiQmJjIN998wx133OEs84b2/fWvf+Wxxx7j1ltvpUuXLowcOZKHHnqIqVOnArWzjUp03MzPz48ePXqwdOnSMuVLly6ld+/eNRSVe8TGxhIdHV2mbYWFhaxcudLZth49emC328vcc+TIEbZu3Vrj7TdNk/vvv5+PPvqIb7/9ltjY2DLXPb19Z2OaJgUFBR7fviuuuIItW7awadMm5yM+Pp7hw4ezadMm4uLiPLp9Z1JQUMCOHTto3Lixx//+AC699NLTtnTYtWuX8xBmb2hjqTlz5hAZGcl1113nLPOG9uXm5mKzlU0dfHx8nMvLa2Ub3T69WZzLy2fNmmVu377dnDBhghkcHGzu37+/pkM7p6ysLHPjxo3mxo0bTcCcPn26uXHjRufS+Oeff94MDw83P/roI3PLli3mbbfddsZlg02bNjW/+eYbc8OGDebll19eK5ZG3nPPPWZ4eLi5YsWKMss/c3Nznfd4cvtM0zQff/xxc9WqVWZCQoK5efNm84knnjBtNpu5ZMkS0zQ9v32n+v2qK9P0/Pb95S9/MVesWGHu27fP/PHHH83BgweboaGhzr87PL19P//8s+nr62v+4x//MHfv3m2+++67ZlBQkPm///3PeY+nt9E0TbOkpMRs3ry5+eijj552zdPbN3r0aLNJkybO5eUfffSR2bBhQ/ORRx5x3lPb2qhEp4q8/vrrZosWLUw/Pz/zwgsvdC5hru2WL19uAqc9Ro8ebZqmtXTwmWeeMaOjo01/f3/zsssuM7ds2VKmjry8PPP+++8369evbwYGBpqDBw82Dxw4UAOtKetM7QLMOXPmOO/x5PaZpmmOHTvW+d9do0aNzCuuuMKZ5Jim57fvVKcmOp7evtL9Rux2uxkTE2MOGzbM3LZtm/O6p7fPNE3zs88+Mzt37mz6+/ub7du3N2fOnFnmuje08euvvzYBc+fOnadd8/T2ZWZmmuPHjzebN29uBgQEmHFxceaTTz5pFhQUOO+pbW00TNM03d9PJCIiIlLzNEdHREREvJYSHREREfFaSnRERETEaynREREREa+lREdERES8lhIdERER8VpKdERERMRrKdERETmFYRh88sknNR2GiLiBEh0RqVXGjBmDYRinPQYNGlTToYmIB/Kt6QBERE41aNAg5syZU6bM39+/hqIREU+mHh0RqXX8/f2Jjo4u84iIiACsYaUZM2ZwzTXXEBgYSGxsLB988EGZ92/ZsoXLL7+cwMBAGjRowJ133kl2dnaZe2bPnk2nTp3w9/encePG3H///WWuHz9+nBtvvJGgoCDatGnDp59+WrWNFpEqoURHRDzOU089xR/+8Ad++eUXRowYwW233caOHTsAyM3NZdCgQURERLB27Vo++OADvvnmmzKJzIwZM7jvvvu488472bJlC59++imtW7cu8xnPPvssN998M5s3b+baa69l+PDhpKamVms7RcQNquSoUBGRSho9erTp4+NjBgcHl3lMnjzZNE3rFPq77767zHt69uxp3nPPPaZpmubMmTPNiIgIMzs723n9iy++MG02m5mcnGyapmnGxMSYTz755FljAMy//e1vztfZ2dmmYRjmV1995bZ2ikj10BwdEal1BgwYwIwZM8qU1a9f3/m8V69eZa716tWLTZs2AbBjxw66detGcHCw8/qll16Kw+Fg586dGIbB4cOHueKKK8qNoWvXrs7nwcHBhIaGkpKSUtkmiUgNUaIjIrVOcHDwaUNJ52IYBgCmaTqfn+mewMDACtVnt9tPe6/D4TivmESk5mmOjoh4nB9//PG01+3btwegY8eObNq0iZycHOf177//HpvNRtu2bQkNDaVly5YsW7asWmMWkZqhHh0RqXUKCgpITk4uU+br60vDhg0B+OCDD4iPj6dPnz68++67/Pzzz8yaNQuA4cOH88wzzzB69GgmTZrEsWPHeOCBBxg5ciRRUVEATJo0ibvvvpvIyEiuueYasrKy+P7773nggQeqt6EiUuWU6IhIrbN48WIaN25cpqxdu3b8+uuvgLUiasGCBdx7771ER0fz7rvv0rFjRwCCgoL4+uuvGT9+PBdddBFBQUH84Q9/YPr06c66Ro8eTX5+Pi+//DIPP/wwDRs25Kabbqq+BopItTFM0zRrOggRkYoyDIOPP/6YoUOH1nQoIuIBNEdHREREvJYSHREREfFamqMjIh5Fo+0icj7UoyMiIiJeS4mOiIiIeC0lOiIiIuK1lOiIiIiI11KiIyIiIl5LiY6IiIh4LSU6IiIi4rWU6IiIiIjXUqIjIiIiXuv/AXY+m4awdqVSAAAAAElFTkSuQmCC\n" }, + "metadata": {}, "output_type": "display_data" } ], @@ -283,10 +441,11 @@ " plt.figure()\n", " plt.xlabel('Epoch')\n", " plt.ylabel('Mean Square Error [Thousand Dollars$^2$]')\n", - " plt.plot(hist['epoch'], hist['mean_squared_error'], label='Train Error')\n", - " plt.plot(hist['epoch'], hist['val_mean_squared_error'], label = 'Val Error')\n", + " plt.plot(hist['epoch'], hist['mse'], label='Train Error')\n", + " plt.plot(hist['epoch'], hist['val_mse'], label='Val Error')\n", " plt.legend()\n", - " plt.ylim([0,50])\n", + " plt.ylim([0, 50])\n", + "\n", "\n", "plot_history()" ] @@ -303,19 +462,23 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": { "colab": {}, "colab_type": "code", - "id": "" + "id": "", + "ExecuteTime": { + "end_time": "2024-01-03T13:20:31.305582Z", + "start_time": "2024-01-03T13:20:31.062570Z" + } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "102/102 [==============================] - 0s 44us/step\n", - "Root Mean Square Error on test set: 4.244\n" + "4/4 [==============================] - 0s 4ms/step - loss: 14.5977 - mae: 2.5741 - mse: 14.5977\n", + "Root Mean Square Error on test set: 3.821\n" ] } ], @@ -347,8 +510,13 @@ }, { "cell_type": "code", - "execution_count": 12, - "metadata": {}, + "execution_count": 14, + "metadata": { + "ExecuteTime": { + "end_time": "2024-01-03T13:21:00.073163Z", + "start_time": "2024-01-03T13:21:00.038827Z" + } + }, "outputs": [], "source": [ "# Set common constants\n", @@ -372,13 +540,26 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": { "colab": {}, "colab_type": "code", - "id": "" + "id": "", + "ExecuteTime": { + "end_time": "2024-01-03T13:21:22.549666Z", + "start_time": "2024-01-03T13:21:18.299887Z" + } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n", + "11490434/11490434 [==============================] - 3s 0us/step\n" + ] + } + ], "source": [ "(train_images, train_labels), (test_images, test_labels) = keras.datasets.mnist.load_data()\n", "\n", @@ -399,19 +580,25 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": { "colab": {}, "colab_type": "code", - "id": "" + "id": "", + "ExecuteTime": { + "end_time": "2024-01-03T13:21:33.677891Z", + "start_time": "2024-01-03T13:21:32.626401Z" + } }, "outputs": [], "source": [ - "def preprocess_images(imgs): # should work for both a single image and multiple images\n", + "def preprocess_images(imgs): # should work for both a single image and multiple images\n", " sample_img = imgs if len(imgs.shape) == 2 else imgs[0]\n", - " assert sample_img.shape in [(28, 28, 1), (28, 28)], sample_img.shape # make sure images are 28x28 and single-channel (grayscale)\n", + " assert sample_img.shape in [(28, 28, 1),\n", + " (28, 28)], sample_img.shape # make sure images are 28x28 and single-channel (grayscale)\n", " return imgs / 255.0\n", "\n", + "\n", "train_images = preprocess_images(train_images)\n", "test_images = preprocess_images(test_images)" ] @@ -428,28 +615,30 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "metadata": { "colab": {}, "colab_type": "code", - "id": "" + "id": "", + "ExecuteTime": { + "end_time": "2024-01-03T13:21:43.238803Z", + "start_time": "2024-01-03T13:21:42.856163Z" + } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAACACAYAAAAI2m2oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEcJJREFUeJzt3Xu0jdW7wPFn2uUeYktEnMogZZBrEUlCHQpdOAO5dowS+4xIooshNaQ0fuUySvm5ldtwyKFG2jm5NMitXMcvl05bDLmHohLm+YNmc75Ze6+991rrXWvN7+efntnzrnc/etut2TtvSmstAAAAvioSdgEAAABhojMEAAC8RmcIAAB4jc4QAADwGp0hAADgNTpDAADAa3SGAACA1+gMAQAAr9EZAgAAXqMzBAAAvHZFfi7OzMzUNWrUiFMpyEtOTo4cPXpUxeJePMtwxfJZivA8w8bvZvrgWaaXTZs2HdVaV8zrunx1hmrUqCEbN24seFUolEaNGsXsXjzLcMXyWYrwPMPG72b64FmmF6XU3miuY5gMAAB4jc4QAADwGp0hAADgNTpDAADAa3SGAACA1+gMAQAAr9EZAgAAXqMzBAAAvEZnCAAAeI3OEAAA8BqdIQAA4LV8nU0GJKtNmzaZeOLEiU5uxowZJu7Vq5eTGzRokIkbNGgQp+oAAMmMN0MAAMBrdIYAAIDX0nKY7Pz58yY+efJkVJ8JDq2cOXPGxDt37nRykyZNMvHQoUOd3Jw5c0xcvHhxJzd8+HATv/TSS1HVhcvbvHmz027Tpo2JT5065eSUUiaeOXOmk1u8eLGJjx8/HssSEbLly5c77e7du5t45cqVTq5WrVoJqQmRjRkzxmm/+OKLJtZaO7kVK1aY+K677oprXfADb4YAAIDX6AwBAACv0RkCAABeS+o5Qz/88IOJz5496+TWrFlj4i+//NLJnThxwsQLFiwodB3VqlVz2vZy7EWLFjm5q666ysT16tVzcoxtF8769etN/NBDDzk5e26YPUdIRKRMmTImLlq0qJM7evSoideuXevkGjZsGPFz6WLVqlUmPnbsmJPr3LlzosuJqQ0bNjjtRo0ahVQJIpk+fbqJx44d6+QyMjJMbM8DFfn77zhQWLwZAgAAXqMzBAAAvJZUw2TffPON027durWJo10iHyv2K9rgks9SpUqZ2F6uKyJSpUoVE1999dVOjuW7ebO3NBAR+frrr03co0cPEx84cCDqe9asWdPEw4YNc3Jdu3Y1cfPmzZ2c/dxHjBgR9c9LJfYS5d27dzu5VBwmu3Dhgom///57J2cPuweXaiMce/fuNfHvv/8eYiV+W7dunYlnzZplYnsYXURk+/btEe8xfvx4E9vfgyIiq1evNnHPnj2dXNOmTfNXbJzwZggAAHiNzhAAAPAanSEAAOC1pJozVL16daedmZlp4ljMGQqOTdpzer744gsnZy+lDo5xIn4GDBjgtGfPnl3oe9on2v/yyy9Ozt7uwJ4/IyKybdu2Qv/sZDdjxgwTN2vWLMRKYuPHH3808ZQpU5yc/Xtcu3bthNWEv3z++edO++233454rf2Mli5d6uQqVaoU28I8M2/ePKedlZVl4iNHjpg4OLeuVatWJra3JRH5+9FUNvs+wc/NnTs374ITgDdDAADAa3SGAACA15JqmKx8+fJO+/XXXzfxkiVLnNxtt91m4sGDB0e8Z/369U0cfEVrL5EPLhnM7fUtYssexgq+Do+0BNp+XSsi0qFDBxMHX9fayzztf29Ech8q9WH5tb0UPR30798/Ys7eYgGJY58Q0Lt3byd36tSpiJ975plnTBycQoG8nTt3zmnbO7I//vjjTu706dMmtqcOvPDCC851d955p4mDWyE8+uijJl62bFnEupJ1J3jeDAEAAK/RGQIAAF6jMwQAALyWVHOGgjp16mRi+2gOEfd0+K1btzq5999/38T2/BF7jlDQrbfe6rSDy3IRO5s3b3babdq0MXFwDoF9OvX9999v4jlz5jjX2cviX3nlFSdnzyOpWLGik6tXr95lf5aIyMcff2xi+1gQEZEGDRpIKgr+rhw6dCikSuLjxIkTEXP33ntvAivBn+ztG3I7Ric4D/Cxxx6LV0le+OCDD5x2v379Il7btm1bE9vL7suUKRPxM8Hl+bnNE6pWrZqJe/XqFfG6MPFmCAAAeI3OEAAA8FpSD5PZcntdV7Zs2Yg5e8isW7duTq5IEfqCibJr1y4Tjxs3zsnZu4sHh7EqV65sYvv1aunSpZ3r7KX1dlwYZ86cMfEbb7zh5GKxM3YYPvnkE6f966+/hlRJbASH+XJyciJee91118W5Goj8fYfhqVOnmjgjI8PJlStXzsTPP/98fAvzgP3P8NVXX3Vy9jSAgQMHOrkxY8aYOLfvWltwOkJu7K1qgv+NTxb0BgAAgNfoDAEAAK/RGQIAAF5LmTlDuRk1apTTto93sJdcB4/jsJcTIraCW7XbWxzYS9ZF3DHqmTNnOjl76/Yw57fs27cvtJ8dSzt37oyYu+WWWxJYSWwEj145ePCgiWvVquXk7O04EFv2XK0uXbpE/blBgwaZOLh9CvI2evRop23PEypWrJiTa9eunYlfe+01J1eiRInL3v+3335z2p999pmJ9+7d6+Ts44uCx3g8+OCDl71/MuHNEAAA8BqdIQAA4LW0GCYL7iz93nvvmdjeKTh4Uu/dd99t4uBJuvbSw+DOxMhbcMfm4NCYbfHixSa2T0xGYjVu3DjsEgx7J/JPP/3Uydk769qv7YOCS7XtZdyILfsZbdu2LeJ199xzj9POysqKW03pyt5lffLkyU7O/q6yh8VERD766KOo7r9nzx4Td+/e3clt3Lgx4uceeeQREw8bNiyqn5VMeDMEAAC8RmcIAAB4LS2GyYJuvPFGE0+fPt3Effr0ca6zVy4FVzGdPn3axMEDA+1dkXF5Tz/9tNO2VxoED2RMlqExu8b85NLF8ePHC/S5LVu2OO0LFy6YePny5U5u//79Jj579qyJP/zww4j3CK50adq0qYmDK2b++OMPEweHvhFb9rDL8OHDI17XokULE9uHtorkfnoALs/+vTly5EjE6+xdn0VEDh8+bOJp06Y5OXuqwo4dO0z8888/O9fZw3DBExx69Ohh4twORU9WvBkCAABeozMEAAC8RmcIAAB4LS3nDNk6d+5s4ptuusnJDRkyxMTB3amfe+45Ewd32hw5cqSJOQn7L0uXLjXx5s2bnZw91vzAAw8krKb8CG6hYLfr16+f6HLiIjj/xv4zDhgwwMkFT72OJDhnyJ5fdeWVVzq5kiVLmvjmm282cd++fZ3rGjZsaOLgHLNKlSqZuGrVqk7O3qW8du3aeZWOfLB3mRaJfqfpG264wcT2s0PBFC1a1MTXXHONk7PnBdWoUcPJRbtFjP2dFjzB/sCBAybOzMx0ch07dozq/smKN0MAAMBrdIYAAIDX0n6YzFa3bl2nPX/+fBMvWbLEyfXu3dvE77zzjpPbvXu3ibOzs2NYYWqzhyjs5Z8i7uvcrl27JqymoOABssFDfm32brljx46NV0kJFdyxtnr16iZes2ZNge55/fXXO237UMY6deo4udtvv71AP8M2ZcoUE9vDAiLukAxiK3i4Z0ZGRlSfy23ZPfLP3kk9uKt0hw4dTHzs2DEnZ08TCR6can/flS9f3sTdunVzrrOHyYK5VMebIQAA4DU6QwAAwGt0hgAAgNe8mjMUZI+99uzZ08n179/fxPYW/yIiq1atMvGKFSucXHAZMC4qXry4iRN9nIk9T2jMmDFObty4cSauVq2ak7O3XihdunScqgvXs88+G3YJ+RY84sP28MMPJ7CS9GdvkbFs2bKoPhPcOqNWrVoxrQl/sY+mEcn9eI5o2d9vK1eudHL28vx0m5/HmyEAAOA1OkMAAMBrXg2Tbd261WkvWLDAxBs2bHBywaExm71cuGXLljGqLr0lctfp4O7X9lDYvHnznJy9xHThwoXxLQxx16lTp7BLSCtt27Y18U8//RTxOnu4JngyPVKLvUVKbrvys7QeAAAgjdAZAgAAXqMzBAAAvJaWc4Z27txp4gkTJpg4OCfk4MGDUd3viivcf0z20vAiRehP/sk+rdyORdxt4996662Y/+w333zTxC+//LKTO3nypIl79Ojh5GbOnBnzWoB0cfToURPndvzGwIEDTZyu21D4ol27dmGXEAq+yQEAgNfoDAEAAK+l7DCZPcQ1e/ZsJzdx4kQT5+TkFOj+jRs3NvHIkSOdXCKXiacSe9llcEmm/bwGDx7s5Pr27WviChUqOLmvvvrKxLNmzTLxli1bnOv27dtnYvskdhGR9u3bm/jJJ5+M/AdAytu9e7eJ77jjjhArSU19+vRx2vZw9/nz5yN+rlmzZnGrCYkV7U7j6YY3QwAAwGt0hgAAgNfoDAEAAK8l9ZyhQ4cOmXjHjh1O7qmnnjLxt99+W6D721vIDxs2zMnZxzSwfL7wzp07Z+JJkyY5OftYlLJlyzq5Xbt2RXV/e85C69atndzo0aOjrhOp7cKFC2GXkHLs42uys7OdnD33r1ixYk7Onn9XqVKlOFWHRPvuu+/CLiEUfMsDAACv0RkCAABeC32Y7Pjx4yYeMGCAk7Nf3xb01V3z5s1NPGTIECdn77RZokSJAt0ff7GXMjdp0sTJrV+/PuLn7GX39tBoUGZmpomDJybHY1drpJ61a9eauHfv3uEVkkJOnDhh4tx+/6pUqeK0x48fH7eaEJ4WLVqYOHiSQDrjzRAAAPAanSEAAOA1OkMAAMBrCZkztG7dOhOPGzfOyW3YsMHE+/fvL9D9S5Ys6bTt4x7sozRKlSpVoPsjOlWrVjXxwoULndy7775r4uCp8rnJysoy8RNPPGHimjVrFqREAEAu6tata+Lgf2ftubvBebwVK1aMb2FxxpshAADgNTpDAADAawkZJlu0aNFl47zUqVPHxB07dnRyGRkZJh46dKiTK1euXH5LRIxVrlzZaY8aNeqyMZBf9913n4nnz58fYiXpoXbt2iYOnj6/evXqRJeDJDJixAin3a9fv4i5iRMnmtj+7k4VvBkCAABeozMEAAC8RmcIAAB4LSFzhsaOHXvZGADyyz5mgyM3Cu/aa6818cqVK0OsBMmmS5cuTnvu3Lkmzs7OdnL2XNBp06Y5uVTY1oY3QwAAwGt0hgAAgNdCP7UeAAAknzJlyjhteysL+3QHEZHJkyebOLh9SiostefNEAAA8BqdIQAA4DU6QwAAwGvMGQIAAHmy5xBNmDDByQXbqYY3QwAAwGt0hgAAgNeU1jr6i5U6IiJ741cO8lBda10xFjfiWYYuZs9ShOeZBPjdTB88y/QS1fPMV2cIAAAg3TBMBgAAvEZnCAAAeM2LzpBSKkcptU0ptVkptTHselA4Sqn2SqmdSqk9SqnhYdeDwlFKZSilvlFKLQ27FhScUuqfSqnDSqntYdeCwlNKZSmltiuldiil/ivseuLNi87QJXdrretrrRuFXQgKTimVISKTROQ+EakjIv+hlEr+g2+QmywR+VfYRaDQpotI+7CLQOEppW4VkcdFpImI1BORDkqpmuFWFV8+dYaQHpqIyB6t9f9prc+KyFwReTDkmlBASqmqIvLvIvJ+2LWgcLTWq0TkeNh1ICZuFpGvtNZntNbnRGSliHQOuaa48qUzpEXkM6XUJqXUf4ZdDArlOhHZZ7X3X/p7SE3/EJFhInIh7EIAGNtFpKVSqoJSqqSI3C8i1UKuKa58OY6judb6gFLqGhHJVkp9e+n/YpB61GX+HvtDpCClVAcROay13qSUahV2PQAu0lr/Syn1mohki8gvIrJFRM6FW1V8efFmSGt94NJfD4vIIrk41ILUtF/c/0OpKiIHQqoFhdNcRB5QSuXIxeHO1kqpD8ItCYCIiNZ6qta6gda6pVwc/twddk3xlPadIaVUKaXUVX/GItJWLr4CRGraICI1lVL/ppQqKiLdROR/Qq4JBaC1fk5rXVVrXUMuPsf/1Vr3CLksACJyaSRFlFLXi0gXEZkTbkXx5cMwWSURWaSUErn4552ttf403JJQUFrrc0qpp0RkmYhkiMg/tdY7Qi4L8J5Sao6ItBKRTKXUfhF5SWs9NdyqUAj/rZSqICJ/iMhArfVPYRcUTxzHAQAAvJb2w2QAAAC5oTMEAAC8RmcIAAB4jc4QAADwGp0hAADgNTpDAADAa3SGAACA1+gMAQAAr/0/K6G76lqqJooAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxsAAACtCAYAAADYpWI8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAW/klEQVR4nO3de3BV1RXH8XVJ5GFIQhGaJhAiVSaoUGgSG4mlKqShKAhKK7SAgOLQlgoMIlVT2wzEF62dGjFtsY4EKIrDCIyPaRqYymNQiMFo6rQYWoHQgBCQJCDlkdz+JfWctSWHy9059+Z+PzP+sX+zc7PQbZLFybo7EAwGgwIAAAAAYdbJ7wIAAAAAdEw0GwAAAACsoNkAAAAAYAXNBgAAAAAraDYAAAAAWEGzAQAAAMAKmg0AAAAAVtBsAAAAALAi3sum1tZWqa+vl8TERAkEArZrQpQIBoPS3NwsaWlp0qmTvb6V8weT9jp/IpxBaJw/+I3vwfDTxZw/T81GfX29pKenh6U4dDx1dXXSt29fa6/P+cOF2D5/IpxBfDnOH/zG92D4ycv589RsJCYmnn/BpKSkS68MHUJTU5Okp6efPx+2cP5g0l7nT4QzCI3zB7/xPRh+upjz56nZ+PyxWVJSEgcNiu3Hqpw/XEh7PNbnDOLLcP7gN74Hw09ezh8D4gAAAACsoNkAAAAAYAXNBgAAAAAraDYAAAAAWEGzAQAAAMAKmg0AAAAAVtBsAAAAALCCZgMAAACAFTQbAAAAAKyg2QAAAABgBc0GAAAAACtoNgAAAABYQbMBAAAAwAqaDQAAAABW0GwAAAAAsCLe7wIAXLqqqiqVLV261LEuKytTe6ZNm6ay+++/X2VZWVmXUB0AAIhVPNkAAAAAYAXNBgAAAAAraDYAAAAAWEGzAQAAAMAKBsS/oKWlRWWNjY0hv557QPezzz5Te3bv3q2y5557TmULFixwrF966SW1p2vXrip76KGHVParX/1KF4uoUV1drbL8/HyVNTU1OdaBQEDtWbFihco2bNigsmPHjl1EhUD4bdq0ybGePHmy2rN582aVZWZmWqsJ0a+4uFhlv/zlL1UWDAYd67feekvtuemmm8JWF9CR8GQDAAAAgBU0GwAAAACsoNkAAAAAYAXNBgAAAAAron5AfP/+/So7c+aMyrZv366ybdu2OdbHjx9Xe9auXRt6cR6kp6erzHSD87p16xzrxMREtWfIkCEqY2Atuu3cuVNlEyZMUJnpjQzcA+FJSUlqT+fOnVXW0NCgsrffftuxzs7O9vRaMNuyZYvKjh49qrI77rijPcqJCpWVlY51Tk6OT5UgWi1fvlxlTz75pMri4uJU5n4DGdMbbgAw48kGAAAAACtoNgAAAABYQbMBAAAAwIqomtl47733VDZixAiVXcpFfDaZfg/UdKFQQkKCytwXWKWlpak9X/nKV1TGhVaRy33J465du9SeKVOmqKy+vj6kzzdgwACVLVy4UGUTJ05U2Y033uhYm87tI488ElJdsch0IVhtba3KYnVmo7W1VWUff/yxY22a13NfvAZ80b59+1R2+vRpHypBJNqxY4fKVq5cqTLTzN3f//73Nl//6aefVpnpZ7mtW7eqbOrUqY51bm5um58vkvBkAwAAAIAVNBsAAAAArKDZAAAAAGAFzQYAAAAAK6JqQDwjI0NlvXr1UpntAXHTYI5pOPtvf/ubY2269Mw99IPYMWvWLMd69erVVj9fVVWVyk6cOKEy00WQ7oHmmpqasNUVi8rKylSWl5fnQyWR6eDBgypbtmyZY2362jlw4EBrNSH6bNy40bEuKSnx9HGmc/T666871ikpKaEXhoiwZs0ax3ru3Llqz5EjR1RmeiOKm2++WWXuC3IXLFjgqS7T67tf6+WXX/b0WpGCJxsAAAAArKDZAAAAAGAFzQYAAAAAK2g2AAAAAFgRVQPiPXv2VNmvf/1rlb322msq++Y3v6myOXPmtPk5hw4dqjL30JmI+dZv942SXofT0PGYhrPdA4debz82DaKNGTNGZe5hNNNNpab/L7y82QE3NV8a0w3Z+L+ZM2e2uWfAgAHtUAmixbZt21Q2ffp0x7qpqcnTaz344IMqM71BDSLTuXPnVFZZWamy++67z7E+efKk2mN6w5RHH31UZd/+9rdV5r6d/q677lJ7ysvLVWaSk5PjaV+k4skGAAAAACtoNgAAAABYQbMBAAAAwAqaDQAAAABWRNWAuMn48eNVNmLECJUlJiaq7IMPPnCs//SnP6k9phsfTcPgJoMGDXKs3TfgomOqrq5WWX5+vsrcw4qBQEDtufXWW1X20ksvqcx9w7eIyGOPPeZYm4Zue/furbIhQ4aozF3bG2+8ofbs2rVLZVlZWSqLNe6vMyIin3zyiQ+VRI/jx4+3uee73/2u/UIQNcrKylRWX1/f5seZ3nDj7rvvDkdJ8MmqVatUdu+997b5cQUFBSpz3zIuIpKUlOSpDvfHeh0GT09PV9m0adM8fWyk4skGAAAAACtoNgAAAABYQbMBAAAAwAqaDQAAAABWRP2AuInX4Z3k5OQ295iGxidNmqSyTp3o22LRRx99pLIlS5aorLGxUWXu4ezU1FS1xzQU1r17d5WZbhA3ZeHy2Wefqew3v/mNylavXm2thmjx5ptvquzUqVM+VBKZTMPye/fubfPj+vTpY6EaRIOGhgaVvfDCCyqLi4tzrHv06KH2/OIXvwhbXWh/pv9+jz/+uMpMb8Aye/Zsx7q4uFjt8frzpIn7TVq8KikpUZnpzVyiCT8hAwAAALCCZgMAAACAFTQbAAAAAKzokDMbXhUVFTnWVVVVao/psrSNGzeqzHQZDDqW06dPq8x06aPpwjvT732uWLHCsc7JyVF7oul3++vq6vwuISLt3r3b077rrrvOciWRyfT/0KFDh1SWmZnpWJsuakXHY5rfufPOO0N6rfvvv19lpkuAEZkWLVqkMtN8RpcuXVQ2atQolT311FOOdbdu3TzV8d///ldlf/3rX1W2b98+xzoYDKo9jz76qMrGjRvnqY5owpMNAAAAAFbQbAAAAACwgmYDAAAAgBU0GwAAAACsiOkB8YSEBMf6+eefV3uysrJUdt9996nslltuUZl74Nd9gYyI+aIZRKZdu3apzDQMbrJhwwaV3XTTTZdcEzqO66+/3u8SLklTU5PK/vKXvzjWq1atUntMg5Um7su7TBe0oeNxnyERkZqaGk8fO3LkSMd67ty5YakJ7eP48eOOdWlpqdpj+hnKNAy+fv36kGrYs2ePyiZPnqyyd999t83X+sEPfqCyhQsXhlRXtOHJBgAAAAAraDYAAAAAWEGzAQAAAMAKmg0AAAAAVsT0gLjbVVddpbLly5erbMaMGSpz3wZtyk6ePKn23H333SpLTU29UJnwyfz581VmuhH05ptvVlm0D4Ob/pyh7MGXO3bsWNhe6/3331dZa2uryjZt2uRYHzhwQO05c+aMyv785z97en33jby5ublqj+m237Nnz6rM/YYb6HhMQ7wPPfSQp48dPny4ysrKyhzr5OTkkOqCP9xfe44cOeLp40pKSlR2+PBhlb344ouOtemNXD788EOVNTc3q8w0qN6pk/Pv86dMmaL2uN+oqKPiyQYAAAAAK2g2AAAAAFhBswEAAADACpoNAAAAAFYwIN6GO+64Q2VXX321yh544AGVbdy40bF++OGH1Z59+/aprLCwUGV9+vS5YJ0Iv9dff92xrq6uVntMQ2G33367rZJ84/5zmv7cQ4cObadqoot7SFrE/O9v1qxZKnv88cdD+pymAXHTAP9ll13mWF9++eVqzzXXXKOye+65R2XZ2dkqc79ZQkpKitrTt29flZ06dUplAwcOVBmi2969ex3rO++8M+TX+vrXv64y03lD9OjcubNj/dWvflXtMQ1+X3nllSozfc31wvSzV1JSksrq6+tV1qtXL8d67NixIdXQEfBkAwAAAIAVNBsAAAAArKDZAAAAAGAFzQYAAAAAKxgQD8HgwYNV9sorr6jstddec6ynT5+u9vzhD39QWW1trcoqKiouokKEg3tI1XSTsmlgbeLEidZqCrfTp0+rrKioqM2PGzlypMqefPLJcJTU4ZSWlqosIyNDZdu3bw/b5+zXr5/Kxo0bp7Jrr73Wsb7hhhvCVoPJsmXLVGYa8DQN+6LjeeqppxzruLi4kF/L603jiB49evRwrE03zI8ZM0ZlR48eVZnpjX3cXxNNP6P17NlTZZMmTVKZaUDctC9W8WQDAAAAgBU0GwAAAACsoNkAAAAAYAUzG2Hi/t1CEZGpU6c61jNnzlR7zp49q7ItW7ao7K233nKs3ZdlwR9du3ZVWWpqqg+VtM00n1FcXKyyJUuWqCw9Pd2xNl1i2b1790uoLrb8/Oc/97sEX2zatMnTvu9///uWK0F7M12KWl5eHtJrmS5OzczMDOm1ED1yc3NVduTIEauf0/Tz2ObNm1VmujSQ2bP/48kGAAAAACtoNgAAAABYQbMBAAAAwAqaDQAAAABWMCAegg8++EBla9euVVllZaVjbRoGN3FftCUi8p3vfMdjdWhPpkHFSOEeyDQNfq9Zs0ZlpsvfXn311bDVBbRl/PjxfpeAMCsoKFDZp59+2ubHmYaCy8rKwlIT0Bb35b4i5mFwU8alfv/Hkw0AAAAAVtBsAAAAALCCZgMAAACAFTQbAAAAAKxgQPwLdu/erbJnn31WZaZh2UOHDoX0OePj9X8C0w3UnTrRF7a3YDB4wbWIyPr161X2zDPP2CrpS/32t79V2eLFix3rxsZGtWfKlCkqW7FiRfgKAwARaWhoUFlcXFybHzd79myVde/ePSw1AW0ZNWqU3yV0CPwECwAAAMAKmg0AAAAAVtBsAAAAALCCZgMAAACAFTEzIG4a4F69erVjvXTpUrVn7969Yavh+uuvV1lhYaHKIvlW6ljivhHUdEOo6VzNmTNHZffcc4/KrrjiCsf6nXfeUXtWrlypsvfff19ldXV1KsvIyHCsv/e976k9P/3pT1UG+K22tlZlw4YN86EShGLGjBkqM73BRktLS5uvlZeXF5aagFCUl5f7XUKHwJMNAAAAAFbQbAAAAACwgmYDAAAAgBVRP7PxySefqOzDDz9U2c9+9jOV/fOf/wxbHbm5uSpbuHChYz1u3Di1h8v6otu5c+dU9txzz6ls7dq1KktOTnasP/roo5DrMP1e84gRIxzrRYsWhfz6QHtqbW31uwR4VF1drbKKigqVmWbeunTp4libZshSUlJCLw64RP/617/8LqFD4CddAAAAAFbQbAAAAACwgmYDAAAAgBU0GwAAAACsiOgB8WPHjjnWs2bNUntMw2nhHOi58cYbVfbAAw+obNSoUSrr1q1b2OpA+3NfIvatb31L7dm5c6en1zJd/md6cwO3Xr16qWzSpEkqe+aZZzzVAUSDt99+W2XTp09v/0LQpuPHj6vMy9c2EZG0tDTH+umnnw5HSUDYDB8+XGWmCypxYTzZAAAAAGAFzQYAAAAAK2g2AAAAAFhBswEAAADACl8GxHfs2KGyJUuWqKyystKxPnDgQFjruPzyyx3rOXPmqD2FhYUqS0hICGsdiEx9+/Z1rF999VW1549//KPKFi9eHNLnmzt3rsp+8pOfqGzAgAEhvT4AAPBu8ODBKjN9Dza9MZE76927d/gKizI82QAAAABgBc0GAAAAACtoNgAAAABYQbMBAAAAwApfBsTXrVvnKfPi2muvVdnYsWNVFhcXp7IFCxY41j169AipBsSG1NRUlRUVFXnKAIiMHj1aZa+88ooPlSBcBg4cqLK8vDyVbd26tT3KAax75JFHVHbvvfe2uW/p0qVqj+ln2I6IJxsAAAAArKDZAAAAAGAFzQYAAAAAK2g2AAAAAFgRCAaDwbY2NTU1SXJysjQ2NkpSUlJ71IUo0F7ngvMHk/Y8F5xBuHH+4De+B/ujqalJZXfddZfKKioqHOsJEyaoPS+++KLKEhISLqG69nMx54InGwAAAACsoNkAAAAAYAXNBgAAAAArfLnUDwAAAIg2pvkE0+WkhYWFjnVpaanaY7oEuCNe9MeTDQAAAABW0GwAAAAAsIJmAwAAAIAVNBsAAAAArGBAHAAAAAiRaWj82WefveA6lvBkAwAAAIAVNBsAAAAArKDZAAAAAGCFp5mNYDAoIiJNTU1Wi0F0+fw8fH4+bOH8waS9zt8XPwdnEJ/j/MFvfA+Gny7m/HlqNpqbm0VEJD09/RLKQkfV3NwsycnJVl9fhPMHM9vn7/PPIcIZhMb5g9/4Hgw/eTl/gaCHlqS1tVXq6+slMTFRAoFA2ApEdAsGg9Lc3CxpaWnSqZO938jj/MGkvc6fCGcQGucPfuN7MPx0MefPU7MBAAAAABeLAXEAAAAAVtBsAAAAALCCZgMAAACAFTQbAAAAAKyg2fCgqKhIAoGA45+vfe1rfpeFGFRaWir9+/eXrl27SnZ2tmzdutXvkhCDnnjiCQkEAjJv3jy/S0GM2LJli4wdO1bS0tIkEAjI+vXr/S4JMaa5uVnmzZsnGRkZ0q1bN8nLy5PKykq/y4oKNBseXXfddXLw4MHz/9TU1PhdEmLMmjVrZN68eVJYWCjvvfeeDB8+XEaPHi379+/3uzTEkMrKSlm2bJl84xvf8LsUxJCTJ0/KkCFDZOnSpX6Xghg1c+ZMqaiokJUrV0pNTY0UFBRIfn6+/Oc///G7tIjHW996UFRUJOvXr5fq6mq/S0EMy83NlaysLPn9739/Prvmmmtk/Pjx8sQTT/hYGWLFiRMnJCsrS0pLS6W4uFiGDh0qv/vd7/wuCzEmEAjIunXrZPz48X6Xghhx6tQpSUxMlA0bNshtt912Ph86dKiMGTNGiouLfawu8vFkw6Pa2lpJS0uT/v37y6RJk+Tf//633yUhhpw5c0aqqqqkoKDAkRcUFMj27dt9qgqxZvbs2XLbbbdJfn6+36UAQLs5d+6ctLS0SNeuXR15t27dZNu2bT5VFT1oNjzIzc2VFStWSHl5uTz//PNy6NAhycvLk6NHj/pdGmJEQ0ODtLS0SEpKiiNPSUmRQ4cO+VQVYsnLL78su3bt4ikagJiTmJgow4YNk8WLF0t9fb20tLTIqlWrZMeOHXLw4EG/y4t4NBsejB49WiZMmCCDBw+W/Px8eeONN0REpKyszOfKEGsCgYBjHQwGVQaEW11dncydO1dWrVql/mYPAGLBypUrJRgMSp8+faRLly5SUlIiP/rRjyQuLs7v0iIezUYIEhISZPDgwVJbW+t3KYgRvXr1kri4OPUU4/Dhw+ppBxBuVVVVcvjwYcnOzpb4+HiJj4+XzZs3S0lJicTHx0tLS4vfJQKAVVdddZVs3rxZTpw4IXV1dbJz5045e/as9O/f3+/SIh7NRghOnz4t//jHPyQ1NdXvUhAjOnfuLNnZ2VJRUeHIKyoqJC8vz6eqECtGjhwpNTU1Ul1dff6fnJwcmTx5slRXV/M3ewBiRkJCgqSmpsqnn34q5eXlMm7cOL9LinjxfhcQDRYsWCBjx46Vfv36yeHDh6W4uFiamppk2rRpfpeGGDJ//nyZOnWq5OTkyLBhw2TZsmWyf/9++fGPf+x3aejgEhMTZdCgQY4sISFBrrjiCpUDNpw4cUL27Nlzfv3xxx9LdXW19OzZU/r16+djZYgV5eXlEgwGJTMzU/bs2SMPPvigZGZmyowZM/wuLeLRbHhw4MAB+eEPfygNDQ3Su3dvueGGG+Sdd96RjIwMv0tDDJk4caIcPXpUFi1aJAcPHpRBgwbJm2++yTkE0OG9++67csstt5xfz58/X0REpk2bJsuXL/epKsSSxsZGefjhh+XAgQPSs2dPmTBhgjz22GNy2WWX+V1axOOeDQAAAABWMLMBAAAAwAqaDQAAAABW0GwAAAAAsIJmAwAAAIAVNBsAAAAArKDZAAAAAGAFzQYAAAAAK2g2AAAAAFhBswEAAADACpoNAAAAAFbQbAAAAACwgmYDAAAAgBX/A1qPf/+y2ADaAAAAAElFTkSuQmCC\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ - "plt.figure(figsize=(10,2))\n", + "plt.figure(figsize=(10, 2))\n", "for i in range(5):\n", - " plt.subplot(1,5,i+1)\n", + " plt.subplot(1, 5, i + 1)\n", " plt.xticks([])\n", " plt.yticks([])\n", " plt.grid(False)\n", @@ -471,11 +660,15 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, "metadata": { "colab": {}, "colab_type": "code", - "id": "" + "id": "", + "ExecuteTime": { + "end_time": "2024-01-03T13:21:56.511870Z", + "start_time": "2024-01-03T13:21:56.241965Z" + } }, "outputs": [], "source": [ @@ -514,15 +707,19 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 20, "metadata": { "colab": {}, "colab_type": "code", - "id": "" + "id": "", + "ExecuteTime": { + "end_time": "2024-01-03T13:22:35.015738Z", + "start_time": "2024-01-03T13:22:33.880583Z" + } }, "outputs": [], "source": [ - "model.compile(optimizer=tf.train.AdamOptimizer(), \n", + "model.compile(optimizer=\"Adam\",\n", " loss='sparse_categorical_crossentropy',\n", " metrics=['accuracy'])" ] @@ -547,11 +744,15 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 21, "metadata": { "colab": {}, "colab_type": "code", - "id": "" + "id": "", + "ExecuteTime": { + "end_time": "2024-01-03T13:30:52.407147Z", + "start_time": "2024-01-03T13:22:46.940431Z" + } }, "outputs": [ { @@ -559,15 +760,15 @@ "output_type": "stream", "text": [ "Epoch 1/5\n", - "60000/60000 [==============================] - 7s 121us/step - loss: 0.1953 - acc: 0.9410\n", + "1875/1875 [==============================] - 103s 54ms/step - loss: 0.1892 - accuracy: 0.9434\n", "Epoch 2/5\n", - "60000/60000 [==============================] - 6s 100us/step - loss: 0.0842 - acc: 0.9753\n", + "1875/1875 [==============================] - 100s 53ms/step - loss: 0.0788 - accuracy: 0.9761\n", "Epoch 3/5\n", - "60000/60000 [==============================] - 6s 96us/step - loss: 0.0642 - acc: 0.9810\n", + "1875/1875 [==============================] - 93s 50ms/step - loss: 0.0610 - accuracy: 0.9815\n", "Epoch 4/5\n", - "60000/60000 [==============================] - 6s 94us/step - loss: 0.0526 - acc: 0.9835\n", + "1875/1875 [==============================] - 93s 50ms/step - loss: 0.0514 - accuracy: 0.9842\n", "Epoch 5/5\n", - "60000/60000 [==============================] - 6s 94us/step - loss: 0.0443 - acc: 0.9861\n" + "1875/1875 [==============================] - 95s 51ms/step - loss: 0.0423 - accuracy: 0.9870\n" ] } ], @@ -599,11 +800,15 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 22, "metadata": { "colab": {}, "colab_type": "code", - "id": "" + "id": "", + "ExecuteTime": { + "end_time": "2024-01-03T13:34:48.169916Z", + "start_time": "2024-01-03T13:34:44.960914Z" + } }, "outputs": [ { @@ -611,8 +816,8 @@ "output_type": "stream", "text": [ "(10000, 28, 28, 1)\n", - "10000/10000 [==============================] - 1s 50us/step\n", - "Test accuracy: 0.9913\n" + "313/313 [==============================] - 3s 7ms/step - loss: 0.0281 - accuracy: 0.9912\n", + "Test accuracy: 0.9911999702453613\n" ] } ], @@ -649,19 +854,24 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 23, "metadata": { "colab": {}, "colab_type": "code", "id": "" }, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/1 [==============================] - 0s 19ms/step\n" + ] + }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAFoCAIAAABIUN0GAAAgAElEQVR4AezBC1RU5eI34N/77r1nBmHU1FIcRMkIxrylkWgaiJejSVCZoscLKlSWlSigCXkrEwUMtcyOpZmlXLqoHS01S5C8gGR2VAYkEQYVU1FAbjOz9/t+a+21Zq1xZSZ/P7NW+3kIpRQajUbTHIwxaDSa20MopdBoNJrmYIxBo9HcHkIphUaj0TQHYwwajeb2EEopNBqNpjkYY9BoNLeHUEqh0Wg0zcEYg0ajuT2EUgqNRqNpDsYYNBrN7SGUUmg0Gk1zMMag0WhuD6GUQqPRaJqDMQaNRnN7CKUUGo1G0xyMMWg0mttDKKXQaDSa5mCMQaPR3B5CKYVGo9E0B2MMGo3m9hBKKTQajaY5GGPQaDS3h1BKodFoNM3BGINGo7k9hFIKjUajaQ7GGDQaze0hlFJoNBpNczDGoNFobg+hlKKZOnToYLPZrl69iruBEOLp6VlXV1dbWwuNRnM3MMbwRx566KHGxsbS0lL8xn333ccYu3z5Mv5K7r33XgCXLl3CLZAkqU+fPqWlpZcuXcL1CCEmk6mmpubatWu4ZS1btjQajefPn+ec408nSZLJZDp37pzD4cDt6datW8+ePS9cuNCqVav//e9/Z86cwf9Jy5YtjUbj+fPnOee4AwghHTt2vHbtWm1tLe4SQilFc3To0OGHH344efLk008/zRjDn87f33/v3r3btm175ZVXOOfQaDR/OsYYbuqhhx7av3//tWvX/Pz8bDYbXBiNxkOHDl27di0oKMhut+OvwWAwHDhwgFI6YMCAxsZG/JHo6Oj333//888/HzduHK4XEBCwc+fO9evXJyQkcM5xCwghK1eujIiICAkJKSwsxJ9u0qRJ77777syZMzdu3Ij/K0EQ5s6d+9prrxmNRqiuXr2anJyckpKiKAqagxCycuXKiIiIkJCQwsJC3AH+/v7ff//91q1bX375Zc457gZCKUVzGI1Gq9W6f//+8PBw3A0mk6moqCgzMzM6OhoajeZuYIzhpoxG44ULF1q0aBETE7Nq1Sq4kCSprKyssrLykUcewV+JxWKRJMnPz09RFPyR4cOH7969W1GUwMDAgoICuPD397dYLMuWLZs3bx5u2cqVK2fOnOnt7V1RUYE/3bhx49LT06dMmfLxxx/j/8Td3X3evHmJiYmXLl3auHEjY4xSOmXKlHvvvXfJkiXLli2rr69Hc6xcuXLmzJne3t4VFRW4A0wm06lTpzIyMqKionCXEEopmsNoNJaXl+fm5oaHh+NuMJlMFoslKysrOjoaGo3mbmCM4aaMRqPVam3dunVTU1PPnj1LSkrgJEnSmTNnKisrAwIC8FdSWFgoiqLZbFYUBX8kKCgoOzubc37y5Mm+ffva7XY4+fv7WyyWpKSkhIQE3LK0tLSYmBhvb++Kigr86SIiIjIyMiIjIzdt2oT/kxkzZrz77rtHjhwJCgpqbGyEys3NLScnJyAg4OWXX16zZg2aIy0tLSYmxtvbu6KiAneAyWQqLi7OzMyMiorCXUIopWgOo9FYXl6em5sbHh6Ou8FkMlkslqysrOjoaGg0mruBMYabMhqNVqv17NmzZrP58OHDQUFBiqJAJUnSmTNnKisrAwIC8FdSWFgoiqLZbFYUBX8kKCgoOzv7+PHjPXr0WLp0aWJiIpz8/f0tFktSUlJCQgJuWVpaWkxMjLe3d0VFBf50ERERGRkZkZGRmzZtQvPpdLqSkpKOHTs++uijP/30E1w8/PDD+fn558+f9/X1tdvtuGVpaWkxMTHe3t4VFRW4A0wmU3FxcWZmZlRUFO4SQilFcxiNxvLy8tzc3PDwcACiKD777LMtWrTIyMh44YUXwsLC7HZ7Q0PDokWLfv75Zzh169YtIiLis88+i4mJ6dSpE6X01KlTCQkJNTU1cGrZsuVzzz135MiR3NxczjlUBoNh8uTJVVVV27Ztc3Nzmzlz5vDhw/v373/+/HmLxWK1WufOnVtdXQ3g0UcfnTlz5scff7xnzx5oNJo7iTGGmzIajVarNTc3t7CwcO7cuTExMatWrYJKkqQzZ85UVlYGBATARe/evRcuXOjh4aHT6bZv37569WpZlqFq0aLF1KlTrVbrzp07GWNQSZI0fvx4QsiWLVscDgchZOjQod27d1+/fn1oaGhUVJQsy7/++uusWbOqqqoASJIUHx8/fPhwh8NRW1u7bNmygQMHnjhxYu/evZxzAIWFhaIoms1mRVHwR4KCgrKzs+fOnRseHt6vX7/AwMCCggKo/P39LRZLUlJSQkICnAgho0ePfuGFFxhjlNK0tLSvv/4aACGkV69ey5Yte/DBB318fPbu3Qtg9erVO3fu9PDwmDx58i+//LJ7927OuYeHR2JiYlNT0/Lly5uamiilo0ePNhqNGRkZDQ0NUImi+Prrrz/xxBM1NTUNDQ0LFy48duwYnERRHDNmTIsWLdLT06dPnx4eHm6z2fLz85OTk0eOHJmRkREZGblp0yaoJEmaOXNmaWnpf//7X4fDgZvq1avXjz/+uGfPnrCwMFmW4UIUxe3btw8fPvyRRx75+eefCSEDBw4MDAxct25dTU0NnB566KFx48a99957Fy5c6NWr17Jlyx588EEfH5+9e/cCWL169c6dOxljDz300Lhx4zIzM2fNmuXt7U0pLS4unjdvXk1NDZxatmz5/PPP5+fn5+bmcs6hMhgMkZGRVVVVW7dudXNzi4mJGT58+IABA86dO2exWKxW65w5c6qrqwE8+uijs2bN2rhx4+7du3GHEUopmsNoNJaXl+fm5oaHhwOglBYVFbVr1666urpz585wMXHixPT0dKgWLFiwcOFCzjkhBE6NjY2DBw8+cuQIVL6+vsePH//yyy///e9/w8nd3f38+fOnT5/u27ev0WjcuXPngAED4HT+/PkBAwZUVFS0atXq+PHjJpOppqamd+/eVqsVGo3mjmGM4aaMRqPVas3NzR07duzRo0d9fHx69uxZUlICQJKkM2fOVFZWBgQEwCkuLi4lJQUuSktLQ0NDLRYLgLZt2549e7agoGDQoEFwopRWVFRQSr29vR0OB4AdO3YMGzasuLi4R48eUFVVVfXv37+kpKR169YnTpwwmUxw4pwD+Prrr0NDQ6EqLCwURdFsNiuKgj8SFBSUnZ0dFxe3c+fOY8eOlZSU9O3b1263A/D397dYLElJSQkJCXDatWvXv/71L7jYtWvXpEmTLl++PHbs2C1btgiCAKclS5bMnz/fZDL98ssvP/7448CBAwF06NDh3Llzsiy3bt26sbFREIRTp07dc889nTt3vnbtGgB3d/fjx4/7+PjAxZw5c1JSUqCilBYXF997773V1dWdO3eGqrCwcNCgQcOGDcvIyIiMjNy0aRNU8fHxycnJ//vf/x555BGHw4GbWr58+Zw5cyZMmLBlyxb8xvjx47ds2ZKamhofHw/go48+mjJlir+/f3FxMZwWLly4aNGiZ555ZuvWrWPHjt2yZYsgCHBasmTJ/PnzASxcuHDRokWcc0IInBobG4ODg/Pz86Hy9fU9efLkF198MX78eDi5u7tfuHDh9OnTDz/8sNFo/OabbwYMGACn8+fPBwYGVlRUtGrV6uTJkyaTqaamplevXuXl5biTCKUUzWE0GsvLy3Nzc8PDw6HKy8t75JFHAKxdu3bRokU2my0oKOjzzz//6quvxo4dC9WSJUvmzZtXX18/e/bszMxMAJMmTVqxYkVjY+P48eN3794NwGQyWSyWrKys6OhoOBkMhvLy8hMnTgwZMgSAIAj333//jz/++OWXX77yyitNTU0OhwOATqd7//33J02a9O233z7zzDNNTU3QaDR3DGMMN2U0Gq1Wa25ublhYWL9+/Q4cOHD48OGgoCBFUSRJOnPmTGVlZUBAAABK6euvv7548WKLxfLqq6/m5eXp9frVq1ePHz/+q6++Cg8PB2A0Gq1Wa25ublhYGFwUFhaKomg2mxVFAZCenh4REUEI2blz54wZM65cudLU1ORwOHx9fXfu3Onr65uWlvbWW2/ZbLZBgwatXr36gQce2LVr1xNPPME5B1BYWCiKotlsVhQFfyQoKCg7OzsuLm7FihWzZs16++23ly5dmpiYCMDf399isSQlJSUkJABwc3Pbtm3b8OHD9+7dO2PGjMrKyk6dOm3evLl3795z585NTk4G4ObmlpKSMmPGDLPZbLVaGxsbOecAvv/++z59+nTp0qW6uvqpp57aunWrLMuDBg06fPhw586dT506lZ6ePmXKFABeXl67d+/u1q3b2rVrFyxYYLPZ+vXrt3r1arPZvHDhwiVLljDGABQUFPTt2xfAe++9t3DhQpvN1tDQoChKRERERkZGZGTkpk2bAMTHxycnJx88eDA4ONjhcOCPpKSkxMXF9ezZ8/jx4/iNHj16/O9//0tNTY2PjweQlpYWExPj7e1dUVEBp9jY2NTU1ODg4JycHABubm4pKSkzZswwm81Wq7WxsZFzDuCtt95KSEior6+fPXt2eno6gMmTJ7/99tuNjY0RERG7d+8GYDKZiouLMzMzo6Ki4GQwGCoqKk6cODF48GAAgiDcf//9P/300xdffPHyyy83NTU5HA4AOp1u3bp1kyZN2rNnz9NPP93U1IQ7iVBK0RxGo7G8vDw3Nzc8PBwApfTcuXP33Xffyy+/vHbtWjidOHGic+fOXbt2vXjxIoA33ngjMTHxhRde+PDDD+E0bdq0Dz74YN26dS+++CIAk8lksViysrKio6PhZDAYysvLT5w4MWTIEKhMJpPFYsnKyoqOjoYLg8HQq1cvi8VSW1sLjUZzJzHGcFNGo9Fqtebm5oaFhQFYtmzZ3LlzY2JiVq1aJUnSmTNnKisrAwICAIiieObMmXvuucfPz+/cuXNQubm5HTx48KGHHurdu3dhYaHRaLRarbm5uWFhYXBRWFgoiqLZbFYUBUB6evq4cePy8/MDAwM553CaPn362rVrV61aFRMTA6fevXsXFBR8++23I0eOhKqwsFAURbPZrCgK/khQUFB2dnZcXNyKFStEUdy/f/+jjz4aGBhYUFDg7+9vsViSkpISEhIA+Pr6FhUVFRYW9urVizEGlY+PT1FR0aVLl7p27Wqz2QCkpaXFxMR4e3tXVFTAKTY2NjU19cknn9yxY8fatWufe+45QRAWLFjw5ptvvvDCC++///6kSZM+/fRTABMnTvzkk08++uijadOmwclkMhUXF9fU1HTp0sXhcAAoKCjo27fvRx99NG3aNLiIiIjIyMiIjIzctGlTfHx8cnLywYMHg4ODHQ4HbsHSpUvnzZtnNpuLiorwG/7+/haLJSkpKSEhAUBaWlpMTIy3t3dFRQWcYmNjU1NTg4ODc3JyoEpLS4uJifH29q6oqIDTG2+8MX/+/Oeff/6DDz6AU1RU1Icffvif//xn+vTpAEwmU3FxcWZmZlRUFJwMBkNFRcWJEycGDx4MlclkKi4uzszMjIqKggs3N7eePXtaLJba2lrcYYRSiuYwGo3l5eW5ubnh4eFQ5eXldenSpVOnTna7HU7p6emjRo3q0qXLlStXAMTGxiYnJ4eEhOTk5MBJkqTTp08bDAaz2VxVVWUymSwWS1ZWVnR0NJwMBkN5efmJEyeGDBkClclkslgsWVlZ0dHR0Gg0dwNjDDdlNBqtVmtubm5YWBgAg8Fw9OhRHx+fnj17lpWVnTlzprKyMiAgAMDkyZM//vjjK1eulJaWwkWnTp3at2/fr1+//Px8o9FotVpzc3PDwsLgorCwUBRFs9msKAohZM+ePUOHDh0zZsznn38OJ51O98MPP/Tp08fHx6eiogJObdu2LSsr27Fjx/jx46EqLCwURdFsNiuKgj8SFBSUnZ0dFxe3YsUKAP7+/seOHSspKenbt+/9999vsViSkpISEhIIIevWrYuOjrZarRcvXoSLHj161NXVdenSpa6uDkBaWlpMTIy3t3dFRQWcunfvfvTo0XfffXfOnDklJSUAjEZjSUlJ//79P/vssyeffNLHx6eyslIUxb179w4aNKhHjx6FhYVwsW7duueee+7pp5/etm2bKIpnzpwxmUy9evU6fvw4XERERGRkZEydOrVv374vv/zywYMHg4ODHQ4Hbs2aNWteeumlwMDAvLw8/EZgYOChQ4fWrl370ksvAUhLS4uJifH29q6oqIBTbGxsampqcHBwTk4OVGlpaTExMd7e3hUVFXCKjY1NTU0NDg7OycmBkyRJpaWlbm5ufn5+VVVVJpOpuLg4MzMzKioKTgaDoaKi4sSJE4MHD4bKZDIVFxdnZmZGRUXhLiGUUjSH0WgsLy/Pzc0NDw+HKi8vz9PTs2vXrg6HA06bN28ODQ318fG5cuUKgNjY2OTk5JCQkJycHLj45ptvBg8e/OCDD1qtVpPJZLFYsrKyoqOj4WQwGMrLy0+cODFkyBCoTCaTxWLJysqKjo6GRqO5GxhjuCmj0Wi1WnNzc8PCwqDq16/fgQMHDh8+PHTo0F9++aWysjIgIABAXFxcSkoKbqS0tDQkJKS8vNxoNFqt1tzc3LCwMLgoLCwURdFsNiuKAmD37t2DBw/29/cvLS2FkyRJ5eXlBoPB09PTZrPBqW3btmVlZTt27Bg/fjxUhYWFoiiazWZFUfBHgoKCsrOz4+LiVqxYAVVsbGxqaurSpUs/+eQTi8WSlJSUkJAAYPv27WFhYbiRbdu2jRs3zmazAUhLS4uJifH29q6oqICTKIolJSWKojz77LP5+fnr1q1r3779iBEjHn744UOHDv3yyy/9+/cHIAjCqVOn2qvq6+vhYtasWW+//XZMTMyqVasEQSguLr7vvvs6duxYV1cHFxERERkZGdnZ2cHBwQDef//9F198EbdsyZIliYmJ0dHR69evx29MmzZt/fr1S5cuTUxMBJCWlhYTE+Pt7V1RUQGn2NjY1NTU4ODgnJwcqNLS0mJiYry9vSsqKuAUGxubmpoaHByck5MDF7t37x48eLCvr295ebnJZCouLs7MzIyKioKTwWCoqKg4ceLE4MGDoTKZTMXFxZmZmVFRUbhLCKUUzWE0GsvLy3Nzc8PDw6HKy8vz9PTs2rWrw+GA0+bNm0NDQ318fK5cuQIgNjY2OTk5JCQkJycHToSQn3/+2dfXt3v37qdPn/by8rJYLFlZWVFRUXAyGAxWq/XkyZODBw+GysvLy2KxZGVlRUVFQaPR3A2MMdyU0Wi0Wq25ublhYWFwWrZs2dy5c+Pi4mbNmlVZWRkQEAAgJiYmLS0tNTU1ISEB11MUhTEGwGg0VlRU/PDDD6GhoXBRVFQkiqKfn5+iKADS09NDQ0O7dOlSVVUFJ4PBUFZWds8997Rv3766uhpObdu2LSsr27Fjx/jx46EqLCwURdFsNiuKgj8SFBSUnZ0dFxe3YsUKqERR3L9/f//+/SdOnPjpp58mJSUlJCQQQjZv3jx+/PjQ0NA9e/bgerIsc86hWrVq1auvvtq5c2er1QoXa9eujYqKWr9+/fTp05988kmTyfT+++9/+OGH0dHRCxYsePPNNwHodLri4mIvLy+TyXTx4kW4WLZs2dy5c2NjY99++20AR44c8fT09PHxcTgccDFu3Lj09HQABw8erKmpGTly5MyZM1evXo1b4+vra7FYjh49OmDAAFmW4UIUxYMHD/bp08dsNpeUlABYtWrVq6++2rlzZ6vVCqf4+Pjk5OSQkJB9+/ZBtWrVqldffbVz585WqxVOsbGxqampwcHBOTk5cCKEHD9+3NfXt1u3bqdPn/by8iouLs7MzJw2bRqcDAbD2bNnT5w4ERwcDJWXl1dxcXFmZua0adNwlxBKKZrDaDSWl5fn5uaGh4dDlZeX5+np2bVrV4fDAafNmzeHhob6+PhcuXIFQGxsbHJy8qhRo3bt2gWnbt26FRQUfPfdd2FhYZzzXr165efnf//990888QTnHKrAwMD9+/eXlZV169ZNlmUAvXr1ys/P//7775944gnOOTQazZ+OMYabMhqNVqs1Nzc3LCwMTgaD4ejRo/fff/+1a9fKysoCAgIAtGvX7syZM7/88ktAQIAsy3Dq1auXn59fVlYWAC8vr19++aW0tLR79+6MMai6dOlSWFjY2Njo7e1dX18PID09PTQ0tEuXLlVVVXCRlJT02muvPfvss1988QWc2rdvX1ZWtm3btvHjx0NVWFgoiqLZbFYUBX8kKCgoOzs7Li5uxYoVcPL39z927NilS5e8vLySkpISEhIADBs2bM+ePe+9996MGTPg4sknn6yqqjp48CAAQkhmZuaYMWMGDBhw6NAhuHjqqae2bt1aW1vLOe/SpUurVq1OnTrV1NTUsmXL/v37Hz58GKrXXnstKSkpKipqw4YNcBJF8ciRIw888ICPj8/ly5cBHDlyxNPT08fHx+FwwEVCQsJbb711+PDhxx9/nFK6f//+Rx999Jlnntm6dStugV6v//HHH/39/YcOHZqdnQ0XwcHBe/fuLS4u7tOnj81mI4RkZmaOGTNmwIABhw4dgtPOnTufeOKJqVOnbty4EQAhJDMzc8yYMQMGDDh06BCc4uLiUlJSRo4cuWvXLjh169bt6NGj3333XWhoKOe8d+/eR44c+e6770aOHMk5hyowMPCHH34oKyvz9/eXZRlA7969jxw58t13340cOZJzjruBUErRHEajsby8PDc3Nzw8HKq8vDxPT8+uXbs6HA44bd68OTQ01MfH58qVKwBWrlz5yiuv7Nu3b+rUqRUVFQB8fHw++uijQYMGLViw4K233gIgCEJhYaGHh4fZbK6trSWEDB069NNPP23Xrt2RI0f69+/POQcgCEJhYaGHh4fZbK6trYWKEDJhwoSVK1cuXbp05cqVjDFoNJo7hjGGmzIajVarNTc3NywsDC769et3+PBhAAUFBQEBAQAopbm5uQMGDEhOTn7jjTfq6+sBPP74459++qmnp2efPn2OHz8O4MCBA7169fL39z979iyAwMDATZs2+fr6VlRUdO3a1eFwAEhPTw8NDe3SpUtVVRVcjBgx4uuvvy4tLZ0wYUJeXh6Ali1bLl++fPr06YcOHXrsscc45wAKCwtFUTSbzYqi4I8EBQVlZ2fHxcWtWLECLmJjY1NTUwEkJSUlJCQAaNu2bVlZmZubW2RkZHp6OmNMEITIyMgPPvjAarV27969vr4eQGRk5MaNG+fMmZOSkgIXbdq0OXPmTMuWLffu3Tts2DBBEH766acePXqcP3/ex8fHbrdD9eijjx46dOjChQvjx4/fv38/AHd394ULF8bHxx88eHDQoEGMMQBHjhzx9PT08fFxOBxwERERkZGRMX369P/85z8A2rZte/jw4c6dO4eEhPzwww+4BePGjUtPTy8sLJw0adLRo0eh6tOnz6effmo2m//973+np6dDFRkZuXHjxjlz5qSkpAC45557Vq5cOXnyZACjRo36+uuvoYqMjNy4ceOcOXNSUlLgtGrVqldffXXfvn1TpkyxWq0AfHx8Nm7c+Pjjj8+fP3/JkiUABEEoKiry8PDw8/Orra0lhAwdOnTLli3t2rXLz88PDAzknAMQBKGoqMjDw8PPz6+2thYqQsjEiRNXrVq1ZMmSlStXMsZwJxFKKZrDaDRardb9+/eHh4dDlZ+f37FjRx8fH4fDAactW7aEhoZ26dLlypUrAGJjY5OTkwFUVVVt27YNwLPPPtuqVatFixYlJSXJsgzVu+++++KLLx47dqygoOCee+55+umnZVlWFCU/Pz8kJARO77777osvvnjs2LG8vLysrKzs7Ow2bdoUFxe3adOmqampZ8+ep0+fhkajuWMYY7gpo9F49uzZ/fv3P/nkk7je8uXL58yZc/Lkye7du0Pl7u6+a9eugQMHnjhx4tChQy1btnz22Wc55+Hh4d988w3nHMDixYsXLFhQXFy8f/9+d3f3sWPHUkpramquXLni5+enKAqAjIyM0NDQzp07V1VVwQUhJDw8/IsvvmCMZWVl1dfXP/74435+fgAyMzPHjRsHlcVikSTJz89PURT8keDg4H379s2ZMyclJQUuRFHcv39///79U1NT4+PjofL399+3b1+HDh2+/fbbsrIyX1/f4ODg8vLy4ODgsrIyqLy8vE6fPg0gMzPz3Llzr7/+uqIoUO3bty84ODg+Pj41NRVASkpKXFzcp59+OmnSJDgRQkaOHLl9+3ZCyOeff37t2rXAwMDu3bsfOHDgX//6V319PVQFBQUdO3bs3Lmzw+GAi3HjxqWnp0+dOnXjxo1Q+fr6Hj58GMDw4cN//PFH/BFBEMaNG/fJJ584HI7MzMympiaDwRARESFJ0qRJkzIyMhRFgcrLy+v06dMAMjMzm5qaQkJCunbtWlNT06pVq8GDB2dnZ0Pl5eV1+vRpAJmZmefOnXv99dcVRYmLi0tJSQFw+fLlbdu2ARgzZkyrVq0WLly4dOlSWZahWrNmzUsvvXTs2LEjR47cc889zzzzjCzLiqLk5eUNHjwYTmvWrHnppZeOHTt2+PDhzMzM7OzsNm3alJSUtGnTpqmpqXv37qdPn8adRCilaA4PD489e/bk5+fHxMQAIIRkZGS0a9du5MiRdrsdTosXLx41atSwYcOuXr0KIDY2Njk5+eOPPx4xYkT79u0BnD9/fvXq1e+99159fT2cPD0933jjjcmTJ4uiCODAgQNr1qyZMWNGSUlJdHQ05xwqT0/PN954Y/LkyaIo/ve//x09ejQhZPbs2YsXL37vvfcSExObmpqg0WjuGMYYbsrDw2Pv3r15eXkzZ87E9Vq1anXs2LGysrIhQ4YwxqC6//774+Pjp0yZYjAYABQUFLz99tuZmZmMMahat269YMGC6dOnu7m5ATh27Ng777zz1FNPSZIUGhqqKAqAN954IzQ0dOjQoVeuXMH1BEGYPHnyK6+88vDDDwNobGz88LgOqbsAACAASURBVMMPBw4cuGPHjgULFgAghGzfvl2SpNDQUEVR8EceeeSRbdu2vfrqq19++SWu179//3379r355ptvvfUWnIKDg2NiYsLCwgghnPOtW7euWLHi4MGDcDFhwoTExESz2exwOIKCgg4dOgTVa6+9tmDBgpEjR+bk5AAIDQ3dunXriy+++OGHH8IFpXTs2LGxsbGPPPIIAJvNtnHjxuTk5NLSUqgIIZmZme3atRsxYoTdboeLoKCgrKysiRMnfvvtt3B67LHH9uzZM3ny5C+++AK3QBTFadOmxcTEmM1mqCwWy8qVKzds2CDLMlxMmDAhMTHRbDYDqK+vf++9906fPr1gwYLw8PCCggI4TZgwITEx0Ww2OxyOoKCgQ4cOxcbGpqamfvzxxyNGjGjfvj2A8+fPr1q1as2aNfX19XDy9PR88803IyMjRVEEcODAgXfffXfGjBklJSVRUVGcc6g8PT3ffPPNyMhIURS/+uqrZ555hhASFxe3ePHiNWvWJCQkNDU14U4ilFI0EyEEAOccKkopAMYYXBBCAHDOoYqNjU1OTg4JCTly5EibNm0IIZcvX25sbMSNtG3b1t3dXZblX3/9VVEUSikAxhiu17ZtWzc3t4sXL9rtdgBExVXQaDR3EmMMf4QQAoBzjt/Q6XSKCtdr3bp1y5YtGWOVlZWKouA3WrdubTQaAZw/f15RFEIIAM45VIQQAJxz/A5BEDw9PSmltbW11dXVhBAAnHOoCCEAOOe4BUTFVfgNURSZCi4IIe3atWvRokVTU9PFixc55/gNSZI8PT3r6uquXr3KOYeKUgqAMQYVIYRSyjlnjOE3BEHw9PSklNbW1lZXV+N6lFIAjDFcjxACFeccLkRRVBSFc45bJklShw4dABBCKisrHQ4HbkSSpA4dOgCora2tqakhKq6CC0mSPD096+rqrl69yjmPjY1NTU0NDg4+cuRImzZtCCGXL19ubGzEjbRt29bd3V2W5V9//VVRFEopAMYYrte2bVs3N7eLFy/a7XYARMVVuMMIpRR3XmxsbHJyckhISE5ODjQazd8cYwwazZ8uNjY2NTU1ODg4JycHf3+EUoo7LzY2Njk5OSQkJCcnBxqN5m+OMQaN5k8XGxubmpoaHByck5ODvz9CKcWdt3DhwgULFowePXrbtm3QaDR/c4wxaDR/ukWLFi1cuPDpp5/etm0b/v4IpRR3nqen55gxYzZs2FBXVweNRvM3xxiDRvOn8/T0HDt27Pr16+vq6vD3Ryil0Gg0muZgjEGj0dweQimFRqPRNAdjDBqN5vYQSik0Go2mORhj0Gg0t4dQSqHRaDTNwRiDRqO5PYRSCo1Go2kOxhg0Gs3tIZRSaDQaTXMwxqDRaG4PoZRCo9FomoMxBo1Gc3sIpRQajUbTHIwxaDSa20MopdBoNJrmYIxBo9HcHkIphUaj0TQHYwwajeb2EEopNBqNpjkYY9BoNLeHUEqh0Wg0zcEYg0ajuT2EUgqN5i+GUorrMcag+ctgjEGj0dweQimFRvMXQynF9Rhj0PxlMMag0WhuD6GUQqP5fYQQ/OmICk5chebjKgCUUtwUIQS/wTmHE+ccACEEN8I5B0AIwe3hnOPvgDGGW9a1d797vbraGutPHthjb2rE/1duxpZuHq2uXjjLOceNEEr9Ah5v2a5DU11t4cG9ssOOGyGU+gU83rJdh6a62sKDe2WHHb/RydyrvfcDVBR/+na7w94EF5TShwb96+yp41crz0KjuTWEUgqN5ndQSvGnIITgDuCcQ0UIwe8jKtwIYwwqQggAzjluhHMOFSEELjjnaA7GGP4OGGO4Bd0GDB31wjy/Rx+ngsg5r738a/7XGVnL4xVZxv8PgijOSz/QvnPXVdPDfjl6ENcjhDwy4tnhU2f79AiggsCZcuXXc4e2f7p15XzOGJwIIY+MeHb41Nk+PQKoIHCmXPn13KHtn25dOZ8zBhWhdOyc5JAJMyS9AcCZ40eyt6z9ae92W1ODIEoPPTZs8Pjp5gFDT/6wJ+25Jzhj0GhuAaGUQqP5HZRS/CkIIbgNVIXfIIRARSmFilIKF4IgACAq/AZXAeAqAIqiwAVjjHMOgDEGgKvggnOO5mCM4e+AMYY/Ymxz77K9vxhauB/bt7PytEXn1uLhkLC2ps47/5P0xYoE3LZ7O90/ZckH5v4hABaFP2y1HMP12nf2XfLNSc7x07dbL5094+bR8uFhT7W+13PLkpl7N62GU/vOvku+Ock5fvp266WzZ9w8Wj487KnW93puWTJz76bVUA18JnLaso3nT1uOffdVz6AnvPx64DdsDXVpz406dWQ/NJpbQyil0PxjEEJwCwghcCKEoPkIIWgOSilccBWciAoA5xwqQghUhBAAhBBKqSAIXEUIoZQSFaUUAKVUUAEQBIFSSggRVFBRSuGCc84Y4yrGGOdcURRZljnnigoAd1IUBQBjjHMOgKmgYozhRjjnUBFC4IIxhhvhnOOvhDGGmxJEKfaj3X6PBv9n1rj8r7Og0hlavLYlx9vce+XzoSdyd+P/ilDaOyRsWtJ691Ztrl44e08Hr8QR5srSIrjQGdwSMg54+fVMmRxSfGQ/VG4erRZu+7H1vZ4pU4ad/ukgAJ3BLSHjgJdfz9QpQ4vysqFy82i1cNuPre/1TJky7PRPBwVRXLLz5H1dfOc/0f386cLeIU+++v5Xp386JOr1jqYmN2Mrz65mAqROHWY59D00mltGKKXQ/GNQSnELCCG4PZRSNAelFC4IIXBBCIGKUgqVIAgACCGUUgCcc0qpIAiEEKoSRVGSJEEQRFGUnHQ6nSRJgiDodDpJkkRR1Ov1UBFC4IIxpiiK7MKuUhTFbrfL11MUhTGmKIosy4wxWZY551AxxgAwxjjnALgKAGMMKs45XHDOcSOMMfyVMMZwU+28uiTtPnX62KFlE4Lgolv/obEb9+R+9uHG15/HbZi0cM3Dw5/Zs2FF247eQya9kjjCXFlaBBcPPNw/IfNg3o6M/8weDxcDR0+dlrRhx9qlX6YlAnjg4f4JmQfzdmT8Z/Z4uBg4euq0pA071i79Mi2RELL4q2MdH3goLsi7+uL5fyeuGhr56ta0+f9du4QKYtzGb/37BX8QP/nQ9k+g0TQHoZRC849BKcUtIITg9lBK0RyUUrigKjgRFQCqAqDT6QBQSgVBACCKoiRJgiBIkqR3cnd3lyTJYDC4ubm5u7vrdDqDwaDT6URR1Ol0kiSJoigIAgBCCK4ny7KiKLIsK4oiy7Ldqb6+3m63OxwOu93eoHI4HIqi1NXVKYricDhsNpuiKA6HgzEGwOFwAGCMKYoCQFEUzjkAxhgAxpiiKHDBOceNMMbwV8IYw009NHB47IbdWcvjd61PhQudwS0lu/zX8pKlEY9B5fdoUPD46dnp7xfn56A5BFFUZHn07KWjps9LHGGuLC2Ci4Gjp05L2vBB3MRDX22GC2Obe1fsrzi277/vvTIGwMDRU6clbfggbuKhrzbDhbHNvSv2Vxzb99/3XhlDBeGJ5197ZtaSmksXrl295OXbvaG2+rVhvnXVVdOSNgwcPXXH+0u/fDsRv2PDKQ7NP8b2dxZvf2cRbg2hlELz90cpxY0QQuCCqwBQSnEjhBAAhBBKKW4BpRQA55wxBheUUrggKgCKogAgKqg45wAopQCICgCllBAClSiKlFLOuSiK1EmSJFEUKaWSJHl4eOj1eoPB4K4yGAwtWrTw8PAwGo16vd5gMLRo0cJgMAiCoFMBEEWRUgpAFEUAXAWAcw6VLMsAZFm22+0AFEVxOByKojQ2NiqKYrPZGhsbbTZbY2NjQ0NDU1NTXV1dk1NjY6PD4bDb7Y2NjbIsM8ZkWVYUhalkWVYUBQBjTFEUzrksy4wxqDjnADjnuB7nHC64CncPYww3FfpiwjOz3kqeNLgoLxvXm/tpdif/XrGPe9ka6lu2ve/NHceNbe+7duXS/FHda6suoplGz146avq8xBHmytIiuJiwYPWQia8kjuxWedoCF5QKS745Kend5g65nynKhAWrh0x8JXFkt8rTFrigVFjyzUlJ7zZ3yP1MUQCMiI4bE7cchJz8YffX65YX5WWPiI4fOyf56Ldb353xDH7fhlMcmn+M7e8s3v7OItwaQimF5u+PUoobIYTABSEEKkIIbkQQBKg457gFlFLcCKUULgghUFFKoSKEACCEUEoBEEIAEEIopQCICoCoEpwkSdLpdHq93mAwuKlatGjh7qJly5Zubm4Gg8HNzU2v10sqURQFQRBFURAEQggAqoITVwHgKgCyLAPgnDPGADDGZFlWFIUxpiiKLMsOh8NmsymK0tTUZLPZ6uvrG13U19c3NDQ0NTU1NDTYVHa73WazybKsKIosyw6HQ1ExxmRZVhSFcw5AURQAjDFFUeCCcw4XXIW7hzGG30cImZf+Q9eHAxeF96ko+hnXe2n1Z4+MePbtqBEncneLkn76yvSHhz71096t78eMlx12NNPo2UtHTZ+XOMJcWVoEJ0EUl+451aaDV3ywT/XFc3BBCHn9i/zO/r0XhPX6tezU0j2n2nTwig/2qb54Di4IIa9/kd/Zv/eCsF7nfymEStTpBVGyNdQB6DPs6ZfXfHn62OHlE4Nkux2/b8MpDs0/xvZ3Fm9/ZxFuDaGUQvP3QQjB7yMquKCUwgWllBACgBCCGyGEAOAq3AghBC4IIQAIIXAihAAQBAEqQghUlFJCCOecqABQFSGEUgpAEARKqSAIlFJRRSnV6XSSJOn1ejc3N52qRYsWHh4e7ioPDw83N7cWKjc3N71ebzAYJJUoipRSQRAopYQQSqkgCHAiKgCccwBcBYCrAHDOAXDOGWMAmBMhhHOuKApjTJZlxpgsyw6Hw2az2e12m1Ojym6319fXNzQ0NDY22my2urq6hoYGm81mt9sbGhrsdrvNZrPb7Q6HQ5ZlRVEYY7IsA2CMybLMGIMT5xwA5xwqzjlUnHPcDYwx3NT0tIzeQ8LiHu9UV12F642JXz7yuTmJI8yVpUUA9C3cvR7scfbUcVtDPZpv9Oylo6bPSxxhriwtgou5m3M6+fWY9VhHh60J15ueltF7SFjc453qqqvmbs7p5Ndj1mMdHbYmXG96WkbvIWFxj3eqq67C9e7vHThvc86VC2ffHP1oXXUVbmrDKQ7NP8b2dxZvf2cRbg2hlELz90EphQtCCFSccwCEEEopAKICQCmFihACF5RSNB9RASAquCCEACAqAIQQAIQQQRAAEEIEFQBRFKlKEASqElSSJImiSCnV6XR6vV7nZDAY3JwMBkOLFi3c3d3dVAaDQaeSJEkURUEQJEkCIAiCKIoAKKWEEACUUrggKgCccwCcc8YYVJxzOHHOFUUBwFUAOOcAGGOKogBQFIUxBkCWZcWF3W53OByyLDeq7Kq6urqGhob6+voGp2vXrtXX1zc1NdlstiaVw+FQVIwxWZYZY1DJsgwV5xwuGGO4Gxhj+H2EkPiPv/MPHLzoqYethcfgghDy8povew8JS40cZjn8PW7b6NlLR02flzjCXFlaBCcqiG/tsrQzdZkzuMvVX8/BBSFkwZcFXn4954/qftF6+q1dlnamLnMGd7n66zm4IIQs+LLAy6/n/FHdL5wphot2Xl1e/yxPZ3B7Y3TAhdJivVuL+7o8aG+sv3y2TJEd+I0Npzg0/xjb31m8/Z1FuDWEUgrN3welFC4IIVBRSgFQFQBCCFSUUgBEBReUUtwCSikhBE5EBYAQApUgCAAIIZRSAIIgUEoBiKIIgFIqiiIAQRBEUaSUCoIgupAkSRRFQRAMBoMkSTqdTpIknU5nUEmS5ObmZjAY9Hq9Tqdzc3PTqSRJ0uv1giCIKr1eTwgRVIQQAIQQQRDgglIKF1wFgHMOgHPOGIOKc47f4CoAnHMAnHPGGADGGOccAKVUUXHOZVnmnDPGZFlWVLLKZrPJstzY2Nigqq+vv3btWk1NTW1t7TWnRlVTU5PdbpdVnHMANpsNKs45XDDGcDcwxnBT/4qKjZibmhY98vj+Xbje658dvrfT/XHBnR1Njbhto2cvHTV9XuIIc2VpEVw8G7fsiefnLgzrVVH0P7iggrhsb4nisCeO7MYU5dm4ZU88P3dhWK+Kov/BBRXEZXtLFIc9cWQ3pihwMrh7JGYd7tjVnDp1mOXQ94+PiQ59MbGdVxcAX6bN37F2CX5jwykOzT/G9ncWb39nEW4NoZRC81dFCMH1KKVwQSklhAAQRREqQggASikhBIAgCFARQuCCUgoV5xwuKKVwQVRQCYJAVJRSqCiloihSSolKcCKEGAwGSqkgCKIoUkpFlSRJOp1OcqHT6SSVm5ubKIp6laTS6XSiKBoMBp1OJ6p0Op0oioIgEEJ0Oh1RSZJEKQVAVKIoAiCEQEUIwY1wzqHinAPgKgCcc6gYY3DBOYeKcw4VIQQAVwHgKqg450zFOWeMAWCMKYrCGJOdGhsbbTZbU1PTtWvXalVXr169cuVKdXX11atXa2pqGhoaGhsbHQ6H7MRUUHHOoeKcQ8U5x5+IMYab8gt4fO7mnG2rF3z17ptwYfBomZpTbj35U/LkEPz/MHr20lHT5yWOMFeWFsFF4JP/fn7F5o/nv5CTuQ4u2nb0Tvq2JG9H+vq5UwAEPvnv51ds/nj+CzmZ6+CibUfvpG9L8nakr587BU5UEOM2fuvfL/iD+MmHtn/Sydxr0dajDlvTwe2fdO3Vr5O5995P3klfMpNzDhcbTnFo/jG2v7N4+zuLcGsIpRSavyqiggtCCABCCKUUAKWUEAJAFEUARAWAUkoIAUApBUBUcEEIAUBUcEEIAUAIoZQCEASBEAJAUFFKOeeiKFJKBZUkSYIgSCpRFAVBEFWSJAmCIIqiJEmiKAqCoFMJgiBJkl6v1+l0er1eEARJknQ6nSRJokqn04miKEmSKIqCIAAQRVFwQQgBoNPpAFBKBUEAQCklhACglMIFUQFgjOF6nHMAnHOoGGNQcc4BKIqC63HO4UQIgRPnHC445wC4CgBjDABXAeCcQ2Wz2WSVzWZraGhobGysqamprq6+ePFiVVXVpUuXqqurr1y5cu3atQYV51xRFFmWGWNQcc7hgjGGPxFjDDd1b6euS3dbfi0rWfBkL6bIcOr35L9fWLH5hy8+2jBvGv5/GD176ajp8xJHmCtLi+DCt+9j89J/sBz+PjVyKOccTiOj54yZs/zrdcs/T30NgG/fx+al/2A5/H1q5FDOOZxGRs8ZM2f51+uWf576GpymJW0YOHrqjveXfvl2IiHkudRPAp+c8OGcKQe3fdzBx++tbwqP79+16oVQzjlcbDjFofnH2P7O4u3vLMKtIZRSaP6qiAouCCEABEEQRREApZQQAkAURagIIQCoCgClFCpCCFxQSgFQFVwQQgBQSkVRBCCKoiAIAPR6vSAIoihKkiQ6CYKg1+tFUZRUoijqdDrRhSRJer1eEARRFHU6nSRJgiDodDpRFAVB0Ol0lFJRFHU6HSFEcBJFUXACIEkSVKIoEkKgEkURACFEEAQAgiAQQvAbRAWAMQYXiqIwxgBwzqFijEHFOQegKAquxzmHEyEEKqqCE+ecMQYXnHO44JxDxRhTFEVWOVQNDQ319fU1NTWXVZcuXTp//vzly5erq6tra2sbGhpkWXY4HLIsQ8U5hwvGGP5EjDH8kedSP+kfNnH76oX/fe8txhQA7Ts/MGv9rlbt2ieNH2S1HANACAmKeO7ZuOWfr3gtJ2Md5xzNNHr20lHT5yWOMFeWFuF6MR983TNo5KaFL+ZkruOMAejk3zP+4+9khz1p/KBLFaVQxXzwdc+gkZsWvpiTuY4zBqCTf8/4j7+THfak8YMuVZRCNSI6fuyc5KPfbn13xjNQRSV//NhTk5eMCSz9Oa/viGdnrP6sYNfna2eO5ZxDo7kFhFIKzV8GpRQuCCFwIoQAEEURAKVUEAQAgiBQSgGIogiAEEIpBUBUACilUFFKoSKEAOCcAyAqAIQQURQFQQAgOOl0OkEQRFHU6XSiKOp0OkmSdL8hiqIkSXq9XlCJoigIgl6vFwRBdKKUiqIoCIIkSaIoUkoFFaVUUOl0OgCUUkEQAAiCQCkFIIoiAKICIIoipRQAIQQAIUQQBLgQBAEuGGOcczhxzqFijHHOASiKAoBzzhgDQAjB9RhjcEEphQtCCFSMMTSHLMsAGGOKosiyrCiKLMt2u72urq62trampuby5ctnz569cOHC+fPnL168WF1d3djYaLPZAMiyzBiDinMOF1yFO48xhj+ib+G+bE9Jq3s7VJYWlfz4g0ebex8aMEzfwj1zWdzuDSugan2fZ9LuU3p3D1tjfcJw/6u/nkUzjYlLGvn8a4kjzJWlRbhe6/s6Lt1dpG/hYbUcKztRcM99JnP/EElvWBc38fBXm+HU+r6OS3cX6Vt4WC3Hyk4U3HOfydw/RNIb1sVNPPzVZqj6/mv0jHc+L/05b9mEx2W7HQAhZMS0uDFzk38tKyk5eqDfExGiTv9WxIDSn/Og0dwaQimF5i+DUgoXhBCoBEGglAIQBAEApVQQBACCCoAgCAAIIYIgACCEQEUphYoQAoBSSggBQCkFQAgRBAEApVR0EgRBkiS9Xq/T6SRJ0uv1kiTp9XqdSpIkvV4vSZJOJTpJkiSKIqVUFEVBECRJEgRBFEVBEERRJIRQSkVRFJwopaIoAqCUCoIgiiIASqkgCACoCoAgCFARQgBQSgkhAARBgIoQAheEELjgnMMFVwFgKgCccwBMBYCr4IIxBheUUrgghEBFCEFzKIoCgHPOGJNlmXMuy7Ldbnc4HA2q6ur/xx68/tqdV3eC/qz1vfxue59b2UW5UMDkBoEyFBbCUBkIIQSRFFJKGZFAUEvTaqlb8x/MzIt5MSONNGpp+kW/m1GkfhMCSVACwSERhJsiTQLCNWAKKMenykXZ3ufqfW778rt81xppSVvalk9V7LIPNtJ+nr2NjY3Nzc1XX331hjk0nRERGFXFHDU4eSKCu/C297z/I3/8H9/7O8/1Vh9TkfX/7//94bf/7u/+7/9TUoLxIT77P/4vn/xP//Pf/+l//tJ//d+6tsE9+tCn/sOz//F/+r/+wye2fraOO5z78Cc++Af/7t0febbsL6fUvfgv3/7Bty5+7b/9F9zu3Ic/8cE/+Hfv/sizZX85pe7Ff/n2D7518Wv/7b/AENFn/9f/+u6PPPu///fvP7y1jTn/3R/+D//+//hTYt689q9//6f/+dtf+H+wsHDXiJmx8AggIgBEBENEMEQEwBki8t4DYGbnHADvPTMDcM4BICJmBkBEMM45GCKCISI2RMTM3ntmds7FGEMIMcYQQowxN2VZFkURYyyKIpoQQowxzDjjvXfOee+dIaIQAh/HOcczzjki4hkAzOycA0BEMM45AETEzDBEBICIcC9UFYAaACKiqgBSSgDUABCDGVUVEcxxzuE43nvci5QSAFUVo6oppbZt67pu23Y6nR4dHe3t7Q2Hw1dfffXatWvr6+tbW1vD4bAxKSUYVcUcNTh5IoK7FvJiae3xtpke7m6pKm5HRDCqintHRABUFa8tL6ty+bFmOj4a7uC15WVVLj/WTMdHwx3cjph9iG09xe2IqOgvF72lve2N1DZYWLgXxMxYeNjIYA4RAWADgIicc94AYGbnHADvPTMDcM7BMDMAMgCcc5hDRM4QkfeemUMIMcYQQpZleZ4XRZGbLMsKk2VZnOONcy6E4G7nvXfOwWRZBoCZnXMAnHPMDCDGCIANAOccMwNgZgBExMwAyAAgIgBExMwAiAhviKoCUFURgVFVAF3XAVADQFVhRASAGsxhZhzHOYd7oaoARKTrOgCqmlLqTNM0dV2Px+PRaLS/vz8YDK5du7a+vv7KK69sbW1Np9PGqCoAVcUcNTh5IoKFhYX7Q8yMhYeNDOYQEQDnnPceADM7E0IAwMzOOQDOOWYG4L0HQEQwzAzjvQdARMwMgJm99865GKNzLsaYZVmMMc/zwpRlmZssy4qiiDEGk+d5MM457z0zuxnvPTMTkffeOQcTQgBARM45AN57ZgbgvQdARMwMgJlhmBlzmJmIABARjKoCICK8IaoKQFVFBEZVMaMGgKrCpJRgVBVziAgPgqoCUANAVbuuSympal3Xbds2TXNkdnZ2bty4ceXKlatXr77yyiv7+/uNUVUAqoo5anDyRAQLCwv3h5gZCw8bGRgiAkBEzOwMM7sZ7z0AZnbOAfDeMzMA5xwAIoIhA4CInHNExMzeeyIKIcQYQwi5KUxZloXp9XqZyfM8y7IYo/c+hMDMfsY5x4aIYoxkmJmInHPMDMA5B4CZnXMAnHNEBICZAbABQEQwRIQ5RARDRABUFfdHVQGoKoyqYo6qigjmiAgANbgDGdw7VYVRVQCqKiIAVFVEVLVpmrZtU0pt247H49FoNBwONzc3//Vf//UnP/nJ+vr6cDg8Ojpq21ZEAKgqbqeqAFQVJ0lEsLCwcH+ImbHwsJEBQEQw3ntnmNkZ771zjpkBOAPAOcfMAJxzAMgAYAOAmZ1zzOy9jzF677MsK4oiy7KqqoqiKMuyqqosy/KZOCeE4I1zznvPzG6GiACEEAAQkXMOABsAzjkAZAAwMxEBYGYAZAAQEeaQwQkQERxHVQGoqohgjqrCqCruQER4Q9RgRlVTSgBERFUBNE3TdV1Kqeu6idnf39/c3FxfX//xj3/805/+dHd39+DgoG3blBIAVcVxRAQnSUSwsLBwf4iZsfCwkQFARDBZlnnv2XjvnXPee2Z2zgFgZuccAO89MwNwzgEgA8AZAM45b7IsizEWM1VVlaYoiqqqMpPneTQhBOdcjNEZ770zzExE3nvnHIz3HgAROedgiAiAcw5z2AAgIgBqABAR5pDBCRARHEdVAaiqiGCOqgIggzuowb1TgxlVTSkBEBFVBdB1UChXmgAAIABJREFUnYh0ZjKZNE1zeHi4ubm5vr7+YzMYDA4ODtq2TSkBUFUcR0RwkkQECwsL94eYGQsPDzMDICIYInLGe+9mvPdsnHPeOOdg2ABwzsEws/cegHMuxui9L4oixphlWVVVRVGUZVlVVVmWxUyMMcuyaLIs8zPOOe89MwMIIQBgA8A5x8wAnHMAiIiZATAzEQEgIhyHmfEIU4P7oKq4g6qKCOaoKoyIABADQESS6bquaZrxeHx0dLS1tfXSSy9dvnz5hRde2NzcHA6HdV2nlACoKo4jIjhJIoKFhYX7Q8yMhYeHmQEQEYxzzhvnnPfezXjv3Yw3RASADQDnHAAiCiE457z3wZRlmed5YaqqyvO8nMlNNCGEaJjZzXjvnXPMDMA5B4CImBkAGwBEBICIYJiZiAAQEY7DzHiEqcF9UFXcQVVFBHNUFUZEAIgBICLJdF3XNM10Oh2Px1tbW+vr6z8yN2/eHA6HdV2nlACoKo4jIjhJIoKFhYX7Q8yMhYeBiAAwMwwZ730IwRk/45zzxs1hZgBExHOccyGEaLIsy/O8qqqiKCpTmsJkJsbovQ8hxBi9AeCcY2ZnmJmIADjnABARMwMgIhgiwhwyAIgIxyEiPMJUFfdBVXEcNQBUFUZVAagBICKqCqDrOjFt2zZNU9f1eDze2tpaX1+/fPnyj370oxs3bgyHw7quU0oAVBXHUVUAqoqTISJYWFi4P8TMWPi5Y2YYIgJARG7Ge++cCyF4E2N0znnvnWFm55z3nogAMLObCTNFUWRZVhRFVVVFUVSmmMnzPIRQFAUzB+O9DyEwM4AYIwBm9t4DIAPAOQeAiJgZc4gIc5gZC4AaHEdVAaSUYFQVgBoAbdsCEJG2bZummUwmo9Foa2trfX39srl58+ZwOKzrOqUEQFXxukQEJ0BEsLCwcH+ImbHwc8fMMEQEgJlDCN57Z7z3eZ4754LxJoTgnGNmZ4gIgJ/JsizGmGVZVVV5nhdFUZZlr9criqIsy6IoYoxFUcQYQwgxxhCC994Z7z0zExGAEAIAInLOASAizCEiZsYcIsIcZsYCoAbHUVUAKSUYVQWgBkDbtgBEpG3bpmkmk8loNNra2lpfX79sbt68ORwO67pOKQFQVbwuEcEJEBEsLCzcH2JmLPy8EBEMGRhmds6FELz3zrkQgvc+z/MQgjcxRj/DzN57Nt7EmaIoSlNVVTFTVVVuYoxhxhtmds5574mIDQBmBkBEzIw5RARDRJhDRJhDRHgkqSqOQ0Q4GaqKO6gqjIgAUANADYC2bQGISNu2tTk4ONjY2Lh69erly5dfeOGFwWAwHA6bphERACKC1yUiOAEigoWFhftDzIyFnxcyAIgIhpn9jHMu3i6E4L3PsszPcc55E2MMIeQmy7LSFEVRVVVRFFmWFUWR53k0/nbOOQDM7JwDwMxEBICIABARM2MOEeE4zIxfBCKC4zAzfo7UAFBVAKoqIjCqCqBpGgCq2pi6rvf29gaDwdWrVy9fvvzCCy9sbGzs7e01TaOqAFJKeF0ighMgIlhYWLg/xMxY+HkhA4CIYGKMzjk/k5sYY5ZlIYQsy0IIWZZ545zLssw5F0LI8zyaPM+LoqhMURRZlvV6vRhjlmVFUXjvQwjee2Z2znnvmdl7T0QAiIiZAagqDBEBICJmxhwiwnGYGb8IRATHYWb8HKkBoKoAVFVEYFQVQNM0AFS1MXVd7+3tDQaDq1evXr58+YUXXtjY2Njb22uaRlUBpJTwukQEJ0BEsLCwcH+ImbFw8pgZABFhhpm990QUY/TehxCKoogxZlmW53mMsSiKLMtCCFmWee9DCDFGZi6KIjNFUeR5XhRFnudlWeZ5XpZlnueZCSE450II3jjnAHjvmRkAEQEgImbGHCLCcZgZv1BEBHNUFa+NiHA7ZsZJEhEYVQUgBoCqJtN1XdM0o9FoOBwOBoMrV6782GxtbR0cHNR1nVICkFLC6xIRnAARwb3w3ud5PhqNVBWPBiJ6y1ve4pwbj8ebm5uqijucOXOmKIqu6372s5/hdiGEJ554YnNzs2kaLCy8IcTMWDh5zAyAiGCY2XvvTDRZlhVFkWVZnudFUeR5nmVZnuchhCzLQghZloUQ8pksy4qiyGeyLCuKIsuyGGOWZd5755z3npm99845IgLAzEQEgIgAEBEzYw4R4TjMjF8oIoI5qorXRkS4HTPjJIkIjKoCEANAVZPpuq5pmtFoNBwOB4PBlStXfmy2trYODg7quk4pAUgp4XWJCE6AiOBefPzjHz9z5sy3v/3ta9eu4WEjone/+91vf/vb+/0+EanqcDj88Y9//OKLL6oqTJ7nv/mbv/nWt76VmQG8+uqrP/nJTwaDgYiEEM6ePfvOd75zbW3tksHCwhtCzIyFk0REAJgZM2xCCN5kJs/zsizzPC/LMs/zsiyzLMvzPMaYzcQYy7LMTZZlRVHkJjPReO9jjDzjnGMDQwYzRMTMOA4RYQ4R4dGmqpijqgBUFUZVcXeICAAzYw4R4YESERhVBSAiqgpARJJp27ZpmvF4vLu7OxgMrly58pOf/OTFF1/c3Nzc399vmialpKoiAkBV8RpEBCdARHB3yrJ85plnzp49C+Af/uEfXn31VTxsb3vb237nd35nOp2+8sor0+m0LMuzZ8+GEP72b/92c3MT5oMf/OC73vWujY2Nzc3N3/iN34gx4g57e3vf+MY3bt26hYWFN4SYGQsnhplhiAiGiEIIRBRCiDGGEHJTlmWv18vzvDT5TJZlRVHEGLMsK4oiy7KiKLIsy2dCCNF4751zIQTvPTMTEYAYIwAigmFmIsIMEeE4ZPCLQw3mqCoAEVFVAKqKu0BEMM45AEQEw8x4oEQERlUBiIiqAhCRZNq2nU6nk8lkd3f3xo0bL7744pUrV65evbq1tbW3t9e2bWdUFUZVcRwRwQkQEfxbiOjNb37zhz70oaqqptNpnucXL14cDAZ4qJaXlz/5yU8y8xe/+MXxeAyzurr63HPPjcfjv/mbv6nruiiKP/7jPxaRz33uc13Xve9973v66aevX79eFEXXdUVRLC0tTSaTL3/5y4eHh1hYeKOImbFwYpgZhogAMLM3zrkQQoyxLMs8z8uyrKqq1+tlWVaWZWVyk2VZURQxxizL8jlZlhVF4U2M0Rk2zjnvPQwzAyAiGGYmIswQEY5DBr841GCOqgIQEVUFoKoAVDWlhDsQkXMOABHBOOcAEBEMM+OBEhEYVQUgIqoKQESSadt2Op1OJpPd3d0bN268+OKLV65cuXr16tbW1t7eXtu2nVFVGFXFcUQEJ0BEcBfe+973PvXUUz/60Y+89+95z3suXrw4GAzwUD311FMf+MAHvve97/3gBz/AnA984ANPPfXUN7/5zfX19RDCZz/72bZtP/e5zwH4xCc+8eSTT/7jP/7jtWvXsix77rnnqqr6yle+srW1hYWF+0DMjIUHjYhgyMAws3POex9C8N7HGLMs6/V6RVFUptfrFUVRVVVZloXJ8zzLsvx2McY8z7MsizF6751zIQTnHBE559gQEYxzDnPI4A5EhDlEhEebqgJQVRg1AFQVc0REVQGICABVTSlhDhEBIAOADQBmhiEiAGQAEBEMEeE+qCqMqgJIKakqABFJKXVd1zTNdDodjUbD4fDmzZtXrly5evXq+vr61tbWrVu3mqZJKXVdJyIwqorjqCqMquLBERHcHWYWkXPnzl24cOHixYuDwQC3O3PmzDve8Y6f/vSng8EAJ++DH/zgu971rr/6q7/a29vDnDNnzjz77LPf+973fvCDHzjnPvKRj7ztbW87OjpS1X6/v7Oz86UvfYmZn3322ccff/zrX//6tWvXcHfOnz9/6dIlLCzcgZgZCw8aGQBEBMPM3nvnXAghmtz0er2yLHu9XlmWvV6vLMter1eWZT6TZVlRFHmeZ1lWFEWcCYaZvXHOAWBm5xwAIoJxzmEOEeE4zIxfKCICo6oARERVAagqjKoCSCmpKoCUEgAxmOOcgyEiAM45ZgbgnANARDDMTEQAiAgAGTwIIgJADAARSSm1bds0zWQyGY1Ge3t7N2/efOmll65evfrSSy9tb2/v7u5OJpOu65KBUVW8NjV4cEQE9+LcuXMXLly4ePHiYDDAnKIo/vAP/7Aoiul0+sUvfnEymeCE/cEf/EG/3//85z/fdR3m5Hn+mc985vr161/72tdgPvrRj/7yL/+yql65cuXy5ct7e3sf+9jHzp49+93vfveHP/wh7tr58+cvXbqEhYU7EDNj4UEjA4CIYGKMzjnvfYwxy7LC5Hm+vLxclmWv16vmlGWZz2RZVhRFjDHLsjzPo/HeO+e892yccyEEGCICQEQwzjnMISIch5nxC0VEYFQVgIioKgBVBSAiKSUAIqKqAJqmAaCqIoI5RASAiJxzALz3zAwgxgiAiGCYmYgAEBEAMngQRASAGAAiklJq27ZpmslkMhqN9vb2bt68+corr6yvr7/00kvb29s7Ozvj8bhpmmRgVBWvTQ0eHBHBvTh37tyFCxcuXrw4GAwwh5k/+tGPnj179uWXX/7Wt76VUsJJKori05/+9HQ6/cIXviAimOO9/+xnP6uqn/vc57qug/Heq2pKCcD73ve+p59++sqVK9/5zndwL86fP3/p0iUsLNyBmBkLDw4zAyAiGCJyMzHGYIqiyLKs1+v1+/2yLPumLMter1eWZVEUeZ4XJsuyPM+LoogzWZa5GW+YGYBzDgARMTPmEBGOw8x4hKnBHFXFnJQSjKoCUFWYtm1hRCSlpKoiklIC0HWdiMCoAcDMAIjIGwDM7L1nZgDM7JwDQEQwRASAiJgZABFhDhncCxEBIAZASqkzTdOMzfb29q1bt65du/azn/3spZde2jLj8Til1DRN13UwIgKjqriDGjw4IoJ7ce7cuQsXLly8eHEwGOB2IYTV1dXhcNi2LU6Yc+5P/uRPhsPhV77yFdzhU5/6FDP/xV/8haridr/2a7/2W7/1W4PB4Ktf/aqI4F6cP3/+0qVLWFi4AzEzFh4cZgZARDDOOW9CCNHkeV6YvinLst/v93q9siyrqirLsiiKPM/LssxMjLEoijjjvXeGiEIIzAzjnANARMyMOUSE4zAzHmFqMEdVMSelBKOqAFJKIgKgbVsAqpqMiKSUuq4joq7rUkoiAkBVYZxzAJjZe++cY2bnnDcAmNk5B8B7T0QAiAgAETEzACLCHDK4FyICQAyAlFJnmqYZm+3t7Vu3bl2/fv2VV165du3a1tbW9vb24eFhY7qugxERGFXFHdTgwRER3Itz585duHDh4sWLg8EAD0+e55/5zGfquv785z8vIpgTQvjsZz+bUvrzP//zrusw58knn/y93/u9vb29L3/5y23bZllWVdV0Oh2Px7gL58+fv3TpEhYW7kDMjIUHgYgAMDMMMxOR9z6E4L0PIWRZlud5OdM3PVNVVVEUVVUVRZGbsizzPI8mz/MYYzDOOWZ2zjGzcw4zzjkARMTMOA4RYQ4R4aFSVbw2VYVRVQCqitullACoAZCMqqaUVDWl1HVdSqnrumREJKXUdV1KCXO890TEzM45771zzpsQAhE5Q0TOOWYG4JwDQAaGiAAQEQwRASAi3B0RASAGQDfTNM1kMhmPx7vmxo0br7766iuvvLK9vb21tbW/v1+blBIAMTCqijuowYMjIrgX586du3DhwsWLFweDAR6qT37yk6urq5///OfbtsWcsiw//elPv/TSS9/61rcwZ3l5+bnnnuu67stf/vLR0dF73/vep556Ksaoqt/4xjdefvll/FvOnz9/6dIlLCzcgZgZC/eNmWGccwCIiJm99865EEKMMYSQ53lper1eWZZ9U80URVFVVT5TFEWMMcuyPM9jjN4450IIAJg5hACAiGCccwCICMchg0eJiOA4qoo5KSXcTlUBiAgAEUkpARCRlFLXdQBSSt1MSqnrupRS27Yppa7rVBW389474713zoUQYoxuxhtmJiIAMUbMISIY5xwAIoJhZtwdEQEgBkDTNCmlruvqup5Op5PJZGheffXVwWDwyiuvbG5ubm9v7+/vTyaT6XSaUgIgIl3Xwagq7qAGD46I4F6cO3fuwoULFy9eHAwGeKje9773Pf3001/60pe2t7cx5y1vecvHP/7xf/7nf/7Rj36EmSzLnnvuuaqqvvKVr2xtbf36r//6hz/84fF4/PLLL7/tbW8riuKf/umfXnzxRbyu8+fPX7p0CQsLdyBmxsJ9Y2YY5xwAZg4heBNNVVV5npdl2TNlWfZ6vX6/X5qqqoqi6PV6eZ5nWZbneZZlcY6bCSEAICJmBkBEMM45AESE45DBo0REcBxVxZyUEm6nqgCapgEgIiklACmlziTTzWnbNqXUNE0yqgpARFQVABExs/feOedNnPEmhOCcCyEwM4AQAgAics4BICIY5xwAIoJhZtwdEQEgBkDTNCmlruvqup5Op5PJZGi2trZu3rz5s5/9bHNzc2tra29vbzweT6fTuq4BiEjXdTCqijuowYMjIrgX586du3DhwsWLFweDAR6qc+fOXbhw4fLly//yL/+COb/927/9K7/yK9/85jfX19dhnHPPPvvs448//vWvf/3atWvM/KlPfarf73/xi18cDodvf/vbP/ShDz3//PPf//738brOnz9/6dIlLCzcgZgZC28UEcEwMxEBYOOcCyHEGL33McY8z6uqKsuyMv1+v6qqXq9XVVVZlpUpiqIsy9zEGPM8jzGGGWYmE2MEQETOOcxhZswhIswhIjwkqoo7qCqOo6oigjmqCkBVYUREVQF0XSciKSURSTNd17Vt2zRNMu1MSqlt267rUkoiAkAMAGYmImYOITjnQgjR5HnuvY8xBuO9d8Z7zwbGOcfMAJxzAIgIhplxd0QEQEpJVQE0TZNM0zSTyWQ8Hu+Zra2twWBw/fr1ra2tzc3N4XA4Go0mk0nTNCKSDABVhVFVzFGDB0dEcC/OnTt34cKFixcvDgYD3O4d73jH+9///u9+97s//elPcfLyPH/22WeXlpa++tWvbmxswLz1rW/92Mc+trW1dfHiRRGB+djHPnb27Nnvfve7P/zhDwEQ0ac+9amqqv7sz/6saZoPfOADTz311Pe///3nn38eCwtvCDEzFt4oMgCYmYgAeO+dc977OJObXq9XzSwtLfV6vaqqyrKsTFmWeZ4XRZHneTRZlgXjvXcGJoQAgA3mEBHmMDMeDSKC16WqmFFVEcEcVQWgqiICQAyArutSSl3XpZS6mZRSY9q2TSk1TdO2bdd1KaW2bVNKbdumlACIiKoCICIAzBxC8CaEEGPM8zyaLMtijM65aLz3zjnvPREB8N4zMwDvPQAigmFm3B0RAZBSEhEAbdsm07bteDyeTCYHBwf7+/ub5saNG1tbWxsbG8Ph8OjoaDQatW3bdV0yANQAUFXMUYMHR0RwL9797ne///3v/7u/+7ubN29iTlmWf/RHf+S977ruL//yL0ejEU7emTNnfv/3f19VNzY2Dg4OVldXH3/8cVX967/+6+FwCPPMM8+8853vvHLlyne+8x0YZv7whz/8q7/6q9vb20dHR2fPnm3b9gtf+EJd11hYeEOImbHwRpEBwMxEBCDLMm/yPI8xFjNLS0vVzNLSUq/XK8uymimKIsuyoihCCFmWhRC89zFG7z0zO0NEAIgIABvMISLMYWY8GkQEr0tVMaOqIoI5qgpARLquAyAiqgqgruvONE2TUmqapjPNTNd1TdO0bZtS6rqubduUUmsAiAHAzACYOYTgnAsmxpjneQghy7I8zzMTTZZl3vtgAHjvmRmA9x4AEcEwM+6OiABIKYkIgLZtk2nbdjwe13V9dHS0t7e3u7u7sbFx48aNra2tjY2N3d3dw8PD8Xg8mUy6rksGgBoAqoo5avDgiAjuxdmzZ5955pmvfe1r29vbmMPMTz/99Hve854f/vCHzz//vIjg5+Id73jHW9/61ieffNI513Xd9evX19fXX375ZRjv/e/+7u8C+Pu//3tVxZxnnnnmne98J4DNzc3nn3/++vXrWFh4o4iZsXDvmBkAETEzACJyJoQQYwwhxBh7vV6WZVVV9fv9siz7c8qyLIqiqqqyLLMsK8uyKIpoQgjOuRCCN845AMxMRACccwCICLdjZjwC1OA4qooZVRURzFFVzFEDIKUEo6pd16lq13VN06hqY9q2bWZa0zRN27Zd19V1nVJqTV3XKaW2bVNKXdeJCAwzAyAi771zLs5kWZabGGOv1/Pe53leVVWMMc/zGCMRee9jjM45AN57AEQEw8y4OyICQAyAlFLXdSmltm2bphmNRgcHB0dHR7u7u1tbWxsbG5ubmxsbGzs7OwcHB4eHh62p6zqlBEAMAFXFHDV4cEQE94KIAKgqHiVZlnnv27Ztmga3IyIAqorbEVGWZcw8mUxUFQsL94GYGQv3jpkBEBEzA3DOeRNNnudFUfR6vbIse71ev9/v9XpLS0u9Xq+qqqWlpaIoSpNlWW6iCSE457z3boaIADAzEQFwzgEgItyOmfEIUIPjqCpmVFVEMEdVMUcNgKZpAKiqiLRtm1JqTdM0bdtOp9Omaeq6btu2MV3XNU3TmqZpWtM0TV3XaabrOhGBYWYARBRCcM6FEKLJ51RVVZiqqvKZEIL3PsbonAPgvQdARDDMjLsjIgDEAEgpdV2XUmrbtmmayWRydHR0eHi4t7e3ubm5sbGxtbU1GAx2d3f39/ePjo5Go1HbtnVdp5QAiAGgqpijBg+OiGBhYeH+EDNj4V4QEQBmBkBEzExEzrlgsizL87w0S0tLVVUtzfT7/V6vV5Zlv98vZrIsy/M8xui9DyF4751zzOycYwPDzEQEgJlhiAhziAgPg6ridqqKGVWFUVXMUQNAVWFUFXPUiEjXdWK6rmuapm3bxtRmapqZtm0b05rGtKZpmq7rkhERzBARACIKITjnQgjRFEWRZVlZlkVRVFVVlmVVVb1eL8/z0kQTQnDOEZFzDgAZAMyMuyMiAMQAEJHOtG3bmNFodHR0NBwOt7e3N83Gxsbu7u7e3t7+/v7R0VFd103TiIiqppREBICqYo4aPDgigoWFhftDzIyFu8bMMEQEgJmdc957Zo4x5nkeQuj3+5VZWVnp9XpLS0srKytVVfX7/V6vV5Zlr9fLsiw3WZbFGEMIfoaZAYQQABARMwMgIswhg0eAiOA4qgpAVUUEc1QVc9QAUFXMEZGUUtd1AJqm6cxkMmmapq7ryWTSdd3ENE1T13Xbts2ctm27rqvrujXdnJQS5jAzACLyJoQQYwwh5DNlWVZVled5r9fr9/tlWfb7/bIsQwhFUcQYvffOOWYGwAYAM+PuiAgAMTAppa7r2rZtmqau68lkMhqNbt26tT0zGAx2d3dvmclkMp1Om6YRkc6ICABVxRw1eHBEBAsLC/eHmBkLd42ZYYgIgHMuxui9DyHkeV6YvllaWlpdXe33+8vLyysrK3me9/v9Xq+X53mv14umKAoiijF675nZe++cIyIARASAiJgZABFhDhk8AkQEx1FVAKoqIpijqpijBoCqAhADIKXUtm3XdW3bNk3Ttu3UTCaTqanremqambZtm6ap67o1IlLXdWtSSqradV1KSUQwh5kBEJE3zBxCiDGGEPI8z7IsxlhVVVEUVVX1+/3l5eW+KcuyMDFG51yMEQAbAMyMuyMiAMTAJCMidV03TTMej0ej0f7+/s7MYDDY3t6+ZY6OjqammxERAKqKOWrw4IgIFhYW7g8xMxb+LUQEQwYAETGzc857n2VZCKGqqn6/X5blillaWlpdXV1aWur3+71er9/vl6Yw0YQQvPfM7AwbIgJARDBEBICIMIeI8FCpKoyqYo6IwKgqjKoCUIM7iIiqwshMMo1p23Y6nY7H4+l0Oh6Pp9NpXdeTyWQ6ndamaZq6rtuZpmnatu1m2rbtui4ZNSKCOUQEgIi890TkZqLx3scYS1NV1ZJZXl5eWlrq9/tLS0tFUeR5nmWZN845GGYmIgBEhNelqgDUAEgpqWoyrRmbg4OD3d3dnZ2d7e3twWCwvb1969atnZ2dw8PD8Xg8mUxSSm3bppREBICIYI4aPDgigoWFhftDzIyFfwsZAEQE4713JoRQmKWlpeXl5aWlpbW1tdXV1X6/v7q62u/3e71eWZa9Xi/P86IosiyLMYYQ/AwAZnbOAXDOEREAIsIcZsajRA3mqCoAEVFVzFFVAGowo6oiAkANABFJM42p63oymdR1PTLT6XQymdRmOp3Wdd3Madu267qUUtM0KaWu69q2TSmJSEqp6zoRASAGd2ADwDlHRACyLHPOee9DCEVRZFnW6/X6/f7S0tLy8vLKTFVVZVlWVRVCiDGGEIgIgHOOiAAwM+6CGgBd1wFQ1W5mbA4PD2+Z7e3tGzdu7Mzs7++PTdu2XdellEQEQEoJc9TgwRERLCws3B9iZiz8W8gAICKYLMu8KYoiz/OlpaUVc/r06bW1tZWVlaWlpZWVlV6vV1VVWZZ5nmfGe59lGRvvPTPDEBEA5xwRASAizGFmPErUYI6qAhARVcUcVQWgBjMi0nUdAFWFadu267rWNE0zGo3G4/F0Oh2NRuPxeDQajcfjyWRS1/XUdF3XNE1rmqZJpuu6NKfrOjVd16WUAKiqiOAOZACQAeCc894zcwihKArvfVEU/X5/aWlpeXl5bW3tscceWzH9fr80McYsy0IIAJxzRASAmXEX1ADoug5GRDozmUxGo9F4PL5169ZwONzZ2bl58+bm5uaOGQ6HI1PXddd1KSURAZBSwhw1eHBEBAsLC/eHmBkLr42ZcTtmds5572OMeZ5XVbW8vLyysnL69OlTp06dPn16eXl5ZWVlaWmp1+tVVZXneYwxz3NvYozeMDMAIgJARMwMgIhgmBmPEhHB7VQVQEoJRlUxR0QAqGqKPD4ZAAAgAElEQVRKCYaIAKSUYIio67qUkpjaNE0zmUwODg4mk8loNBqPx4eHh5OZpmnqum7btuu6uq67rksptW2bZjoDIKXUdR0AEVFVAE3TAFADQFVhUkqYw8xEBCCEAICZvfchhDzPC7O0tNTv95eWlh577LHTp0+vrKysrq6ura1lWVZVVVEUzhARjPceABExM16bGgCqCkBVU0oAmqaZTqdN0xweHu7v79+6dWt7e3swGGyZzc3NfXN0dNS2bdM0bduqKoCUEoyI4ASICBYWFu4PMTMWXhszYw4Ree+dcyGEqqp6vd7y8vKpU6fW1tZOnTp1+vTptbW1ZVNVVa/Xy7IsmhCC9945x8zee+ccDBEBICJmBkBEMMyMR4mI4HaqCiClBKOqmCMiAFQ1pQRADYCu6wCoappp27Y2RzMHBwdjc3R0VNf1ZDKZTqdN09R13RkRads2pdR1nYh0XScmpdS2LQAxAFJKqgogpQRADQBVhUkpYQ4zExEA5xwAIooxOudCCLmpqqrX6y0tLa2srDz++OOrq6trZnl5uSzLqqpijM65EAIzA/DeAyAiZsZrUwNAVQGoakoJQNd1dV23bTsajfb394fD4c7OzmAw2N7e3jS7u7v7+/sHBwd1XTdN07atqgJIKcGICE6AiGBhYeH+EDNj4bUxM2aYmYi8yfN8xaytrb3pTW964oknTp8+vba2trq62jeF8d4754LhOWQAEBEMM8MQEQAiwqNBVQGoKuaoAZBSwhw1AEQEgKqKCABVFdN1naqmlLqua8x4PD46Ojo8PDwwRzOTyWQ8HjczKaXOiEgyqpqMiKiqiKSURASAGAAioqoAUkowqgpARGBUFbcjIgDMDICZQwjee+dcjDHP8yzLqqrq9XrLy8unTp1aW1t7bGZpaanX6+V5nmVZCME5x8zOOQBExMwAiAjHUVUYVQWgqiICIKXUNE3btpPJ5ODgYG9vb3d3dzAYbG9vDwaDzc3NnZ2dW7du7e/v13U9nU67rhMRVRURGBHBCRARLCws3B9iZiy8NmaGISLvPRGFEPI87/f7p06dOn369BNPPHH69OkzZ86srKwsLy+vrq7meV6WZVEUMUY3470HwMzOOQDMTEQAiAhzmBmPEjWYo6oARERVAaSUMEcMgJQSADUARKTrupSSiLRt2zRNXddHR0fj8fjg4GDfHB4eHhwcjEajianrummatm1TSm3bppQAtG2bUgKQUgIgIl3XAUgpqSoAEQGgqiICQA2AlBIANQDU4LV57wEQkXPOmxBCjDHLsjzPy7Ls9/srKytra2unzGOPPba2tra8vJznea/XizE657z3zAyAmZ1zAJgZd0FVRQRASqkzk8nk8PDw4OBgOBxubGxsb29fv3795s2bu7u7Ozs7w+GwaZrJZNJ1XTKqCiMiOAEigoWFhftDzIyF18bMMETkvXfOVVXV7/dPnz595syZN73pTWfOnDl16tTjjz++srKyvLxcFEWe5zHGYNg455gZABHBMDMRASAizGFmPErUYI6qAhARVQWQUgKgqiklACKiqgC6rgMgBkDbtk3TpJSaphmNRhMzHA73zP7+/tHR0eHh4Wg0appmMpnUdd0aVe26LqUkIgDUAOi6DoAaACKiqgBUFYAYAGowo6owIoLX5ZyDcYaZvfcxxhBCbsqyXFlZWVpaWltbO21WV1cfe+yxfr9fmRij9z7GCICZnXMAmBl3QVVFBKbrupRS0zSHh4dHR0f7+/sbGxvb29vXr18fDAY3btzY2dm5devWxHRdl4yqwogIToCIYGFh4f4QM2PhDkQEw8wwzOzN6urqqVOn3vzmNz/55JO/9Eu/9MQTT5w6dWp1dbWqqrIs8zwPxnvPzM45ZiYiZoYhIhgiAkBEmENEeKhUFXNUFUZEAKgqjIioKoCUEgAxAFRVTEpJRFJKXdeJSNu2k8lkOp1OJpO9vb39/f3Dw8OdnZ29vb0Dc3h4WJvGyExKSWcAqAEgIgDUwKgqAFUFoAaAqsKklGBUFYCq4nUxMwBmds6x8TOZyfO8qqp+v7+2tra6unp6ZmVlZXl5uaqqoiiyLPPeM7P33jkHgAzugqrCqGrXddPpdGwODg62trZ2dnauz2xtbW1vb08mk9Fo1LatiKSUVBVGRHACRAQLCwv3h5gZC3dgZhgiAsDMIYQ8z8uyPGPe8pa3PPnkk29+85tXTb/fz/O8KIoQgvfeGQDOOSIC4JwDQES4HTPjUSIiuJ2qAkgpAVADIKWkqgBSSgBEJKX0/7MHJz6SXeXdgH/vuXst3VXd1dv0Mt09+2LHTCxig+BLwAQcO4oViS3+++IAwQkYO0QCDEFJFGwxliHCLPaszfRWW9d67z3nvO8nHamkas143OOhMzbU8wAQEetora1jjEnTdDgcdrvdg4ODdrvdbDZbrVan02k2m51OZzjCzMYYETHGWGvhWGsBiAgccQCICABxAIgIxogIMwMQETgiAkdEcAREBEAp5XkeACLyfV8pFThhGEZRlCRJoVCYdmZnZxcWFubn56vV6vz8fLlcLhaLhUIhDEPP83zf9zwPgFKKiHBkRMTMxpg8z9M0HQ6H3W63Xq83m83bt29vbW3dvHlzZ2dnd3e37+R5zszWWhGBw8w4BsyMownDcHFx0RijlMqybH9/Hx8NRLS2tuZ53mAw2N3dFRHcZWlpKUkSY8ytW7dwWBAEi4uLu7u7eZ5jYuJDIaUUJu6ilIJDRAA8zysUCuVyuVKpnDx5cnV19eTJkyecUqlULpcjJ45jIvJ93/M8IsIYz/MAEBEOU0rho4SZcZiIALDWAmBmYwwAZhYRAMYYANZaYwwAa60xxlqbZZm1Nsuyfr/fc5rNZqPRaDrtdns4HHa73cFgoB07IiLGGGaGQ0QAxAGglCIiAMwMQBwA4mBEROAwMxylFBwRwREQERwiguM5RBSGYeAkSRKGYalUqlQq09PTCwsL8/Pzc3NzJ06cmJ2dLZVKhUKhVCp5nuf7vud5AJRSRIQjIyJmNsYASJ1er9doNFqt1tbW1u3bt997772dnZ3t7e2Dg4N+v5/nOTNba0UEDjPjGDAzjmB9ff3JJ5+sVCpwmPl3v/vdG2+8kWUZHh0ievzxx8+dO1cul4lIRFqt1q9+9avf/OY3IgInjuNPf/rTJ0+eVEoBuH379jvvvLO9vc3MQRCsr69fvHhxZmbmqoOJiQ+FlFKYGCEHY5Tj+36lUpmdnV1bW9vY2FhzZp1isRiGYRRFvu97nheGIQDlACAijCEHHyXMjDEiAkBEmBljrLUAmNkYA4eZjTEArLXMbK3N89yMpGna7/e73e7BwUGj0Tg4OGg2m/V6vdVq9Zwsy6y1eZ5bawHkeQ5ARJgZY5gZY8QBwMwYIw7uIg7uIg7uopTCGHIA+L6vlAJARJ4TOlEUFZxqtTrjLC8vnzhxYnFxseIkSRLHcRiGcHzfV0phhIjwQUQEADNrrdM07ff7LWfLuX79+q1bt27fvt3tdjudTp7n1hEROMyMY8DM+CBnz579zGc+A+Cdd97RWgNYWVmZnZ1tt9v/8i//wsx4RDY2Nj7/+c+naXrz5s00TQuFwvr6ehAE3/ve93Z3d+E8/fTTly5d2tnZ2d3dvXDhQhiGuEu73X799debzSYmJj4UUkphYoQcjPF9P4qiJElqtdrKysqGs7a2trCwMOXEcRxFked5Sinf95VSAJQDgIgwhhx8lDAzxogIABFhZgDWWhEBYIwBICLGGAAiYq01xjCzdYwxuTN0BoNBu91utVrNZrPRaLRarXa73el0er1emqZ5njOzMcZaKyIArLUARMRaizHMjMNEBAARYYw4uIs4uIs4uItSCmPIAUAOAKWU53lKKd/3wzD0fT+O42KxWCqVZmZmqtXq0tLSCadWq83NzZXL5TiOoyhSSgHwfV8phREiwgcREQDMrLXO8zxN01ar1el0tpx333331q1bN2/ebLfbnU4nz3PriAgcZsYxYGbcl1Lqb//2b2u12g9+8INbt27B8Tzv2WefXVxc/MEPfnDz5k08CtPT088//7xS6uWXXx4MBnCq1eoLL7wwGAy+853vZFmWJMlXv/pVZn7ppZeMMU8++eQTTzyxtbWVJIkxJkmSqamp4XD4yiuvdLtdTEx8WKSUwsQIORhRSgVBUCgUKpXK6urq5ubm2bNn19bWVlZWKpVK4oRh6HmeUsrzPCJSSgEgIqUUHCLCGCLCoyAiuIs4AEQEY0TEWgvAWsvMAKy1AJjZGMOOMcZay8x6JMuyPM+73e7BwUHT2d/fb7VazWbz4OCg3+9nDjMbh5mttXBEBIA4cEQEgIhgjDgAPM/DGHFwF3FwFxHBvRARxpADh4gAEJFyPM8LgsDzvDAMkyQpFAoVZ3FxcWlpaXl5eWlp6cSJE1NTU8ViMY5jz/OIyPd9IgJARACICB9ERAAws9baGJPn+cHBQafT+b3zu9/97saNGzdv3qzX6wcHB3meW0dE4DAzjgEz474KhcLXv/71brf7rW99C2PW19efeeaZX/7ylz/72c/wKFy+fPmpp55688033377bYx56qmnLl++/OMf//i9994LguDFF1/UWr/00ksAvvSlL504ceJHP/rRjRs3oih64YUXisXiq6++ure3h4mJh0BKKUyMkANHKeX7fpIkU1NTy8vLp06dOnPmzKlTp+bn52u12tTUVBiGURQFQQDA8zylFADP8wAQERylFD4amBljRASAiDAzHBHBCDMbYwAws4gAyPMcgIgYY6zDzNZaY0zupGna7/cHg0Gz2aw7zWaz1WodHBx0u91+v6+1ttamaQqAma21ANgBICIYIw4AZsYRiIMHISJ4f0SEMUopOEopAETkO57nhWEYBEGhUCiXy1NTU/Pz8wsLCysrK6tOtVotl8uFQsEbISIASikARIQPIiIAmNkYY60dDoedTqfb7d5x3n333WvXrt28eXN/f7/dbud5bh0RgcPMOAbMjPvyff/s2bO9Xu/27dsigpFLly49/fTT77zzzn/913/BWVpaOn/+/K9//evt7W0cv6effvrSpUvf/va32+02xiwtLT333HNvvvnm22+/7XneX/7lX25sbPR6PREpl8v1ev273/2uUuq5556bn5//4Q9/eOPGDRzNlStXrl69iomJu5BSChMj5ABQSvm+73nezMzM/Pz8qVOnTjvr6+vVarVSqURRFIZhEARKKQBEBMfzPABEBEcphY8GZsYYEQEgIswMR0QAGGMAMLO1FgA7ANI0BSAixmHHGDMcDvM8z7Ks1+u12+1ut9tw6vV6s9lst9uDwSBN0zzPmdk4AMQBwA4AEcEYcQAwM45AHDwIEcH7IyKMUUrBUUrBISLf95VSvu+HYRgEQblcLpVKs7OzCwsLy8vLa2trKysry8vLZSeKIs8hIgBKKQBEhA8iIgCY2RhjrR0Oh51Op9vt3nHefffda9eu3bx5c39/v91u53luHRGBw8w4BsyMB6eU+upXv1ooFF5++eV2uw0gSZK///u/T5IkTdOXX355OBzimP3d3/1duVz+xje+YYzBmDiOv/71r29tbf3gBz+A87nPfW5zc1NEfvvb3/7yl79st9vPPPPM+vr6G2+88Ytf/AJHduXKlatXr2Ji4i6klMIEQEQYUUr5TqFQmJubW19fP3fu3Pnz5zc2NhYXF4vFYqFQSJJEjcAhIgBEBIeIABARHgURgSMiGMPMcKy1GMPMIgLAGAPAWmuMAcAOgDzPATCztdYYY601xmitsywbOAcHB/v7+61Wa99pNBq9Xm84HBpjtNZ5nrNjrYUjIgCYWUQAiAjGiAOAmXEE4uDIRAT3RUS4F6UUHKUUESmlPM/zfT8Mw0KhUCqVZmZmarXa0tLSxsbGysrK6upqtVqdnp6O4zgIAqUUEQHwfR8AEeGDiAgAY4x10jRtt9udTufOnTvb29vvvvvuDafRaLTb7SzLrMPMAEQEx4OZ8eAef/zxT37yk+++++5//Md/iAgApdTnPve59fX169ev/+QnP7HW4jglSfK1r30tTdNvfvObzIwxvu+/+OKLIvLSSy8ZY+D4vi8i1loATz755BNPPPHb3/72pz/9KR7ElStXrl69iomJu5BSChOAUgoOEXmeFwRBHMczMzPLy8vnnc3NzaWlpWq1GjtRFAFQDgAiwhhy8OiIA0BEMIaZRQSAtRaOiABgB4C1FgAzG2MAsAPAGAOAmc1I7gwGg06nc3Bw0Gq19vb2mk6j0eh2u8PhMMsyM8LMAKy1cJgZgDgARARjxAHAzDgCcfD+RAR/CEQEQDkAlOP7fhAEcRwXCoVKpTI7O1ur1U6ePLmysrK2tjY/P1+r1eI4DsMwCAIiAhCGIQAiwgcREQBaa+sMBoNWq3VwcHDHuX79+k2n5WRZZkdwnJgZD2h1dfWLX/xit9v99re/ba3FSBAE1Wq11WpprXHMPM/7h3/4h1ar9eqrr+IuX/7yl5VS3/rWt0QEh505c+b//b//t729/f3vf5+Z8SCuXLly9epVTEzchZRSmACUUgCIyPM83/fDMCyXy/Pz86dOnXrssccuXry4trZWqVSSJAnDMI5jIgKgHABEhDHk4NERB4CIYAwziwgAay0AdgAws4gAMMYAEBFmBsAOAGMMAGY2Tp7nWZbled5utxuNRr1ebzabe3t7jUaj3W53Op3UyfMcgDHGWgvHWguHmQGIA0BEMEYcAMyMIxAH709E8IdARACUA0A5vu8rpeI4jqKoWCzOzs5WKpXV1dWVlZW1tbXl5eXFxcVCoRBFURzHnucBCMMQABHhg4gIAK21tVZr3e/3W61Wu93e2tq6c+fOzZs3bzkHBwetVivLMjuC48TMeBCLi4vPPvus1vr111+/c+cOHpE4jr/+9a9nWfaNb3yDmTEmCIIXX3zRWvtP//RPxhiMOXHixLPPPttut1955RWtdRRFxWIxTdPBYIAjuHLlytWrVzExcRdSSuFPmFIKDhHBCYIgSZI4jmu12tra2qVLly5evHjq1KlqtVqpVAqFgu/7nucppQAQERylFB4pZoYjIgCYWUQAiAjGMLOIALDWYgwziwgAay0AdgCICBw7wsx5nmut+/1+t9vtdDp7e3s7OzuNRqNer7fb7V6v1+/38zw3xjCztdY4zAxARACIiLUWgDgARARjxMEYZsa9MDPuS0Twh0NEAJQDQClFRACCIAjDMIqiolOpVE6cOLG0tHTy5MmVlZXl5eVSqVQul0MnCAIAvu8rpUQEABHhMBEBwMwiAkCPDIfDRqPRarVu3769tbV17dq1nZ2d7e3tdrvd6XTSNLUjOE7MjCNbXFx89tlntdavvfZaq9XCI/X8889Xq9VvfOMbWmuMKRQKX/va165du/aTn/wEY6anp1944QVjzCuvvNLr9T7xiU9cvnw5DEMRef31169fv44PcuXKlatXr2Ji4i6klMKfMKUUHM/zAHielyRJHMelUml1dfXs2bOXLl06derU8vLy1NRUsVgMw1Ap5XmeUgoAEcFRSuGRYmY4IgKAmUUEgIhgDDOLCABrLQ4TEQAiAkBE4DCziABgZmutMcZamzm9Xq/b7TYajZ2dnd3d3brT7/cHg0G/38/z3BjDzNZa4zAzABEBICLWWgDiABARjBEHY5gZ98LMuC8RwR8OEQFQDgClFBEBCIIgDMMgCKIoKhaLpVJpfn6+Vqutra2trKysrq5WnUKhEEVREAS+o5QSEQBEhMNEBAAziwgA7eR53u/3G41GvV6/devW1tbWrVu3dpyOk6apHcFxYmYczeLi4rPPPqu1fu2111qtFh61J5988oknnvjud7+7v7+PMWtra3/913/9P//zP//7v/+LkSiKXnjhhWKx+Oqrr+7t7Z09e/azn/3sYDC4fv36xsZGkiT/+Z//+Zvf/Ab3deXKlatXr2Ji4i6klMKfJCKCQ0RKKc/zlFK+7xeLxUKhMDs7e+rUqUuXLj3++OOrq6szMzNJkoRh6HmeUoqIPM+DQ0QAiAj/t0QEY0QEgIjAYWYRASAicEQEgIjAERHci4jAISIAzCwiAKy1xhhrrdY6dbrd7sHBwe7ubr1e39vbazndbnfgZFmmtbaOMcZay46IABARZgbAzCKCERGBIw4AEYEjInBEBGNEBO9PRPBwiAhjiAgAESmlACiliAhA4PhOwalUKtPT06urqysrK2tra4uLi7VabWpqKo7jKIqCIPB9XymFESLCiIjAYWYRAaC1zp1er1d3bt68eevWra2trd3d3Z2dnV6v1+120zS1IzhOzIwjWFxcfPbZZ7XWr732WqvVwkfAY4899hd/8Re//OUvf/azn2HMX/3VX506derHP/7xe++9B8fzvOeee25+fv6HP/zhjRs3lFJf/vKXy+Xyyy+/3Gq1zp0795nPfOatt976+c9/jvu6cuXK1atXMTFxF1JK4U8POXCUUr7vAwjDMAiCcrk8PT198uTJ8+fPX7hwYXNzc3FxsVwuR1HkO0opAEQEgBw8CsyMMSKCMcwsIhgRERxGRLgXEcEYZhYRAFpray0zG2P6/X6apgcHB81mc29vr9lsNhqNVqvV6XR6vd7QybJMa53nOTMbY9gxxlhrAYgIMwOw1ooIAGaGIyIAxAHAzBgjDt6fiOAPh4hwmFIKADkAlFJEBCAIAs/zfN8PgiAMwziOy87i4uLKysr6+vry8vLc3FytVis4QRB4Du6LmUUEQJ7nWussy/r9fr1ebzQa165du379+tbW1v7+/t7eXrfbHQwGw+HQjuA4MTM+yOLi4rPPPqu1fu2111qtFt7H+fPnP/nJT77xxhu//vWvcfziOH7uueempqa+//3v7+zswDl58uQzzzyzt7f32muvMTOcZ555Zn19/Y033vjFL34BgIi+/OUvF4vFf/zHf8zz/Kmnnrp8+fLPf/7zt956CxMTHwoppfCnhxwASinf9z0ndKrV6okTJ06dOnXeWVxcrNVqcRwHQeA5cIgIADl4FJgZY0QEY4gIh4kIxlhrcS8igjHMLCIAtNbWWmNMmqb9fr/X67VarWaz2W63m06v1+t0OlmWpY528jxnZmMMO8YYrTUAa60xBoCIMDOAPM/hiAgAcQAwM8aIg/cnIvjDISIcppQCQA4ApRQRAQiCwHOUUmEYBkFQLBbL5XKlUlldXT3pLC0tnThxolwuFwqFIAg8B/fFzCICIM9zrXWWZf1+v16vNxqNa9euXb9+/ebNm/v7+3t7ewNnOBzaERwnZsZ9ra6ufuELX1BK3blzp9vt4rB6vf7OO+8AKBQKX/nKV3zfN8b88z//c7/fx/FbWlr6m7/5GxHZ2dnpdDrVanV+fl5E/vVf/7XVasH51Kc+dfHixd/+9rc//elP4SilPvvZz54+fXp/f7/X662vr2utv/nNb2ZZhomJD4WUUvhTopSCQ0Se5ymlPMf3/UKhEEXR/Pz85ubmuXPnLl68uLGxMTMzUygUoijyPE85RASAiAAQER4REcF9ERFGxMEYEQEgInDEwRgRYWYAzGyMYebU6ff73W631+u12+1ms9lxut3uYDAYDodZlmmtc8daq7W2h2mtmdmO8IgxhplFBA4ziwgAZoYjIgDEwfsTEfwhEBHGEBEcIgJAREopAOQA8H1fKUVEvhMEQaFQSJJkenp6eXl5fX19Y2NjfX19eXm5VCoVi0Xf8TwPDhHhMBEBwA6APM+11lmW9fv9RqNRr9evXbt2/fr1Gzdu7O7uNpvN4XA4GAzSNDXGWAfHiZlxX3/+53/+iU98Au+j1+u98sorg8FAKfXEE0/82Z/92S9+8Yu33nqLmfF/4vz58ydPnjxx4oTnecaYra2t99577/r163B83//CF74A4N///d9FBGM+9alPXbx4EcDu7u5bb721tbWFiYkPi5RS+FPieR4cz/N83/dGoiiampqanp5eXV09c+bM5ubm6dOnFxcXp6enQ0cpBcDzPCICoJTCxwoz415EBAAziwgAZgYgIsxsjBERY0ye51rrwWDQdzqdTrfb7Thpmg6cNE3zPM+yzDh5ntsRY4wdMcbYEWMMMxtjrLXMbB0RAcDMIgKAmeEwMwBxAIgIjhMRYYxSCmOUA4CI4Pi+D4CIPM/zndipVCpLS0unTp06c+bM5ubm0tJSyfEdpRQcpRQOY2YA7ADQWudOv9+vO9euXbt+/frNmzd3dnZardZwOBwMBlmWaa2tg+PEzLgvIorj2PM83EuapsYYPGpRFPm+r7XO8xyHEREAEcFhRBRFkVJqOByKCCYmHgIppfCnxPM8AEqpIAh83/c8z3cKhcLs7Oz8/Pzm5ubp06c3NjZWVlaq1WqhUAjD0Pd9OJ7nEREApRQ+VpgZ9yIiAJhZRADkeQ6Ama21xtFa53ne6/UGg0Gv1+t2u51OZziitR44Wus8z7XW1jHG2BFjjB1jjLHWGmOstWZERIxjrQXAzCICgJnhMDMAcQCICI4TEWGMUgpjlAOAiOD4vg+HiDzP830/iqI4jiuVytLS0pkzZ86fP7+5ubm0tFRyfEcpBUcphcOYGQA7ALTWudPv9+vOtWvXrl+/fvPmzZ2dnVarNRwOB4NBlmVaa+vgODEzJiYmHg4ppfAnQClFRACIyPd9z/OUUp7n+b4fhmEURdVqdWFhYWVl5fTp0+vr66urq1UnSRKllOd5SikASikcAyLCAxIRvD9xMIaIAFhrRQSAiAAQB4AxxloLgJmNMexkWaa1Tp1er5c6WZYNh8P0sDzPjTF5nmdZprXO85yZzRg7xhhjrTXG2BFjjIgYY6wDgB0A1lo4zAxAHAAiguNERHh/5ABQSsFRSsEhIt/3lVJxHBeLxampqbW1tQvO5ubm4uJiqVRKksT3fQDKAaCUgsPMGMMOAGPM0On3+/V6vdFo3Lp166ZTr9f39vYGznA4tKvSsD0AACAASURBVCM4TsyMiYmJh0NKKfwJUEoREYAgCDzP833f8zzf98MwLBQKpVJpbm5ueXl5bW3t5MmTKysrCwsLJSeKIqWU53lKKQBKKRwDIsIDEhG8P3EwIiLMDEBEmBkAMwNgB4C1lpkBMLO11jh5nmutU2c4HKZpmmWZ1no4HOZ5nmVZOpJlWe5kWaa1zvOcmc0YO8YYY601xtgRY4yIGGOsA4AdANZaOMwMQBwAIoLjRER4f+QAUErBUUrBISLf95VScRwXi8WZmZnV1dULFy5cvHhxY2NjYWGhUCgkSeL7PgDlAFBKwWFmjGEHgDFm6PT7/Xq93mg0bt26ddOp1+t7e3sDZzgc2hEcJ2bGxMTEwyGlFP54EREccpRSURT5Y+I4np6enpmZWVpaWl1dXV9fX1paWlhYmJmZiaIojuMoitQIACLCwyEi3AsRARARHIGIYEREABARHBEBIA4AEQHAzNZaAOIAYGYAImKtBcAOAGY2jtY6d7IsS9M0y7I0TbXWxpg0TbXWWZalznA4zLIsH9Fa53lujLHWmsOstcxsjLHWGmOstcYYa60xRkSMMdZaZgZgrWVmAMwMQESYGYA4AEQEx4mIcF9EBIAcAEopOEQUBIFSKo7jUqlUq9VWV1cvXLhw/vz5zc3N+fn5xAmCAIByABARHBEBICJw2AFgjBk6vV5vf3+/Xq/fdra2tvb29vb39/tOmqbGGOvgODEzJiYmHg4ppfDHi4iUUgCIyHOiKAocz/OSJCkUCrVabWFh4cSJE0tLS6urqzVnamoqiqIwDOM4BkBESik8NCLCvZADQByMERG8P3EwRkQAMLOIALDWAhARay3GiAgcZgZgrWVmAMycO8aYPM+zLMudLMv0SO5kWZY6w+Ewz3OtdZ7neoy11jjaMcZYxxhjrTWHiYgxxlorIgCsA0BEAIiItRaAOABEBB8BRARHKQWAiDzP850kSQqFwsLCwvLy8rlz5y5cuLC5ubmwsFAoFOI4DsMQABEppXAvzAyAHQDGmOFwOBgMOp3O3t7e/v7+1tbW7u7u73//+729vf39/W632+/30zTVWlsHx4mZMTEx8XBIKYU/XkSklALg+34Yhp7nRVEUBEEYhnEcT01NVSqVubm5hYWF5eXlubm5paWlmZmZcrlcKBRCJwgCAESklMJDIyLcCzkAxMEYEcH7EweAMQaAiMARByMiYq3FGBGBw8wArLXMDCAfk2WZdvI8t9bqkdzJsixNU611mqZZlhlj8jw3xmitsywzI9ZaY0ye58YYa22WZcYYa605TESMMdZaEQFgHQAiAkBErLUAxAEgIvgIICI4SikAROR5nu8kSVIoFBYWFpaXl8+dO3fhwoXNzc2FhYVCoRDHcRiGAIhIKYV7YWYA7AAwxgyHw36/32q19vb2Go3GnTt3dnd3f//73+/t7e3v73e73X6/n6ap1to6OE7MjImJiYdDSin8MVJKwSEi3/fDMAycMAyjKArDsFgs1pw5Z3l5eXZ2dm5urlQqFQqFJEmiKPIdAOTgQyEijCEijBEROEQEQEQwRkTgiAgcIgLADhwRAcDMcJgZdxEHgDgARASOiDCzdYwxw+HQGKO1zvNca83MxrHWascYkzupo7XOHGNMlmXGGK11nufG0Vpba7XWxpg8z7XWeZ5ba7XWeZ4bY+yI1lpEmFlEABhjmBkAMwNgB4CIwBERfAQQERzP8wAQkT+SJEmxWKzVaqurq+eczc3NxcXFYrEYx3EQBADIwb0wMwARYWZrLTP3nHa7vbOzU6/X9/b29vf3t7e39/f36/X6wcFBt9sdDofGGOvgODEzJiYmHg4ppfDHyPM8AETk+34YhkEQhE4URYVCoVgsTk9Pz83N1Wq1ubm52dnZubm5arVaqVSKxWKSJFEUBUHgeZ7v+wDIwYMjIowhB2OYGYeJCO4iDgARASAizAxHRDCGmXEvIgKAmUUEgIgAEBFrrXG01nmea62ttcYYa60xhh1jjLU2d7TWuTMcDtM0zUe01lmWGWO01nmeG2PyPNdaG2PyPNdOnudaa2ut1jrPc2stM1tHaw1ARKy1AESEmQEwMwARsdbCERF8ZBARHN/3ARCRP5IkSbFYnJ2dXVtbO3/+/Llz5zY3NxcXFwuFQhzHvu8DIAf3wsxwmNkYw8ydTqfb7Tabze3t7fph+/v77Xa70+kMh0NjjHVwnJgZExMTD4eUUvhj5HkeAM/z4jgOwzCKotBJkmRqaqpSqczMzMzPz8/MzMzOztZqtUqlUiwWy+VyoVBIksT3fc/xfR8AOXhwRIQx5GAMM+MwEcFdxAFgjMFhIoIxzIx7EREAzCwiAEQEgLU2yzJjjNY6dwAYY5hZRIwx7BhjrLV5nmdOnudZlqVpOhwOtdb5GGNMnuda6yzL8jHGGK11nudaa2ut1tpaa4xhZmstM1trAYgIMwMQETjMDEBErLVwRAQfGUQEx/d9AETkjyRJUiwWZ2dn19bWLl68eOHChc3Nzbm5uSRJ4jj2fR8AObgXZobDzMYYZu50Ou12e39/f2dnp+HU6/VWq1Wv1/f399vtdqfTGQ6Hxhjr4DgxMyYmJh4OKaXw8UcOxohIGIZBEIRhmCRJEARxHCdJUi6XZ2dna7XazMzM7OzszMxMpVIpl8uVSqVYLBYKhTiOwzCM49jzPACe5+FBEBHGKKVwGDNjjIjgXpgZgIhYazFGRHAE4uAuImJHjDFa6zzPrSMiAIwxAJjZOACMMbmTpmmWZXmeD50sy7TWw+FQa51lmdY6z/PM0VrnTpZlWus8z7XWxhhrbZZl1lpjjLUWgNbaWgtARACIiLUWgDgYIyJ4cOLgyJRSOAIigqOUguP7PgAi8n3f8zzf90vOzMzMxsbGY489dvbs2dXV1bm5uUKhEARBGIY4AhGx1hpjsizr9XqNRqPdbm9tbdXr9Var1W636/V6q9VqNpstZzAYGGOstSKC48TMmJiYeDiklMLHHzkYEzhRFMVxnCRJGIblcnlqamp6erpWq83OzlYqlVqtVh5JkqRYLCZJEoZhFEVBECilAHiehwdBRBijlMJhzIwxIoJ7YWYAImKtxRgRwRGIgxERMcYAEBFrrTHG3kVEABhjADCzGcmddERrPRwOsyzLnTRN8zzPskxrned5lmX5mCzLtNZ5nmutjTHWWjPCzACstcwMQEQAiIi1FoA4GCMieHDi4MiUUjgCIoKjlILj+z4AIvJ93/M83/dLzsLCwubm5mOPPXb27NnV1dWZmZkoioIgCMMQRyAi1lpjTJZlvV5vf3+/Xq9vbW01Go12u31wcNByms1myxkMBsYYa62I4DgxMyYmJh4OKaXwcUZEcIgIDhEppaIoCsMwjuNkpFqtzszM1Gq1GWd6erparRacUqkURVGhUIiiyPf9MAx931dKAVBK4WiICGOICPciIhgjInBEBICIwGFmAOJgjIjgvkQEgIjAEREAzGyMYWY7hpnF4RERsdaKiLU2z3NjTJ7nWZbleT4YDNI0zZ0sy7TWWZblTpZluZOmaT6SZVnu6BFjjLXWONYBIA4AZgYgIswMQByMiAg+FHFwBEQEgIhwX0QEh4gAkAPA930AROQ7nucVCoVKpXLixInTp09fvnz5zJkzJ06cqFQqoRMEAQ4jIgAigjHMbK01xuR53u12d3Z29vb27ty502g0Dg4O2u12p9NptVqNRqPVarXb7cFgYIxhZhHBcWJmTExMPBxSSuHjTCmFw3zfD4IgDMM4jhOnWCyWy+XZ2dk5Z3p6ulqtlsvlUqlUKBTiOE6SpFQqhWEYBIE/QkQAlFI4AiLCGHIAiANARHBfzAyAHQAigg+FmeGICABjDAAR0Vpbh5kBWGsBiAgzAxAR6zCztVZrnWVZnufayfM8TdM8z7WT57nWOnWMMenIcDjMHa11mqa5Y+7FWsvMAJhZRAAwMxxmBiAOABHBQxAHH4QcHAERASAHgFIKjud5ADzP80cKhUKtVlteXj537tyFCxdOnTpVq9UqlUoURWEY+r6PMUQER0QwxlprjGHmwWDQ6XS2t7f39vZ2dnZarVbb6XQ6zWazXq+3Wq1OpzMYDJgZADPjODEzJiYmHg4ppfBxppTCGKVUEARhGBaLxTiOkyQplUqVSqVardac2dnZSqVSLpeTJCkWi/GYMAyDIPAdIoKjlMIREBHGkANAHAAigvtiZgDsABARfCjMDEdEAKRpCoCZrbXGGBGBY60FICLMDEBErJPnubXWOHmeayfPcxHJsiwfSdN0OBymI8ORfCRNU+1Ya7XW1lpjjLVWRIwx1lpmBsDMIgKAmeEwMwBxAIgIHoI4+CDk4AiICAA5AJRScDzPA+B5nu/EcVwqlebm5k6ePHn+/PmzZ8+urq7Ozc2Vy+XQ8X0fY4gIjohgjLXWGMPM3W630+ncuXNnx2m32wcjzWazXq+3Wq1Op5NlmYgAYGYcJ2bGB1FKLSwsEJGIYISIPM/b3t42xuCRIqK1tTXP8waDwe7urojgLktLS0mSGGNu3bqFw4IgWFxc3N3dzfMcExMfCiml8DFERHCICA4RKScMwyiKSqVSwZmenp6bm6s5M06pVCoWi3EcJ0kSx3E04vt+4JADh4hwL0SE+yIiACICR0RwL8wMQESYGYCIwBERHIGIwBERAOIAsNaKCIAsywCIiLWWmYlIKQXAGANAHGstM1snyzI7orU2xmit8zwnouFwmDnDkYEzHMmybDgcaifLMmOM1tpaa4zRWjOziFhrRYSZjTEAxAHAzABEBI6IwBERPBwRwQchIhwNEQEgB4BSiogAKMfzvMCJomhqampxcXFjY+PcuXNnzpxZXl6emZkpFothGPq+HwQBxhARxogIHGutMUZr3e/3G43G9vb23t7ezs5Oq9U6cNrtdqPRqNfrnU6n3+9nWSYiAJgZx4mZ8UGWl5e/+MUvKqVwl//+7//+1a9+hUeEiB5//PFz586Vy2UiEpFWq/WrX/3qN7/5jYjAieP405/+9MmTJ5VSAG7fvv3OO+9sb28zcxAE6+vrFy9enJmZuepgYuJDIaUUPoaUUjiMiHzf9zwvdqacSqVSrVbn5uZqtdrs7Gy1Wi2VSsViMUmSKIqSJImiKAiCMAzjOPY8z/d9z/MAKKVwX0SEoxERvD9rLQARsdbiwYkDQEQAMLO1FoAxhpkBMDMAEWFmAEopOMYYAMxsHOsYY6y1xhhrLTMbY6y1Wus8z40x/X5/MBgMh8Ner9cfGTppmmZZljtaa2ttnufWWmOMtdYYY60VEQBaawDsABAHADPjMBHBRw8RASAHgOd5RASAiDwndKIoqlarS0tLp06dOnv27JkzZxYWFqrVapIkYRh6nhcEAcYQEQ4TEQDMrLXOsqzf7++O7OzstFqtg4ODtlOv1xuNRq/XGw6HWmsRAcDMOE7MjA9CRI899lgURRgpFounT58eDof/9m//1mq18IhsbGx8/vOfT9P05s2baZoWCoX19fUgCL73ve/t7u7Cefrppy9durSzs7O7u3vhwoUwDHGXdrv9+uuvN5tNTEx8KKSUwseQUgqHEZHv+1EUFQqFOI6r1ers7GytVpudnZ2bm5sZCYKgWCzGcRyGYRzHYRj6vh+GYRAEnkNEAJRSuC8iwtGICN6ftRaAiFhr8eDEASAiAKy1eZ4DsNaKCMYQEQBxABhjABhj0jQ1xtgRZrYjxpg0TbMsy/O81+v1+/2u0+v10jQdDAb9fj/LsuFwmOe5MSbLMjtijLHWsmOMYWYiAqC1BiAicMQBwMw4TETw0UNEAMgB4HkeEQEgIs8JnWKxODs7u7S0dObMmbNnz546dWpubq5SqcRx7Pu+53lBEGAMEeEwEQHAzFrrLMs6nc7u7u6Os7293Wq1DpxWq1Wv15vN5mAwGA6H1lo4zIzjxMx4QEqp559/fm5u7vvf//6dO3fwiExPTz///PNKqZdffnkwGMCpVqsvvPDCYDD4zne+k2VZkiRf/epXmfmll14yxjz55JNPPPHE1tZWkiTGmCRJpqamhsPhK6+80u12MTHxYZFSCh8f5GAMEcHxfT+O4yiKisViqVSqVqvz8/MLCwu1Wm1ubq5arZbL5UKhUCqVwjAMgiAMw8gJgsD3/TiOAZCDuxARjkZEABARDhMROMwMgB2MERHcCzPjXogIgLVWRABkWQZAHNyFiAAYYwAws7U2TVM7YowREWutMYaZjTFa6zzPh06/3+92ux2n2+32+/1erzccDvM8t9YOBgNrrdbaWgtAa22tBaC1BsAOAGMMMwNgZjjMjDEiguPEzHh/5OAIiAgAOQA8zyMiAEop3/eVUmEYFp25ubnV1dWzZ89ubm5ubGxUq9Wpqak4jr0RAOQAICIcJiIARCRN0+Fw2Ov1tp0d58BpNpv1er3ZbLZareFwmOe5tVZEcPyYGQ/ok5/85OOPP37VwaNz+fLlp5566s0333z77bcx5qmnnrp8+fKPf/zj9957LwiCF198UWv90ksvAfjSl7504sSJH/3oRzdu3Iii6IUXXigWi6+++ure3h4mJh4CKaXw8UEOxhARACIKwzBxpqamqtVqrVZbcGZnZ+fn58vlcpIkxWIxiqIwDIMgCMMwiqLA8TwvCAIA5OAuRISjEREARITDRAQOMwNgB2NEBPfCzLiLiDAzAGstMwPQWgMgItyLiFhrtdbWWmOMtVZrbR0RMcZYxxhjrU3TdDAY9Hq9A6fdbvd6vW63OxwO+/3+0NFaG2OstQCstcYYZgZgrWVmANZaAOwAEAcAM8NhZowRERwnZsb7IwdHQEQAyAHgeR4RAVBK+U4URaVSqVwuLywsrK6unj59enNzc21tbcqJ49gbAUAOACLCYSICQETSNB0OhwcHB9vb23fu3Nnd3d3e3m47zWazXq83m81Op5M71loRwfFjZjyIjY2Nz3/+87u7u6+++qqIYMzS0tL58+d//etfb29v4/g9/fTTly5d+va3v91utzFmaWnpueeee/PNN99++23P8/7yL/9yY2Oj1+uJSLlcrtfr3/3ud5VSzz333Pz8/A9/+MMbN27gaK5cuXL16lVMTNyFlFL4+CAHhxGR7/tRFCVJUigUarXa3Nzc4uLi/Pz8wsLCrFMoFOI4TpLE9/0gCKIoCoIgdDzPIyLf9+EQERwiwh8OM8MREQDWWhHBiDi4izgYIyIAmNlaC8AYw8wARAQAEXmeB0AOM8ZorY0xWmtjjLXWGMPM4hgnz/M0TVutVrvdPjg4aDudTqfb7Q4Gg263a601xtgxzAyAma21cKy1IgJARACICDMDEBE4zAxHRDBGRPAgRAQPQkTw/ogIDhHhvogIADkAPM8jIgBKqcBJkqRUKk1PTy8tLa2urp4+fXp9fX1lZaVUKpXL5SiKfN/3PE8pBYAcAESEw0QEADOnTrPZ3HZ2dnZ2d3cbjUar1arX641Go91udzodY4zW2lqL/xPMjCNLkuQrX/lKEAT/nz04cZKzuu4G/Dvn3nfpbbpn1yya6RmBwZjYyoQKxCkgxjjBwSnjBBI7/H1xcBIqMcbBiR1MsJ1gEKMVkIQ02kaz79Mz3f2+957zVd2qqWoVsiLAWviqnwfAwsLCBx98cPXqVVUFUCgU/vqv/7pQKLRarVdffbXZbOIO++53v1upVF555RXnHDqkafqDH/xgfn7+5z//OYJnnnlmenpaVc+fP3/69Omtra1nn322Xq+/++67p06dwm2bmZmZnZ1FV9cnEDPji4MC3MhaG0VRmqbl4NChQ8PDwyMjI8PDw0NDQ7Varaenp1gsJkkSx7G1No7jKIgDZgZgjEEHIsLviaoCEBEEqgpARFQVgKoiEBEEqooDqioi6OC9ByAi3nsAGgBgZgREBEBEvPfOOR/kee69d4GIAPAH8jxvNpv7+/ubm5vr6+sbwdbWViNotVpZ0G63AUgAwHsvIgBEBIAGAFRVRACICAIRAaABAFXF74OI4A5gZtwSEQGgAIAxhogAWGvjOI6iqFAo9ATjwYMPPjg5OXno0KFqtVosFpMkMcZYaxFQAICIcCNVBeC9bwWbm5uLi4tLS0uLi4urq6tra2vr6+vLy8sbGxtbW1u7u7suEBHcFSKC28bMX/7yl0dGRqIoGhsbE5H//u//vnjxIgBmfuaZZ+r1+qVLl9566y3vPe6kQqHw/e9/v9Vq/ehHPxIRdLDWvvzyy6r6wx/+0DmHwFqrqt57AI899tjRo0fPnz//9ttv49OYmZmZnZ1FV9cnEDPji4MCdLDWGmOiKCqXy7Vara+vb3R0dHh4eGRkZHh4uL+/v1Qq9fT0JEkSx3EUxHFsrWXmJEmstQiMMehARPg9UVUAIoJAVQGIiKoCUFUEIoJAVXFAVUUEgIioKoB2uw1AAwAUAGBmACLivQeQ53mWZd5755wPRMQ5JyKqCsA512q1ms3m7u7uerC6urq2trYbNBoN51y73c6yzHuvqt57ABoA0ACAiABQVdxIRBCICAANAKgqfh9EBHcAM+OWiAgABQCMMUQEwFobB6VSqVqt9vb2Hg6mp6fr9frg4GCpVCoWi0mSGGOstQgoAEBEuJGqAvDet4LNzc3FxcWlpaXFxcXV1dW1tbX19fXl5eWVlZXt7e1GoyEizjkRwV0hIvj0iOihhx760z/90/n5+f/4j/9AEEVRb2/v5uZmnue4w4wxf//3f7+5ufn666/jE1566SVm/qd/+idVxY0efPDBp59+enFx8Y033hARfBozMzOzs7Po6voEYmZ8cVCAgIgAGGOSJInjuFar9fX1DQ0NjY2NjQR9fX29vb3lcrlQKMRxHEWRMSaKojiOoyiy1kZRxMwImBl3gKoiEBEAqioiAEREVQGoKgBVFRF0UFUAqioiAJxzIgLAOQdAVREYYwCICDN77/MAQLvdzvNcVZ1zekBEvPcuaDabm5ubq6ury8vLKysrGxsbu7u7jUaj1WplWdZut51zqioiqgogz3MAqopAAxzQAIGq4oAG6KCquA2qiltSVdwZRASAiHAzRASAiJgZADMTkTGGmdM0TZKkUCj09fX19vZOTk4ePnx4enp6fHx8cHCwVCoVi8UkSZiZiJgZABEhICLcSFUBiEgr2NzcXAkWFhaWl5dXV1dXVlYWFxeXlpZ2d3f39/e99yKiAe48EcFn9b3vfa9Wq7366qs7Ozu4u9I0/cEPftBut1955RURQYcoil5++WXv/T/+4z8659BhdHT029/+9tbW1muvvZbneZIkpVKp1Wrt7+/jNszMzMzOzqKr6xOImfHFQQEAIkKQJEmapoVCYWBgoL+/f3R0dHx8fHR0dHBwsBoUi8U4MEEURXEcR1FkjLHWMjMCIsLvlaqig/cegKqKCAARUVUAqgpAVb336OC9ByAi3nsAzjkRAaCqCJgZgKr6IMsy732e5845AN57EQEgIghUNcsy59zu7u729vZisLy8vL29vbW11Wq1ssAHzjkRASABABFBoKoANEAHEQGgATqoKj49DXDvMDNuhogAcACAiJjZWsvMhUIhSZJSqTQwMNDb2zsxMTE5OVmv18fGxgYGBorFYpqmSZIwMwBjDDoQEW6kqgBUtdVqNZvN3d3dtWB+fn55eXlpaWkhWFpa2tvb29/fd84BEBFVxZ0nIvisnnzyyYceeui1115bWVnBXfed73ynt7f3lVdeyfMcHYrF4ve///25ubm33noLHarV6gsvvOCce+211xqNxh/+4R8++uijcRyr6ptvvnnp0iX8X2ZmZmZnZ9HV9QnEzPjioAAAESEol8uFQqFYLB4KxoORkZHe3t5qtVqpVKIoiuPYGGOtNcZEURTHsTGGiKy1zIyAiPB7paro4L0HoKoiAkBEVBWAqgJQVe89OmRZBsB7n+c5AA0AeO8BeO+dcwDywHuf57kPVBUABQCICID3fj/Y2dlZWFi4fv368vLy9vb2zs5Os9lst9vOOQnyPPfeiwgRARARVUUHVQWgATqICAAN0EFV8elpgHuHmXEzRASAAwBExMzWWmYuBNVqtT+o1+sTwdjYWG9vb5IkaZomScLMAIwx6EBEuJGqAlDVVqvVbDbb7fba2trq6urCwsLy8vK1a9fm5+cXFhaWlpb29vb29/edcwBERFVx54kIbimKImNMq9XCJzz33HPj4+M/+clPlpeXcdc99thjR48e/fGPf7y6uooOExMTf/7nf/7OO++cOXMGB5IkeeGFF0ql0uuvv76ysvKlL33pqaee2t/fv3Tp0tTUVKFQ+PWvf33u3Dnc0szMzOzsLLq6PoGYGV8EzIwbGWPioKenp1qtjo2NjQeHDh0aHh7u7e1N07RYLCZJYq1l5uiADYwxAIgId4aqAtAAgHMOgKp67wGIiKoCUFUAqioiCHxgjMmyzDmnqt57EfGBqmZZ1g6ccz7I85yIrLXGGCICQAEAEWk2m/v7+5ubm0vB6urq2tra9vZ2FuR57gJVBeCcA6CqCLz3IoIOIoKbUVXcBhHBFwEz42aICAAHAExgrSWiUqlULBYrlcrQ0NDAwEC9Xp+YmKjX6wMDA/39/WmaxnGcJAkzAyAidGBm3EhEAKiqcy7Lsv39/Y3genDlypXz588vLCwsLS01m80sy7z3AEREVXHniQh+NyJ67LHHHn744Z/85CdbW1voUCwWX3zxxd3d3X/7t39TVdx1f/AHf/D444+fPn36t7/9LTp84xvfOHLkyC9/+cuLFy8iMMY8//zzQ0NDv/jFLy5fvszML730UqVSefXVVzc3Nx966KEnn3zy+PHj77//Pm5pZmZmdnYWXV2fQMyMLwJmRgciiqIojuNCodDf3z8wMDA+Pn748OHx8fH+oFKpFAqFJEnsgTiOoyiK49gERASAiHBnqCoADQA45wCoqvcegIioKgBVBaCqIgJARJxz3vs8z7Ms80G73fbe53nedSaCcgAAIABJREFUbrcbjUaWZe122zlHHZIksdYaY4gIQBRFzrl2u91qtdbW1lZWVpaXl5eWlra2tvb29hqNhohkWZbnuYg450REVQF47wFoAEBVcSMRwc2oKm6DiOCLgJlxM0QEgAMAJrDWRlFULBZLpVKtVhscHBwaGqrX65OTk4cPHx4YGOjr60uSJI5jay0RASAidGBm3EhEAKiqcy7Lsna7vbGxsbm5ee3atStXrszNzZ0/f/769esbGxvNZjPLMu89ABFRVdx5IoJbmp6efuaZZ5aXl//zP/+z3W4jKJVKTz755Pj4+JkzZ9555x0EDz/88B//8R+/++67Z8+exZ2Xpunzzz/f09PzxhtvLC0tIZicnHz22WdXVlZ++tOfigiCZ599tl6vv/vuu6dOnQJARC+99FKpVPqHf/iHLMueeOKJRx999P333z9+/Di6uj4TYmZ8ETAzDnAQRVEcx5VK5VAwMTExHlSDYrGYJEkURcwcx3EURfEBZqYAnwYR4XdTVXTQAIAGAJxzAFTVew9AAwSqKiKqKiLOuTxoHWg2m41GY39/vxVkWZbnuYhYa6MostZGURTHcRRF1lpmRpDn+c7Ozubm5tra2lLQaDT29/dbrVYeuMB7r6reexFB4L1HoKoAiAg3UlV8gqriRqqKm1FVfBEwM26GiABwAMAYY62NglKpVC6Xe3t7h4aGRkZG6vX65OTk2NhYf39/rVaLA2YmInQgIgBEhBuJCABVdc7lwcbGxvr6+rVr1z7++OMLFy6cO3duYWFhZ2en3W7nee69ByAiqoo7T0RwS0mSPP/88319fe12e35+3jmXpunY2Ji19ty5c7/5zW9EBECxWPzbv/1ba61z7p//+Z/39vZw542MjPzlX/6lqi4tLe3s7PT29g4NDanqv/7rv25ubiL4+te//sgjj5w/f/7tt99GwMxPPfXUAw88sLq62mg06vV6nuc/+tGP2u02uro+E2JmfBEwMwIistYycxzHaZr29/ePjIyMHTh06FA5KBQKcRyboFgsRlEUHwBARPg0KMDvpgEAVUUgIgAkAOC9B6Cq3nsEqorAey9BO9jf39/b29sNGo3G3t5eo9HY29vL89x7T4G1Nk3TOI6TJIkDCgBkWba3t7e5ubm6urq2tra5ubm9vd1oNHyQZZn33jmX5zkAEfHeA5AAHVQVn4OI4IuMmXEzRASAAwDGmCRJoiiy1lYqlVKpNDAwMDw8PD4+Xq/XJycnR0dHq9VqT09PFEXWWmMMOlCAmxERAKrqg1artbm5ubS0dOXKlQ8//PDcuXMXL15cXl7e29tzgfcegIioKu48EcH/pVQqPfLIIxMTE729vQBUdWVl5dq1ax999FG73UbAzEePHv3a17526tSp48ePiwjuiocffnhycnJ0dNQY45ybn5+/ePHipUuXEFhrv/WtbwH42c9+pqro8PWvf/2RRx4BsLy8fPz48fn5eXR1fVbEzPgiYGYERGSDcrlcqVSGhoZGR0fHx8dHR0cHBwd7e3vTNC2Xy1EUxXEcBcViMU3TJEniOGZmAESET4MC/G4aAFBVBCICQAIA3nsAquq9R6CqALIs895nWdZsNhuNxt7e3nawvr6+G7RarSzL8jwnIg7iOE6SJE3TJEniOGZmClqt1v7+/tbW1tra2sbGxs7Ozt7eXnbABaoqIs457z0CEcHNqCo+BxHBFxkz42aICAAHAIwxSZJEUZQkSaVS6enpGRoaGh4enpiYmJ6enpiYGBwcrFar5XKZiKy1xhh0oAA3IyIAVNUHrVZrc3Pz+vXrZ8+ePXXq1Pnz569evbq5udlut13gvQcgIqqKO09EcHuYOU1TZvbeN5tN3E+SJLHW5nmeZRluREQAVBU3IqIkSZi52WyqKrq6PgdiZtzHiAgBMwMQESJKkiSO42q12t/ff+jQodHR0bGxsaGhof7+/mKxmATW2jiO0zQtFoulUqlQKMRxbK0lIgBEhFsiInQgIvwOqgpAVRGICABVReC9V1UAIoJAVb33Enjv2+12s9nc29vb3t5eP7CxsbG1tdVut5vNpnOOmQFYa+M4ttamaZokSRQwcx7s7e1tb29vbm7u7Ozs7u7u7+/ngfdeVb33zjk5oAFuREQ4oKq4PaqKm1FVfJExM26GiAAQkTGGgziO0zRNkqRarVYqleHh4fHx8Xq9PjU1NTIycujQoVKpVCwWmZmImBkBEQEgIvwOIgJAVX2wv7+/ubl56dKl06dPnzx58uOPP15cXNzd3c2yTALnHAARUVXceSKCrq6uz4eYGfcxZkZARAiMMcViMU3Tvr6+wcHBQ8HQ0FC1Wq3VakmSxEGSJIVCoXwgSRJrrTGGiAAQEW6JmXF7RASBqgIQEQSqCkBEVBWAqgJQVe+9c05V2+12s9nc3t7e2NhYW1tbX19fWVlZW1vb2tpqNBrtdltVARCRtZaZoyiKA2utMQaAiOR53mg0dnZ2tra2Go1Gs9l0zmVZpqoi4gMAIuK9B6CqIoLfHxHB/4+YGTdDRACIyBxIkqRQKKRpWq1Wa7Xa6Ojo5ORkvV6fmpoaGhoaGBhIA2YGQEQImBm3JCIAVNUHOzs7q6urH3300cmTJ0+dOnXp0qX19fV2AEBEnHMARERVceeJCLq6uj4fYmbcx5gZAREBYOYkSQqFQk9Pz8DAwODg4OjoaF9fX29vb6lUKhaLURDHcalUqlartVqtUqmUy2VjDDMbY4gIABHhlpgZt0dEEKgqABFBoKoARERVAagqAO99u912zuV5vrOzs7m5ubKycv369cXFxY2NjZWVlUajkee5cy7Pc2utCWwQx3EURQBU1XvfbDb39vb2g2azmee5cy7Pc++9BiLinFNVdFBV/F6JCP5/xMy4GSICQEQmiKKoUCikaVoqlarVal9f3+Tk5MTERL1en56eHhoaKhaLhUIhjmMERISAmXFLIgJAVX2wsbGxsLBw6tSp2dnZkydPXr9+fXd313uf5zkAEXHOARARVcWdJyLo6ur6fIiZcR9jZhyIosgYE8dxrVbr6+sbHBwcGhrq6+vr6ekpl8tRFMVxHEVRkiSFQqGvr29wcHBgYKBYLFpr4zhmZgBEhJthZtwGDdBBVQFogE9QVR9IkOd5u93e39/f2dmZn59fWlpaXFxcWlpaXl7e3d1ttVpZlokIANPBWmuMQdBqtbIsazabe3t7rUBEALTbbQAaAJAAgIig69NjZtyMMQYAMxtjbFAoFIrFYqVS6evrGxoaqtfr09PT9Xp9bGysr6+vVCqZgIgAMDNuj4gAUNUs2Nrampube++9944dO/bRRx8tLy9nWeYDACLivQegAe48EUFXV9fnQ8yM+xgzI2DmOI6TJCmXy729vX19ff39/bVarVqtFovFJEmstUmSpGlaC4aHh/v6+np6eqy1URQZY4gIABHhZpgZt0EDdFBVABrgE7z3zjnvfZZl7aDRaKysrCwvL1+5cuXq1asrKyvb29s7OzvOOe89BQCMMdZaZgYggQv29vbyPG+32845772IIMjzHIGIoIOIoOvTY2bcjDEGADMbY6y1cRwXi8VSqVSr1YaGhsbGxqaDw4cPDw0NlcvlJElMQEQAmBm3R0QAqGoWrKysfPDBB7/5zW9OnDhx+fLlzc1N55wPAIiI9x6ABrjzRARdXV2fDzEz7ktEhICImNkYk6ZpsVis1Wp9fX39/f3VarVSqZRKpTRN46BUKpXL5aGhoeHh4cHBwUKhkKYpMxtjmBkBEeFGRASAiHBLqopAVXFAVRGoKm6kqiLinMvz3DnXbDYbjcbOzs7i4uLlYGFhYXV1dWdnp91uO+cAEJExhpkBEBEzq6qIOOdarVa73c7zPMsy55z3XlWJSEQQeO9xM6qKrk+PmXEjIgLAzETEzMaYOI6TJCkWi6VSqa+vb3x8vF6vHzlyZGpqanR0tFqtFotFay0HRASAmXEbNAAgIlmWNZvN69evHz9+/K233jpz5szS0lKj0fDei4j3HoCqeu8BaIA7T0TQ1dX1+RAz4/5DAQJmtkGlUqlWq7Varb+/v7e3txxYa0ulUpqmxWKxL+jv7x8YGCiXy/YAAGZGQETowMy4PSKCDqqKW3LOtdtt51y73W61Wjs7O2trawsLC5cuXbpy5cr169e3trZ2dnaccwA0AGCMYWYELsjz3Hvfbre99wDa7TYAVRURdBARdP3+MDM6EBECIrLWMrO1tlAoJElSKpXK5fLQ0NDU1NT09PTU1NThw4eHhoaKxWKapnEcAyAiBMyM26CqIgLAOZdl2c7OzpUrV955551f/epXZ8+e3djYaDabIgLAOQdAVUUEgAa480QEXV1dnw8xM+4/FABgZmutMaanp6cv6O3t7e/v7+npKRaLpVIpSZJSqVQul2u1Wn9/f61WK5fLpVLJWmuMsdYSEQBmRkBE6MDMuD0igg6qiptxzgEQEedcu91utVqNRmNnZ2dtbe3y5csff/zx5cuXV1dX19fX8zxvt9vMjICZAWgAIM9z771zLs9z55yIIPDe42ZEBF2/P8yMDkSEgIhsEMdxIahWq319fePj41NBvV4fHh6uVqtJkqRpyswAiAgBM+M2qKqIAMiyrN1ub29vnz179r/+679++9vfzs3N7e7uOucQOOcAqKqIANAAd56IoKur6/MhZsb9hIhwgJmNMUmSFIvF3t7eoaBWq/X29pbL5VKpVCwWK5VKsVisVCq1oFgsRkGSJETEzEQEgAIcICIERIRbUlUAqoobqSo6EJGqiogPXNBsNvf39zc2NlZXVy9cuHDu3Lm5ubmVlZWdnZ12uw1ARIwxCIhIRHwgInmeq6r3XgJVRSAiCIgIHVQVXb8/zIwORISAiKIgSZJSqVQoFAYGBgYHB6eCI0eOjI6O9vf3l0qlKGBmdGBm3JKqAlBVEfHe53nebrc3NjZOnDjxxhtvvP/++0tLS+122zmHIM9zAKoqIgBUFXeFiKCrq+vzIWbG/YSZERCRMcZaW61W+/v7x8bGhoJqtdrT01MoFIrFYqlUKpfLpaBQKBSLxSRJbBBFEQAiYmYARIQOFOA2iAhupKq4GRFxzolIFrRarUajsb29ff369bm5udOnT1++fHltbS3Lsna77b1HQEQAVFVEnHMi4g8A0AAdRARddx4zowMRIbDWxnEcRVGapqVSqVwuj46OjoyMTAXT09N9fX3VarVQKFhrjTHMjA7MjFsSEQTeexfs7+8vLS397//+73/8x3+cPn16e3u73W6LCIIsywCoqojgLhIRdHV1fT7EzLifMDMAIjLGWGvL5fLIyMjY2Nj4+PjQ0NDAwEC5XO7p6UmSJE3TUqlkrS2VSsViMUmSKIpsYAIARMTMAIgIHSjAbRAR3EhV8Qki4pzz3ud5nmVZq9VqNBrr6+vLy8vnzp07derUlStX1tbW9vb2VFVEmJmIAHjvAXjvXaCqEqgqAiJCBxFB153HzOhARAiSJInjOEmSQqFQKpVqtdpEUK/Xp6amJicny+VysViM49gEzIwOzIxbEhEE3nvnXJ7nOzs7165dezM4d+7c3t5elmWqyswAsiwDoKoigrtIRNDV1fX5EDPjfkJExhhmjuO4VCoNDw8/+OCD40Fvb2+1Wk3TNI7jJEniOE6COI6TJEnT1FobRREzA4jjGAAR4UbMjE9DRHAjVQUgIjjgnBMR51yWZd77ZrC+vn7t2rXz58+fOXNmbm5uc3Oz1Wrlea6qCIgIgIi4AwhUFYCIoOuuY2bcDBEZY6y1ANI0TZKkVCr19/fXarXJycnp4PDhwwMDA6VSqVAoJEnCzACMMejAzLglEUHgnMuyrNVqbW1tzc3N/exnP/vVr351+fLlVqvlvccB5xwAVRUR3EUigq6urs+HmBn3EyIyQU9Pz9jY2JEjRx544IFDhw4NDg6Wy+U0TY0xcRxHUZQkSRRFaZrGcZwkSRRF1lpjDBEBiOMYABHhRsyMT0NEcCNVBSAiAFTVe++c897neZ4FOzs7u7u7169f/+ijj06fPj03N7e+vt5ut733qopARFQVQJ7n3nsRwQFVBSAi6LrrmBk3Q0TGGGutMSZN00Kh0NPTMzAw0N/ff+TIkang0KFDtVqtUCgUi8UoihAYY9CBmXFLIgJARPI8b7fbrVZrdXX1ww8//Pd///f33ntvaWkpz3PvPQ445wCoqojgLhIRdHV1fT7EzLg/EBEAYwwzl8vl8fHxL3/5yw899NDY2FhfX1+hUIjjOIoiZo7jOIqiOCgUCnEcR1FkrTXGMDMRAbDWAiAiHCAiAESET0NE0EFVEcgBF3jv2+12nufNZnN9fX1hYeHs2bPHjx8/f/785uZmlmXOOTogIs45EQGQ57mIACAiBKoKQFXRddcxM25ERACIyBhjrY2iqFgsFgqF3t7ewcHBkZGRI0eO1Ov1qampvr6+np6eNE2TJDHGEBEAZkYHZsbvoKoANPDe53neChYWFo4dO/bTn/70zJkzGxsbEqgqAu89AFUVEdxFIoJPiYgGBgYajUaz2cR9gIgmJiaMMfv7+8vLy6qKTxgZGSkUCs65q1ev4kZRFB06dGh5eTnLMnR1fSbEzLgPMDMCY0ySJIcPH37ooYe+8pWv1Ov1np6eSqUSx7ExhpmNMXGQBoVCwRhjrTXGADDGMDMAZgZARAiYGZ+JiCBQVQAaAPAdXNBut5vN5tbW1vz8/NmzZ0+ePHnu3Ln19fU8z733qgqAiFTVOZfnuYgAUFUEIoKue42Z0YGIEBhjbBBFUalUKhQKAwMDw8PDhw8fnp6enpiYOHz4cDVIksQYY61lZgBEhA7MjJvRAIH3XkTyPN8Lrl279utf//o///M/L1y4sLOz470HoAEA7z0CEcFdJCL4lL70pS89+eSTc3Nzv/zlL3FPEdFXv/rVhx56qFKpEJGqbm5ufvjhh+fOnVNVBGma/umf/unk5CQzA7h27dpHH320uLgoIlEU1ev1Rx55pK+vbzZAV9dnQsyM+wAzI0iSZHh4+JFHHvnqV786PT09ODiYJIm1lpmNMVEUxXGcBGmaFgoFa60JEBhjmBkAMwMgIgTMjM9ERBCoKgDnnIgAEBHvvXNORPJgZ2en0Whcv379o48+On78+Pnz5zc3N1utlog454wxAFTVH1BVAKqKQETQda8xMzoQEQJjjA0KhUKxWCyXy8PB5OTk9PT05OTk4OBgtVqtVCpRFBljrLXMDICI0IGZcTMaIPDeO+eyLNvb29vc3Lxw4cJbb7313//93/Pz861WyzkHQAMA3nsEIoK7SETwacRx/Dd/8zelUunUqVPvvvsu7qmpqalvfvObrVbrypUrrVarWCzW6/Uoin7yk58sLy8j+JM/+ZOvfOUrS0tLy8vLX/7yl+M4xidsbW29+eabGxsb6Or6TIiZce8QEQIiAmCtrdVqDzzwwOOPP/7QQw8NDw+nacoBgDiOC0GapklgrTXGEBEzExEADgAwMwAiwgEiAkBEuA2qikBVAaiqiAAQEe+9BN57F+R53mq1NjY2lpeXP/zww+PHj589e3Ztba3VannvAaiqMUZEvPfOORHRAAdUFV33AWbGjYjIGMPM0YGenp5KpXLo0KHx8fGpqal6vT42Ntbf31+pVEqlUhRF1lpjDBEBICJ0YGbcjAYAVDUPsixrNBrr6+sffvjhz3/+8/fee29lZaXVaokIABFRVQAigkBEcBeJCD6Nb37zm1NTUwBOnDhx7Ngx3DvVavU73/kOM7/66qv7+/sIent7X3jhhf39/X/7t39rt9uFQuHv/u7vROSHP/yhc+6xxx47evTo/Px8oVBwzhUKhZ6enmaz+dprr+3u7qKr67MiZsa9QwEAZiaiUqk0Pj7+R3/0R4899tjw8HClUiEiZjZBIUjTtFAoRFFkDgAgImYGYIwhIgDMDICIcCNmxm3QAICqAlBVEQEgIi5QVe99nuftdrsRXL9+/cKFC7Ozsx9//PHq6mq73c7zXERwwHvvnPPeA9AAXfcZZsaNiMhay8xxEEVRrVarVqtjY2OTwcTExOjoaK1WKwZRFFlrjTEIiAgdmBk3owEAEcnzvB1sbW0tLy/Pzs6++eabH3zwwcbGRpZlqgpAAgCqikBEcBeJCG7bgw8++PTTTy8uLo6MjJw4ceLYsWO4dx599NEnnnjivffeO3nyJDo88cQTjz766C9/+cuLFy9GUfTyyy/nef7DH/4QwHPPPTc6Ovpf//Vfly9fTpLkhRdeKJVKr7/++srKCrq6PgdiZtw7FABg5jiOa7XazMzM448/Pj09XalU4jhWVROUy+U0SJIkTVNmJiITACAiZgZgjCEiAMwMgIhwI2bGbdAAgKoCUFURAeCcy7LMe6+qzrk8zxuNxvb29vLy8tmzZ48fP3727Nm1tbVWq5XnOREBUFUA3nvnnPcegQbous8wM25ERNZaZo6DUqlUq9V6e3sPHz48GYyPj4+OjpaCNE2NMdZaYwwCIkIHZsbNaABARPI8b7fb+/v7q6ur8/Pz//M///OrX/1qbm5ud3fXey8iACQAoKoIRAR3kYjg9lSr1e9973t7e3tvvfXWd7/73RMnThw7dgwdRkZGHn744bNnzy4uLuLO+5M/+ZOvfOUr//Iv/7K1tYUOIyMjzz///HvvvXfy5EljzJ/92Z9NTU01Gg1VrVQqa2trP/7xj5n5+eefHxoa+sUvfnH58mXcnpmZmdnZWXR1fQIxM+4pZrbWMnOhUJiamnryySe/+tWvDg4OxnFsgiiK4jgul8tRFCVJEkWRtdYYgyCOYwAcAGBmIsIBIsKNmBm3JCIIVBWA9x6AqoqIc04CF2RZ1mw219bWrl+/fuHChVOnTn388cfLy8vtdjvPcxwQEe99nucIRARd9ytmRkBEAIjIBMwcx3GhUIiiaHBwcGBgYGJiYjoYHBwcGBgol8uFQiFJEhswMwIiAkABbkZEEKgqAO99q9Vqt9uNRmNlZeXjjz9+++2333vvvWvXruV5nmWZqgLQAICqIhAR3EUigtvAzH/1V381MDDwk5/8JMuyF1988cSJE8eOHcOBQqHw13/914VCodVqvfrqq81mE3fYd7/73Uql8sorrzjn0CFN0x/84Afz8/M///nPETzzzDPT09Oqev78+dOnT29tbT377LP1ev3dd989deoUbtvMzMzs7Cy6uj6BmBn3FDNba+M4Hh4e/trXvvbEE09MT09XKpUoiowx1to4SJIkjuMoiowx1lpjDII4jgFwAICZiQgHiAg3YmbckoggUFUA3nsAIuICCZxzWZZtb29vbW1dv3793LlzH3zwwccff7yystJut0XEe49ARHwgIghEBF33K2ZGQEQAiMgE1to0KJVKAwMDQ0NDU1NT09PThw8f7u/vHxgYKBaLaZomSUJE1lpmRkBEACjAzYgIAlUF0G63W8H29vb169fPnDnzm9/85vTp02tra3meZ1mmqgA0AKCqCEQEd5GI4DY89thjR48ePXbs2IkTJ2q12osvvnjixIljx47hADM/88wz9Xr90qVLb731lvced1KhUPj+97/farV+9KMfiQg6WGtffvllVf3hD3/onENgrVVV7z2Axx577OjRo+fPn3/77bfxaczMzMzOzqKr6xOImXEvEBECZrbWFgqFI0eOPPnkkzMzM8PDw2maGmOstXEcR1EUx7ExJooiay0RWWs5IKIoigAQkTEGAAUAiAg3IiIARISbUVUEqgpAAwDee1UVkTzPnXPe+zzPnXO7u7vLy8sLCwvnz58/c+bM3NzcxsbG3t6e9x6BqkrgnNMAgaqi6/5DRACICAEzIzDGWGujKErTtFAo9PT0DA8Pj46OTk1N1ev1sbGxWq3W19dXKpWSJImiiIg4ICIcoAA3IyIA9ECr1WoGGxsbly5dmp2dfeeddy5cuLCzs5MHqgpAVRGoKgIRwV0kIvi/jIyMPP/888vLyz/96U9FpFarvfjiiydOnDh27Bg6RFHU29u7ubmZ5znuMGPM3//9329ubr7++uv4hJdeeomZ/+mf/klVcaMHH3zw6aefXlxcfOONN0QEn8bMzMzs7Cy6uj6BmBn3AjMDICJrbRzH1Wr16NGjf/Znf/bAAw/09vbGcWytNcbEcWwDc4CIrLXMbAJmBmACdCAidGBm3JKIIFBVACKiqgC89845EfHeZ1nmnGs2m3t7e8vLy1evXr148eLZs2evXLmyurqaBaqKwHvvnBMRVQUgIui6X1GADsYYBNbaOI6NMWmaFovFarV6+PDhiYmJycnJw4cPj46OVqvVSqVSLpeTJLHWEhEAZiYiHKAANyMiAFTVB+12e39/f29vb3V19cMPP3w/uH79+u7urg9EBIGqooOI4C4SEdxSmqbf+9734jj+xS9+sbe3B6BSqfzFX/zF2bNnz5w5A2Bvby/Pc9xdaZr+4Ac/aLfbr7zyioigQxRFL7/8svf+H//xH51z6DA6Ovrtb397a2vrtddey/M8SZJSqdRqtfb393EbZmZmZmdn0dX1CcTMuBeYGUEcx+VyeXh4+Kmnnnr88cfr9XqpVDKBtZaImNlaaw4QkbWWmU3AzABMgA5EhA7MjFsSEQSqCkBEVBVAlmXuQJZlzWZzY2NjfX398uXLFy9e/Pjjj69evbq9vb23t+e91wCB9945JyKqCkBE0HW/ogAdjDEAmDkOoigqFArFYnFoaGh8fHwyGB8fHx4eLpVKlUoljuMkSay1RASAmYkIByjAzYgIAFX1wf7+/t7e3s7Ozvz8/MmTJ48dO3bmzJmNjY1ms+kDEUGgquggIriLRAS39PTTTz/44IP43ebm5t566y0Rwd31ne98p7e395VXXsnzHB2KxeL3v//9ubm5t956Cx2q1eoLL7zgnHvttdcajcYf/uEfPvroo3Ecq+qbb7556dIl/F9mZmZmZ2fR1fUJxMynEYwxAAAgAElEQVS4F4iIgyRJyuXyl770pW9/+9tf/epXDx06ZK0lImamgJmttcwcxzEHxpg4jo0xRGSMAUBEzIwORIQORIQbqSo6qCoAEfHeI1BV732e5y5ot9t7e3s7OzvzwYULFy5evHj16tXNzc0sy/I8R6CB915EVFVEVBWAqqLrfkUBAiICYIzhIA6iKCoWi5VKZXR0dGJiYnp6enx8/NChQwMDA6UgjmMbEBEACgAQEQAiwo1UFYCqIlBV51ye5/vB+vr6hQsX3n///ePHj1+8eHF7e7vVaqmqBAhUFYCqAlBV3F0iglsql8uPPvooEeFAkiQPPPDA2tra8vKyqs7Nza2srOCue+yxx44ePfrjH/94dXUVHSYmJv78z//8nXfeOXPmDA4kSfLCCy+USqXXX399ZWXlS1/60lNPPbW/v3/p0qWpqalCofDrX//63LlzuKWZmZnZ2Vl0dX0CMTPuBSIyxlhrC4XC4ODgH/3RH33rW986cuRIrVYDQETMDICIjDHWWmZOksRay8zW2jiOmRmAMQYAEeFGzIxbEhF0UFUAIuKcQ+C9d0E72NvbW1tbW1pampubu3Llytzc3MLCws7OTrvd9gECVfWBiAAQEVVF1/2NAgBEhMAE1tr4QLVardVq4+Pjk5OT09PThw4dGhoaqtVqpVIpTdM4jq21xhgiAkBECJgZNyMiCFQVgIjkeZ5l2f7+/u7u7tLS0ocffnjs2LEzZ84sLCzs7u5mWQZAVb33CFQVgIjgXhARfEq1Wu3FF188ceLEsWPHcO/8wR/8weOPP3769Onf/va36PCNb3zjyJEjv/zlLy9evIjAGPP8888PDQ394he/uHz5MjO/9NJLlUrl1Vdf3dzcfOihh5588snjx4+///77uKWZmZnZ2Vl0dX0CMTPuBSIyxsRxXCwWp6amvvnNbz799NOHDh1iZgBExMwAiMgYY61l5iRJoiiyB4gIgDEGABHhRsyMWxIRdFBVACLinAPgvXfOee+zLGsE6+vr8/Pz165du3DhwtWrV5eWlnZ2dvI8dwEAIgKgqj4QEQAioqrour9RAICIEJggiqI0TeM4TtO0v79/cHDw8OHDk5OT9Xp9KCiXy2nAzNZaYwwRASAiBMyMmxERBKoKwDnXbrfzPN/b29vY2Lh69erp06ePHTt27ty5tbW1VqvlnAOgqt57BKoKQERwL4gIPqVarfbiiy+eOHHi2LFj6PDwww//8R//8bvvvnv27FnceWmaPv/88z09PW+88cbS0hKCycnJZ599dmVl5ac//amIIHj22Wfr9fq777576tQpAET00ksvlUqlf/iHf8iy7Iknnnj00Ufff//948ePo6vrMyFmxr3AzFHQ09MzMzPz3HPPfe1rX6tWq8zsnPPei4i1lojiOE6DOI6jKDLGALDWMjMAIkIHZsYtiQhupKoAsixDICLOORHJsqzdbjebzZ2dndXV1SvB5cuXl5aWVlZWtra2XOC9ByAiqgogyzIEqgpAA3Td3yhAwMzWWmaO49haG8dxqVQqFotDwfT09ERQq9V6enoqlUqaplEUJUkCgIiYGR2YGTcjIghU1Tnnvc+yrNlsNhqNjY2Nc+fOHTt27OTJk3Nzc3t7e1mWOecAqKqIoIOI4F4QEXxKtVrtxRdfPHHixLFjx3CgWCz+7d/+rbXWOffP//zPe3t7uPNGRkb+8i//UlWXlpZ2dnZ6e3uHhoZU9V//9V83NzcRfP3rX3/kkUfOnz//9ttvI2Dmp5566oEHHlhdXW00GvV6Pc/zH/3oR+12G11dnwkxM+4Fa20cx2maDg0NPfXUU9/85jfr9boxBoBzTkSY2VobRVGhUEiDKIriOGZmAMxMRACICB2YGbckIriRqgLIsgyAqrogz/P9/f1Go7Gzs7OysrKwsHDlypXLly/Pz89vbm7u7u5mWeYDVQUgIqoKIMsyBKoKQAN03d8oQMDM1tooiuKgUCiUy+VKpTIWTE5OjoyMjI6O9gTFYjGO4yiKrLUAiIiZ0YGZcTMigkBVnXN5nreCra2txcXF06dPHz9+/IMPPlhcXGy321mWOecAqKqIoIOI4F4QEXxKPT09zz333MmTJ8+dO4cDzHz06NGvfe1rp06dOn78uIjgrnj44YcnJydHR0eNMc65+fn5ixcvXrp0CYG19lvf+haAn/3sZ6qKDl//+tcfeeQRAMvLy8ePH5+fn0dX12dFzIy7i4gAxHGcpmmhUKjX688999wTTzzR29vrDwCIoiiO40KQpmmhUIgCZkZARACICB2ICL+DqgJQVXQQEVUF4L0XEedcfmA7WFxcnJ+fv3Llyvz8/LVr19bW1trtdpZlzjkJVBWA915VATjnAGiAQFXRdb8iIgAUIDDGREEaFIvFSqXS19c3OTk5EfT39w8ODlYqlXK5nKZpFDAzAAoQEBEAIvp/7MEJj6TnVT/s3znPWmtX71VdvU2PZ3MWEssKWZTAP4TVEQmIsOXzEUJCRDYUCBAgAikEMia2Y2eW3quX6rW6q6vqWe77nFe6pZFq5PZk8Hhpv6rrwmVEBI6q5nmeZdlgMOj3+ycnJ2tray+//PLPf/7z1dXVk5OTLMuMMXmeA1AHQ0QE7wcRwf8dEQFQVVwNURT5vp/neZZleBwRAVBVPI6Ioihi5sFgoKoYGXkGxMx4DzEznCiKisVipVK5c+fO7/7u796+fTuKIgBZlhGR53lxHJdKpWKxGD/ieZ7v+0QEgIjgMDOegjoYoqoArAMnc/I8HwwG/X7/8PDw+Ph4c3Oz1WptbW0dOhcXF3meWweAqlprARhjrLUAVBWOiGDkymNmAEQEh5lDx/O8olMulycnJ6emppaWluadcadUKhUKhTiOfYeZARARHGbGE1lr4YhImqbGmMFg0O129/b27t27d/fu3ddee213d/f8/DzLMmttnudwVBVDRATvBxHByMjIsyFmxnuImeEUi8VSqVSr1T7+8Y9//vOfn52dZWYAxpgwDOM4LpVK5XK56MRxHASB7/vMrKoAiAgOM+MpqIMhqgrAOgDSNM2yLM/zJEnOz8/Pzs729/fb7fb6+nqr1dra2jo/P7+4uEjTVESstUQEQFWttQCMMdZaAKoKR0QwcuUxMwAighMEQRRFYRjGcVwsFkulUq1Wq9frs7OzS0tL8/Pz487Y2Fgcx4VCwfd9ZvZ9n5kBEBEcZsYTWWsBqGqe55nT6/W63e76+vprr7129+7d1dXVw8PDfr9vjLHW5nkOR1UxRETwfhARjIyMPBtiZry3fN/3PC+O41KpNDU19QmnVqupqrXW9/1isVgul6vVarlcLpVKcRxHURQEATlwiAgOEeEyqoohqoohqioiAETEWmuMybIsdc7Pz09PTw8PD7e3t1ut1ubmZrvdPjw8TJIkd6y16gCwDgARUVUAIgJAVTFyhRERHGaGQ0SeEzvFYrFcLlcqlampqbm5uWazOeeMjY1Vq9VKpRI6QRB4nkdEzIwhzIzLqCocEVFVa60xJsuyNE17vd7R0dHDhw9/9rOfvfrqq61W6/j4OEkScYwxcFQVQ0QE7wcRwcjIyLMhZsZ7K3DiOC4Wi81m88UXX7xz506pVAKgqqVSacypVCrVarVQKISO53kAiAgOM+OJRASXUVUAqioiAEQky7I8z5Mk6TtHR0fHx8e7u7tbW1utVmt/f7/T6ZydnWVZZoyx1qoqAGMMABHJ8xyOqgIQEYxcecwMh4gAEJHv+57n+b5fKBRKzvj4eK1Wq9frc3NzzWZzampqZmamUqmUSqVisRhFked5YRgyMwAiwhBmxmXUgWOtNU6apkmSnJ2d7ezsvPHGGy+//PK9e/fa7fbZ2VmWZdZaAMYYOKqKISKC94OIYGRk5NkQM+O9FTilUqlYLC4uLr744osLCwtBEHhOrVabnJycmJgol8vVajWKoiAIwjCEQ0RwmBlPJCK4jKoCUFURAWCMSdM0y7J+v392dnZ+fn5wcLC/v99qtbadTqdzcXHR7/eto6pwjDEARCTPcziqCkBEMHLlMTMcIgLgeV4QBL7vR1FUKpWKxeLY2Ni0M+fU6/VarTY+Pl4sFsvlchzHnuP7PhEBICIMYWZcRh041to8z9M0zbIsSZLDw8PV1dVXXnnl1VdfXV9fPz09HQwGWZZZawEYY+CoKoaICN4PIoKRkZFnQ8yM9xAzh04URcVi8caNG88///zk5GQcx4VCoVwu12q1KadSqcROEASe58EhB29NHVxGVQGICABVtdYaY0QkTdMLp9PpnJyc7Ozs7O3tbW5uttvtw8PDTqeTZVme59ZaANYBkKYpHFUFoA5GPiCYGQ4ReZ7HzL7vl0qlQqFQcqampur1eqPRmJ2dbTQak5OT1Wq14oSO7xARhpCDtyYiqgpARKyTZdnFxUWv12u1Wvfu3fvf//3fhw8ftlqtbrfb7/fzPFdVANZaDFEH7x8RwcjIyLMhZsZ7iJnDR2q12o0bN5577rmxsbE4jiuVyvj4+PT09KRTcIIg8H3f8zw45OCtqYPLqCoAEQEgInmeG2PyPO/3+71e7+Tk5NDZ2dnZ3d3d2dk5OTk5PT0dDAZZlhljVBWAdQCkaQpHVQGog5EPCGaG4zue50VRVC6Xi8VizZmZmWk0GvV6fdqpVCrlcrlSqRQKhcBhZt/3iQhDyMFbExFVBZDnuXHSNL24uOh0Omtra6+99tobb7yxubl5cHAwGAz6/X6e56oKwFqLIerg/SMiGBkZeTbEzHhPEBEAZg6CIHSmp6dv3LgxPz9fLpcLhcLExMTMzEyj0ZiYmKjVanEcFwoF3/eZmRwA5OAyqgpHVfEmqgrHWquqIpLneZZlaZpeXFycnZ0dHR3t7+/vOjs7O+12u9vt9nq9NE3zPBcRIhIRY4yIAMjzHIA6cFQVI1ceEcEhJwzDwInjuFqtlsvlycnJmZmZhlOv12tO0SmXy2EYBkHg+z4RMTMRwSEiOESEy6gqAFUVEVXNsswYk+f5YDC4uLg4PDx8/fXXX3nllYcPH+7v75+eniZOnueqCkBEMEQdvH9EBCMjI8+GmBnvPnIAMHMYhkEQhGE4Nze3srIyNTVVrVbL5fLMzEzDqdVq1Wq1UCiEYRgEAREBICIA5OAyIoLLqCqG5HlurRURa22/30/T9PT09PDw8OTkZMc5ODjY2dk5Pj7u9/tJkmRZZq0VESIyxuR5LiIAVBWOiGDkA4IcAKrKzJ7nBUEQx3EURcVicXJyslKpTE9Pz83N1ev12dnZqampSqVSrVaLxWIcx4VCIQxD3/c9zyMiAEQEh5nxRCICQFXtI5nT7/c7nc7W1tYrr7xy7969jY2Nk5OT09PTJEmMIyIAVBVD1MH7R0QwMjLybIiZ8e4jBwAzh2EYBEGhUJibm1teXq7VapVKZXJycm5url6vNxqNWq1WLpeDIAjDMAgCIgJARADIwWVEBJdRVQzJ89xaa4xJkmQwGFxcXBw5rVZrb2+v1WodHR0dHh52u93EAWAdEbGOqgJQVTgigpEPCHIAEJHneb7vR1EUx3GpVBofH5+cnJyYmKjX641Go16vj4+P12q1UqlUrVbDMIyiKI5jAL7ve55HRACICA4z44lEBICqWidN0yzL8jzvdru7u7v3799/7bXXVldXDw8PT09Pz87OzCMiAkBVMUQdvH9EBCMjI8+GmBnvPnIAeJ4XhmEQBKVSaWlpqdFoVCqVsbGxmZmZ+fn5ubm5er1erVYrlYrv+0EQMDMRASAiAOTgMiKCy6gqAHUAWGuNMWmaDgaDXq93fn6+77Rarf39/VardXp6enZ21u/30zTN81xVrbV5nhtj1IEjIgBUFSMfBEQEgIiYGQAR+U6xWCyVSpVKZXx8vNFoTE9PN5ypqalyuVypVIrFYqlUiqIoCIIwDD3PIyJmJiIARASHiHAZVQWgqnBExBhjrc2ybDAYZFnW6XTW19dfd7a3t8+cbreb57m11hijqgBUFY6qAlBVvK9EBCMjI8+GmBnvPnIAeJ4XRVEQBLVabXFxcWJiolwuT09PNxqNxcXFubm56enpSqVSKpV8h5nhEBEAcnAZEcFlVBWAiKgqAGNMlmVpmvZ6vY6zs7Ozt7e3s7PTbrd3d3e73e7FxcVgMDCOtdY41lo4qgpARDDywcHMAIiImQEwcxRFQRCUy+Xx8fFarTYxMdFsNmed6enpWq1WLBZLpVKhUIjjOIoi3wmCAAARwWFmPJGIwFFVAMax1mZZ1u/3e73ewcHB/fv3f/GLX6yurh4cHHSdi4sLY4x1VBWAqsIREVwBIoKRkZFnQ8yMdx85ADzPi6IoCILZ2dlGo1GtVsvl8tzc3KIzNzdXq9UqlUqxWGRm3/eZGQ4RASAHlxERXEZVAYiIqgJIkiTP8zRNz8/Pj5xWq7XrtJ1+v9/r9bIss44xxjqqCkdVAYgIRj44mBkAETEzgDAM4zgOw3BsbGxmZmbKaTabjUZjampqbGysUqmUSqVCoRAEQaFQCILA933P85gZABHBYWY8kYjAUVUAeZ5nWWaMSZKk3++fn59vbm7+4he/eP3111utVrfb7fV63W633++LiHVUFYCqwhERXAEigpGRkWdDzIx3HxExMwAi8n1/bGys2WxWq9VSqTQ1NdVsNpeXl1dWViYnJ6empqIoiuPYd4gIQ8jBZUQEl1FVAKpqrTXGWGt7vd5gMDg+Pj46Otrb29ve3t7b29vd3T0+Pj45OUmdPM+ttcaYNE0BqKqIAFAHIx8QzAyHiOB4nhdFked5xWKxXC6Pj4/Pzs42Go2ZmZn5+fmZmZlKpVIqlSqVShzHhUIhDEPP86Io8jwPgOd5GMLMeCJrLRxrrTFGRPI8z7Isz/Pz8/P9/f0HDx784he/WF1dPTk56Tq9Xi9NU1U1xoiIqmKIiOAKEBH8Ksw8OztLRKqKRzzPOzs763a7eL8R0eLioud5/X6/3W6rKt6k0WgUCgVjzNbWFh4XBEG9Xm+321mWYWTkbSFmxruPiJgZgO/7QRBUq9V6vV6tVsvlcr1eX35kamqqWq3GcRyGITP7vk9EGEIOLiMiuIyqAlBVa60xZjAY9Hq9i4uLdrt9dHS0s7Ozvb29u7u7t7d3fn7e7XYzJ89zY4y11hgDQFVFBIA6GPmAYGY4RASAmYMgCMMwCIJqtTo+Pj7rNJvNmZmZer1eq9XK5XKxWCwUCrHjP8LMADzPwxBmxhNZa+FYa40xuZNlWa/XOz4+3tra+uUvf3n//v3d3d2zs7Nut5umaa/XS9NUVY0xIqKqGCIiuAJEBL/KzZs3P/vZzxIRHrezs/PDH/7QWov3CRF99KMfvXXrVqVSISJVPT09ff311+/du6eqcOI4/sxnPrO0tMTMALa3t9944429vT0RCYJgeXn5+eefn5iYuOtgZORtIWbGu4mI4LDjeV4URWNjY1NTU+VyeWxsbGFh4ebNm8vLy/Pz8xMTE6VSKY7jIAjYISIMISI4RARHVeGoKt5EHTjGmDzPe71et9s9Ozvb29trt9tbW1s7Ozt7e3vtdrvX6yVJkmVZnudZlhljrLWqCkAdAOpg5MojIgDkwCEiz/PCMIyiKI7jycnJ6enpZrNZr9ebzebMzMzk5GSlUikUCsViMQzDKIrCMPQdZiYiAMwMh4gAEBHegqoCEEdVRcQ4SZKkaXp2dra/v//gwYM33nhjY2Pj6Oio3+/3er0kSQaDQZZlImKtVQeAqsJRVVwBIoJf5SMf+civ//qvP3z4sNfrYcjm5ubBwQHeP9euXfut3/qtJEk2NzeTJCkWi8vLy0EQfO9732u323A+9alPfehDH9rf32+323fu3AnDEG/S6XR+9KMfnZycYGTkbSFmxruJmeEQke/7RFQul8ecUqk0MzOzvLx88+bNlZWVer1erVZLpVIURUEQMDMAIsJlmBmOiOAyqgpHRACoap7nWZYNBoMTZ29vb3t7e3Nzs+0cHx8nTp7nxpgsy4wx1lpVxRB1MHK1kQOAiOAQke/7nueFYVgul0ul0uzsbL1ebzabs7Ozc3NztVptfHy8VCrFj4RhGAQBM/u+z8xwiAgAOXhr6gAQEeuIiDHGWjsYDPr9/snJydbW1htvvPHgwYO9vb1Op5M45+fneZ5nWWaMgaOqAEQEV4mI4Ff5xCc+8dGPfvQb3/jG+fk5royxsbEvfvGLzPytb32r3+/DGR8f//KXv9zv97/97W+naVooFP7sz/5MRL72ta8ZY1588cWPfexjrVarUCgYYwqFQrVaHQwG3/3ud7vdLkZG3i5iZrybmBkOEfm+73lepVKp1WqlUmlsbGxhYeH69eu3bt2an5+fnp6uVqtBEERRFAQBMwMgIlyGmeGICC6jqnBEBIC1NnPOzs5OTk6Ojo42Nze3t7dbrVbb6fV6g8EgTVNrbZ7nImIdVcUQdTBytZEDgIjgBEHgeZ7v+4VCYdyp1+uNRmNhYWF2drZer5ecQqEQx3EURaHjeR4A3/eZGQ4RASAHb00dACJirTXG5Hlurc3zvO+0Wq21tbVf/OIXm5ubnU6n2+0mTr/fz/M8yzJjDBxVBSAiuEpEBL/KF77whWaz+fWvfz1NU1wZH/7whz/5yU/+93//989//nMM+eQnP/nhD3/4X//1X1dXV4Mg+OpXv5rn+de+9jUAv/d7vzc3N/cv//IvGxsbURR9+ctfLpVK3//+9w8ODjAy8gyImfFuYmY4zOz7fhiG5XK5Wq2WSqXJyclr167dunXrxo0bc3NztVqtXC5HUeQ7zAyAiPAWiAiAquIyqgpHHGttkiSDwaDX67Xb7d3d3W1na2vr6Ojo5OSk3+9nWZYkSZ7nxhhxVBWPqCoAVcXIFUZEAIgIDhHxI1EUBUFQKpUmJyenp6fn5+cbjcbi4uL09PTk5GTBieM4coIg8H3f8zwaAoCIABAR3oKqAlBVOHmeG2NExBiT53mWZb1e7/T0dHNz8969e2+88Ua73b64uEiSZDAYJEnS6/WMMXmeW2vhqCoAEcFVIiL4Vb70pS9VKpXXXnttfn7eWsvMq06e5xjSaDRu3779y1/+cm9vD+++T33qUx/60If+9m//ttPpYEij0XjppZf++7//++c//7nneb/5m7957dq1i4sLVa1UKkdHR9/5zneY+aWXXpqZmfnnf/7njY0NPJ0XXnjh7t27GBl5E2JmvJuYGQARMbPv+3EcV5xyuVyv15977rk7d+4sLy/X6/VyuVwqlaIo8n3f8zwiAkBEeFtUFY6IGGOstX3n7Oxsd3e31WptbW1tb2/v7Ox0Op2zs7PBYJDneZqmeZ4bY0REVTFERDBy5TEzhhCR53m+73ueF8dxsVgcGxubnZ2t1+sLCwvNZrNer9dqtWq1GsdxoVAIH/Edz/OICAARwWFmPJGIwFFVAFmW2UfSNE2S5PT0tN1ur66uPnQ6nU6v10udJEn6/b5xrLVwVBWAiOAqERE8ke/7f/Znf1YoFPA4EfnhD3/YarXgFAqFP/7jPy4UCkmSfOtb3xoMBniXfelLX6pUKl//+teNMRgSx/Ff/MVftFqtf/qnf4Lz+c9/fmVlRVXv37//6quvdjqdL3zhC8vLyz/96U9feeUVPLUXXnjh7t27GBl5E2JmvJuYGQARMbPv+8VisVqtVpyFhYU7d+7cvn272WxOTU2Vy+VSqeR5nu/7nucREQAiwtuiqnBExBiT53nP2d/f393d3dra2tzcbLVa7Xb7/Pz87OzMWptlWZ7n1lpjjIioKoaICEauPGbGECLyPM/3/UKhEMdxuVyemZlZWFhoNBqLi4tzc3MTExPlcrlYLIZhGMdxEAShA8D3fc/ziAgAEcFhZjyRiMBRVQBZlllrcydN016vd3Bw0Gq17t27t7Gxsb29fXFx0ev18jxP0zRJkizLjGOthaOqAEQEV4mI4InK5fIf/uEfMvP//M//bGxsWGuDILh+/frHP/5xz/P+/d//fW1tDQAzf/7zn19eXl5fX/+3f/s3ay3eTYVC4c///M+TJPmbv/kbEcEQ3/e/+tWvqurXvvY1Ywwc3/dV1VoL4MUXX/zYxz52//79H//4x/i/eOGFF+7evYuRkTchZsa7gJnxON/3C4VCHMflcrlSqYyPj9+6devOnTvPPfdco9GYnJyM4zgMwziOARARM2MIEeHpqCoAEQGgqsax1g4Gg0NnY2NjbW1ta2vr8PDw4OCg3+8nTpZlaZoaY+CoKoaICEauPGYGQETMDCcIgtCpOc1mc35+fmlpaXZ2dmZmZnx8PHbCMIyiKAgCz/N834+iCAAR4XHMjMuICBxVBaCq1lpjjKpaa40xaZpeXFwMBoPt7e319fVf/vKX29vbx8fHSZJkWZamaZIkg8EgSRJjjLVWVQGog6tHRPCrjI2NGWN6vR6GLCws/M7v/E6r1frHf/xHOEEQjI+Pn56e5nmOd5nneX/5l395enr6/e9/H2/yla98hZm/8Y1vqCoed+PGjd/4jd/Y29v7wQ9+ICL4v3jhhRfu3r2LkZE3IWbGu4CZ8Tjf9wuFQrFYrFar5XJ5bm7u9u3bd+7cWVlZmZycHBsbi6IoDMM4jgEQETNjCBHh6agqABEBoKrGSZLk4uLi4OCg1WptbW2tra3t7OwcOYmTOXmeiwgcVcUQEcHIlcfMAIiImQH4vh9FURAE5XJ52pmfn19wJicnx8fHS6VSHMdRFAVBEEWR73ie5/s+ACLC45gZlxEROKoKQFWttWbIYDC4uLjodDpra2vr6+sPHjxot9udTid7JEmSwWCQ57kxxlqrqgDUwdUjIni7/uiP/qhWq33rW986Pz/HeyuO47/4i79I0/TrX/+6iGBIEARf/epXrbV//dd/bYzBkLm5ud///d/vdDrf/e538zyPoqhUKiVJ0u/38RReeOGFu3fvYmTkTYiZ8Y4iIgBEBIeIAJPDSDoAACAASURBVKiq7/vFYrFUKlWr1bGxsZWVldu3b9+5c2dhYaFWq5XL5dCJoggAETEzhhARno6qAhARACJirc2yrN/vn52d7e3tra+vb21tbWxs7O3tHR8fdzqdNE2TJMkdYwwcVYWjqnBUFSNXGBEBYGY4zOx5XhAEcRxHUTQ+Pj43N9dsNufn5xcWFhqNRqVSKZfLsRM6geN5HjN7nofHEREAIsJlRASOiKhjjLHW5nlujMnzvN/vd7vdvb29hw8frjvHx8e9Xs8Yk2VZmqZJkgwGgzzPxVFVAOrg6hERvF2f/exnb9269d3vfvfg4ADvuS9+8Yvj4+Nf//rX8zzHkGKx+Od//udra2v/9m//hiFjY2Nf/vKXjTHf/e53Ly4uPv7xj3/4wx8Ow1BVf/SjH62vr+NXeeGFF+7evYuRkTchZsY7hxwMISI4QRCUy+VSqVSpVKampm7cuHHbmZmZqdVq5XI5DMPAAUBEzIwhRISno6oArLUAVDXLssQ5Pj7e2tra2NjY3NxcX18/PDw8PT29uLhI0zRzjDHWWlXFEBHByJXHzHCICI7v+1EUeZ5XLBYrlcrMzMz8/PzS0lKj0Wg2mxMTE6VSKY7jQqEQhmEURUEQ+L4fBAEzA/A8D0OYGU8kInCstcYYVbWPZM7FxcXJycnm5uba2tr6+nqr1ep2u4PBwBiTZVmapskjcFQVgDq4ekQETxQEged5SZLgTX7v935vfn7+e9/7XrvdxnvuxRdf/NjHPvad73zn8PAQQxYXF3/nd37nJz/5yWuvvYZHoij68pe/XCqVvv/97x8cHNy8efNzn/tcv99fX1+/du1aoVD4j//4j3v37uGJXnjhhbt372Jk5E2ImfHOIQdDiAgAM0dRVCqVisVirVabm5u77dy4caNarY6PjxcKheARAETEzBhCRHg6qgrAWgtARJIk6ff7FxcXBwcHW1tba2trm87JyUmn0xkMBlmW5XlurTXGWGtVFUNEBCNXHjPDISIAzBw6URTVarWJiYl5Z3l5ecapVCqxE0VREARhGPq+7zlEBMDzPAxhZjyRiMCx1hpjVNU6aZpmWZamaafTabfbq876+vrx8XGSJGma5nmeZVmapoljjIGjqgDUwdUjInhrRPTiiy/evn37e9/7XqfTwZBisfgnf/In3W7329/+tqriPfeRj3zk13/911999dX/+q//wpD/9//+3/Xr1//1X/91dXUVjud5L7300szMzD//8z9vbGww81e+8pVKpfKtb33r9PT01q1bn/3sZ19++eWf/exneKIXXnjh7t27GBl5E2JmvHPIwRAiAsDMcRxXKpVCoTA1NbWwsPChD33o5s2b165dGxsbq1QqcRz7ThAEAIiImTGEiPAU1AFgjFFVa22e5xcXF2dnZzs7OxsbGw8fPtza2trd3e10Ot1uN03TPM+zLMvzXETUwRARwchVRURwyAFARMzseV4QBHEcl0ql6enpmZmZ5eXl+fn5paWliYmJarVaLBajR4Ig8B9hZjjMDICI4BARLqOqcKy1AFRVRIwx4hhjsixLkmQwGBweHm5vb6+trT18+HBnZ+f8/DzP8yzLjDFJkgwGgzRN8zy31gJQB4Cq4koSETzRysrK5z//+Xa7/cMf/jBNUzilUumzn/3s/Pz8a6+99pOf/ATO7du3P/GJT/z0pz/95S9/iXdfHMcvvfRStVr9wQ9+sL+/D2dpaekLX/jCwcHB3//934sInC984QvLy8s//elPX3nlFQBE9JWvfKVUKv3VX/1VlmWf/OQnP/zhD//sZz97+eWXMTLythAz451DDoYQEQBmLhaL1Wq1XC7Pzs5eu3bt+eefX1lZmZ+fr9VqxWIxjmPf9z3PC4IAABExM4YQEZ5IVQGoA8A6xpgsy7rd7vHx8Yaztra2tbV1eHjY7XYvLi7SNM3zPMuyPM/hqCqGiAhGripyABARHN/3Pc/zfT+KokqlMjY2NucsLy/X6/VGo1GpVMrlchzHoRNFked5vu97nuf7PjPDISIA5OCtqQPAWgtAVe0jxsmyrN/vX1xc7OzsbG1tra+vr62tHR4e9vv93DHGDJwsy6y1xhg4IoIrTETwRFEUvfTSSxMTE2matlotY0wcx81m0/f9e/fu/ed//qeIACgWi3/6p3/q+74x5pvf/Gav18O7r9Fo/MEf/IGq7u/vn5+fj4+Pz8zMqOrf/d3fnZ6ewvn0pz/9/PPP379//8c//jEcZv7c5z733HPPHR4eXlxcLC8v53n+N3/zN2maYmTkbSFmxjuHHAwhIgCe51WcarXabDZv3rx569atpaWlmZmZarVaLBbjOPZ93/O8IAgAEBEzYwgR4YlUFYA6AKyTZdlgMDg/P2+322vO5ubm1tbW8fFxkiS9Xi9N0zzPsywTETiqiiEigpGrihwARAQniiLfKZVKExMTk5OTS0tLi4uLCwsLU1NTk5OTcRyXy+UoioIgCMPQd5iZiHzfZ2Y4RASAHLw1dQBYawGoqnXyPM+yzFo7GAz6/f7Z2dn6+vrm5ub6+vr29nan00nTNMuyPM+NMYljjLHWGmPgiAiuMBHBr1IqlZ5//vnFxcXx8XEAqnpwcLC9vf3GG2+kaQqHmT/2sY/92q/92iuvvPLyyy+LCN4Tt2/fXlpampub8zzPGNNqtVZXV9fX1+H4vv/bv/3bAP7hH/5BVTHk05/+9PPPPw+g3W6//PLLrVYLIyNvFzEz3gnMjMsQked5QRCUSqXx8fFqtbqysnL9+vVbt241m83p6elqtRrHcRiGvu97DgAiYma8CRHhcaqKISKiqgByJ8uyNE2Pjo52d3cfPny4urq6vr5+eHjY7XYvLi4Gg0GapsYREVxGRDBy9TAzACLCI8zs+z4RRc7U1NTMzMzc3Nzy8vLCwsLMzMz4+PjY2FgURWEYRlEUBIHv+2EY+r7veR4RASAiOMyMJxIROKoKQESMMeIYY0Qkz/Msy/r9frfb3d/f39jYWF9f39zcPDw87PV6WZZZa/M8Hzj9ft9aC0BV4YgIrjARwdNh5jiOmdlaOxgMcJVEUeT7fp7nWZbhcUQEQFXxOCKKooiZB4OBqmJk5BkQM+OdwMy4DBF5nheGYaVSGR8fn5ycfM5ZWVlpNpuTk5PFYjGO4zAMfd/3HABExMx4EyLC41QVQ0REVQHkTpqmFxcXe3t7rVbr4cOHq6urrVbr8PDw4uIiSZLBYJDnubXWGCMiuIyIYOTqYWYARASHmX3f9zwvCIJyuVwqler1erPZnHcajcb4+HilUimVSlEUhY7v+57j+77neUQEgIjgMDOeSETgqCoAETHGiGOMyZ0sy87Pz09PT3d2dtbX19fW1nZ2djqdTpZlaZoaY/I8HzhpmooIAFWFIyK4wkQEIyMjz4aYGe8EZsZbCIIgjuNKpTI5OVmv12/cuHH9+vXl5eV6vV6r1eI4LhQKQRD4vu85AIiImXEZIsIQVYWjqgBERFUBGGPSNE2SpNPp7OzsbGxsPHjwYGNjY29v7/j4uNfrJY4xRkSstaqKx6kqAFXFyFVCRACICI8ws+d5QRD4vh9FUa1Wm5iYWFhYWHRmZ2enpqaq1WoURYVCIXzE8zzf94mImT3PIyIMYWZcRlXhqCoAdQAYY6y14hhj8jxP0zRJkk6n0263t7e319bWNjY22u12v983xmSPJEmSpmmWZaoKQETgqCquMBHByMjIsyFmxjuBmfEWCoVCFEXVanV6enpxcXFlZeW5555bXFwcHx+v1WpxHBeLRd/3vUcAEBEz4/9CRABYa0UEgLV2MBj0+/2jo6Pd3d3V1dX79+/v7Ozs7e11nTRNM0dEAKgqhqiDkSuGmfE4IvJ93/O8KIriOK5UKtPT0/V6fXFxcWFhYW5urlarjY2NlUqlMAyjKAqdIAh8h5kBEBEex8y4jIjAUVUAIqKqAPI8t46IGGcwGPR6vZOTk52dnc3NzbW1td3d3ZOTkzRNsywTkYGTZZkxJs9zEQEgIvggEBGMjIw8G2JmvBOYGW+hUCgUi8WJiYnp6enl5eUbN25cv359ZmZmYmKiWq2GYVgsFn3f9x4BQETMjP8LEQFgrRURAInT6/X29/c3NzcfPnz44MGDnZ2d09PTbrfb7/eNMZkjIgBUFUPUwcgVw8wYwsye4/t+sVisVqu1Wq3ZbC4sLCwuLs7Oztbr9XK5XCwW4zgOwzBwwjD0PI+Zfd9nZgBEhMcxMy4jInBUFYCIqCqAPM+ttcaYPM+ttWma9vv9Xq93cHCwtra2vr6+ubl5dHTU7XbzPM+yTEQGTpZleZ6LCBwRwQeBiGBkZOTZEDPjncDMeAvFYrFUKk1PTzcajevXr6+srCwtLc3MzIyNjVUqlcjxHc8BQETMjKemDgBrrTFGRPI87/f7nU5nd3d39ZH9/f2zs7O+kzvGGFUFoKoYog5GrgYigkNEeISIfN/3PM/3/SAIarXaxMREvV5fXFxcXl5uNBrT09O1Wi1y4jgOw9D3fc/zgiDwfZ+ImNnzPAwhIjhEhMuICAB1AMgjxrFOlmVJkvT7/U6ns7Ozs7a2trq6ure3d3JykmVZnudZlhljBk6WZeLAUVV8EIgIRkZGng0xM94JzIzLMHOpVKpUKrOzswsLC9evX19aWpqfn5+enq5UKuVyOY7jMAw9z/N933MAEBEz46mpqogAsNYaY6y1aZr2er3Dw8Pt7e2HDx+urq5ubm6enJx0Op0kSQaDQZZl1lpjjKriTdTByNVADoYws+cEQRDHcaFQmHUWFxebzeb8/HytVpuYmCiVSqETRVEYhr7ve57n+77neUQEwPM8DGFmPJGIAFBVEQEgItZaETHGWGuNk6bpYDDodrvtdntra2vdOTo6uri4MMbkeZ5lWfKIMQaAiKgqPjhEBCMjI8+GmBnvBGbGZcIwLJVK1Wp1bm5ufn7+ueeeW1pamp+fr9VqlUqlVCqFjud5vu97DgAiYmY8NVUVEQDWWmOMtfbCabfba2trDx8+XF1dbbVa3W73/Pw8cYwx1lpjjKriTdTByNVADoYEQeA5cRxXKpVqtTrvrKyszMzMzM7Olp04joMgCMPQ9/0wDIMg8DzP93084nkehjAznkhEAKiqiAAQEWutiBhjrLV5nqdpmmVZr9c7OTnZ2dlZX19fW1vb2trqdrtpmlpr0zTNsmzgZFkGR0RUFR8cIoKRkZFnQ8yMZ8DMeCLf98fGxqampubm5lZWVq5fv95sNqenpycnJ4tOFEVhGDKz9wgAImJmPAURAaCq1loAqprneZZl3W73/Py81Wqtrq4+fPhwdXX16Ojo7OxsMBhkWZYkSZZlxhhVxeNEBCNXBjPjcczseR4zB0Hg+36lUpmenp6amlpeXl5cXFxYWJicnBwfH4/jOAzDyAmCwPM83/eDIPB9HwAzwyEiAOTgrakDQFUBiIgxBoCIWGuNMapqnSzLzs7Oer3ernP//v2tra3j4+Ner5dlmbU2y7LBYHB+fm6MERE46uCDQ0QwMjLybIiZ8QyYGU8Ux3G1Wp2dnV1cXLx+/fry8nKj0Zienq5UKkUniqIwDJnZewQAETEznoKIAFBVay0Aa22apnmen5+fHx8fb25uPnQ2NzdPT0/Pzs7SNM0c46gqHiciGLkymBlDiMj3fc/zfN+P47hUKk1MTDScxcXFRqMxOzs7NjZWLpejKArDMAiC0PEc3/eZGQAzwyEiAOTgrakDQFUBiIgxBoCIWGvNkH6/f35+fnZ2tumsr6/v7e2dn5+njjEmTdMkSQaDgTFGROCogw8OEcHIyMizIWbGM2BmvDVmjuO4Vqs1m81rztLS0uzs7OTkZKlUKhaLhUIhDMMgCLwhAIiImfEURASAqlprVdUYk6ZpkiTn5+f7+/urq6sPHz5cXV3d2dnpdrvn5+eZk+e5dVQVjxMRjFwBRASAiPAIEXme5/s+M4dhWK1Wx8fH6/V6s9lcWlpqNpvT09O1Wq1YLBYKhSAIwjAMgsD3/cAhIs/ziAgAOQCICA4R4TKqCkBV4YgIABExxoiIqhpjrJNlWZqm/X7/9PT0+Ph41Wm1WsfHx/1+31qbJEmapkmSpGmaZZmIqANHVfHBISIYGRl5NsTMeAbMjLdARL7vh2E4NTW15KysrCwtLU041Wo1dvwhnucxMwAiYmY8BREBoKr2kcFg0Ov1Op1Oq9V64Gxubh4cHFxcXPT7/TRN8zzPsswYA0dVMUREMPJ+Y2Y8joh832fmwCkWi1NTUzMzM4uLi01nwimXy7ETBEEYhr7ve57n+34YhgCIiJkBEBEcZsYTiQgcVQVgrQUgIsZRVeuISJIk/X5/MBgcHBzs7u6urq6ur6+32+1ut5skiYgMnNTJ8xyOiOADSEQwMjLybIiZ8QyYGW+BiHzfL5fLU1NTy8vLKysr165dazabtVptcnKyWCzGjj/E8zxmBkBEzIynICIAVNU6eZ73er1+v7+3t7ezs3Pv3r379+/v7e0dHx/3+/1er2etzfM8yzJjDBxVxRARwcj7jZkxhJm9RwqFQrFYnJiYqNfrjUZjYWGh0WjU6/VqtVqpVIIgiOM4iiLP86Io8hzf9z3PA0BEzAyAiOAwM55IROCoKgBrLQARMY6qWidJksFg0O/3z8/Pd3Z2NjY21tfXd3Z2Tk5OkiTJsizP88FgkCRJmqZ5nosIHBHBB5CIYGRk5NkQM+MZMDPeAjN7nlepVBqNxnVncXGx0WiMOeVyOY7jKIp8JwgCz/OIyPd9AOTgKYgIABExxlhr8zzv9/snJycHBwerq6v37t3b2NjY39/vdDq9Xm8wGBgnz3MRAaCqeJyIYOR9QkRwiAiPEJHn+L4fBEGlUqlWq41GY25ubmFhodls1uv18fHxghNFUeB4nhcEQRiGnucRked5AMgBQERwiAiXUVUAqgpHHQDGGHGstcYYANbaPM/TNO077XZ7Y2NjfX19c3Oz3W73er3MSdN04BhjxAGgqvhgEhGMjIw8G2JmPANmxltgZt/3x8bGms3mDWd+fn5mZmZsbKxSqZTL5TiOoyjyPM/3/SAImBlAEAQAyMFTEBEAIpLnuTEmz/N+v39wcLC3t3f//v179+61Wq39/f1erzcYDJIkSdPUWmuMERFcRkQw8j4hB0OY2XN834+iqFAoTExMTE1Nzc/PN52JiYnp6elyuRxFUaFQiKLI8zz/kTAMmRmA53kAiAgOM+OJRARDRERVARhjrCMixhhVNcZkzpnTarXW1tY2Njb29vY6nU6SJFmWpWmaJMlgMEjTVEQAWGvxQSYieGrMPDc353lekiQHBweqiiuAiBYXFz3P6/f77XZbVfEmjUajUCgYY7a2tvC4IAjq9Xq73c6yDCMjbwsxM54BM+MtMLPv+9PT081m88aNG88999zCwsL09HTFKRQKcRxHUeR5nu/7QRAwM4AgCACQg6cgIgBEJM9zY0yaphcXFwcHBxsbG/fv33/w4MHOzs7+/n7mJEmSpqm11hgjIriMiGDkfUIOhgRB4HkeM0dRVHFmncXFxUajMTc3V61Wa7VaGIaREwSB53n+ECIC4HkeACKCw8x4IhHBEBFRVQDGGOuIiDHGWpvneZZl/X7/yNnY2FhfX9/a2jo+Pk6SJE3TLMuSJOn3+4PBwFoLx1qLDzIRwVMgoo9//OM3btwol8tEJCInJyevvfbaw4cP8f4hoo9+9KO3bt2qVCpEpKqnp6evv/76vXv3VBVOHMef+cxnlpaWmBnA9vb2G2+8sbe3JyJBECwvLz///PMTExN3HYyMvC3EzHgGzIzLEBGAYrE4NjZ28+bNW7durayszM7OTk1NjY2NVSqVKIrCMIyiyPd9z/N832dmAEEQACAHT0FEAIhInudZlqVpenZ2tre3t7q6ev/+/QcPHuzt7XU6ncFgkKZplmV5nhtjrLWqiiEigpH3DzMDICI4qsrMnueJSKFQiKIojuMJZ35+fm5ubmFhYWZmZnJyslQqFZwwDD3PC4LAfwSA7/vMDICIAJCDpyAicFQVgDHGWgtARIwxIqKqxhgRSZKk1+v1+/2jo6ONjY3V1dX19fV2uz0YDPI8N8b0nCzLjCMi+OATETyFmzdvfu5znxsMBpubm2malsvl5eVlZv7mN795fn6O98m1a9d+67d+K0mSzc3NJEmKxeLy8nIQBN/73vfa7TacT33qUx/60If29/fb7fadO3fCMMSbdDqdH/3oRycnJxgZeVuImfEMmBmXISIAxWJxenr6prOysjI7Ozs+Pl5xoigKwzCKIt/3Pc/zfZ+ZAQRBAIAcPAURASAieZ5nWdbv909OTvb29u7du3f//v3V1dXj4+PT09M0TTMnz3NjjLVWVTFERDDy/mFmAEQEh4g8x/f92BkbG5uZmZmenp6fn5+bm2s0GhMTE9VqteCEYej7vud5YRh6DjMD8H2fmQEQEQBy8BREBI6qAjDGWGsBiIgxxlprHGvtYDDo9XrHx8e7u7urq6vr6+v7+/udTidzkiTp9XqDwcAYYx38/4KI4FeZnJz8gz/4A2vt/8cenDjXXZ33438/zznns9x7dSXZkm3JxtjYYGMLbBSSAP2SpJSmSWEmHlISCH9ep4SQ0AChTWdCEsokTQoTM95t2dpseZFk7Xf5LOc85zdzZjRzGS+RUAi/hvt6/fu//3uWZQgOHTr07LPPfvLJJ3/605/wRejt7X3xxReZ+a233mq1Wgj6+/tPnDjRarXefvvtPM/TNP3hD38oIq+//rq19sknnzx+/PjMzEyaptbaNE3r9Xq73X733XfX1tbQ1fVZETNjC5gZd0NEAKrV6tDQ0KFg3759O3fu7Ovrq1artVotjuMoiuI41lorpbTWzAxAaw2AAmyAiAAQkaIo8jxvNpvz8/PXr1+/cOHC2NjY1NTU4uLi2tpanudFYAMR8d6jg4ig66+IiNCBmbGOA6WU1jpJkkqwffv24eHhPXv27N69e2hoaPv27bVarVqtxnGcJInWmpm11sYYrbVSCoFSipkBEBECIsJ9ee8BeO8B+ACAtdY55713HYqg1Wo1Go1r165NT0+PjY1dv359aWkpy7KyLPM8X1tby7Isz3MJvPf4myAi+HOeeOKJr3zlK3/4wx/OnTuHdcw8PDw8OztbliW+CCMjI0899dTHH3986tQpdHjqqadGRkZ++9vfjo+PG2Nee+21sixff/11AN/5zneGh4d//etfT01NxXF84sSJarX63nvvzc3NoatrC4iZsQXMjLuhoFar7d69+9FHHz18+PCePXsGBwe3b99eqVSq1WqSJFEUGWN0oJQiIgBaawAUYANEBID3viiKVnDr1q3p6elLwfT09PLycqPRyPO8LMuiKJxz1loRwaeJCLr+WihAByJCQETGGGbWWkdRlKZpXzA0NDQ8PLx79+7BwcGBgYFt27YlgTEmjmMVaK2NMVprpRQRASAiBMyMDfABAO89AO+9iABwzllrnXMi4pwTEedclmXtdnttbW1+fn56enoiWFpaWl1dLYIsyxqNRlEUZVl67wH4AP/3iQj+nGefffbhhx9+8803G42G1pqZi6LAHYaGhg4fPnzx4sWbN2/i8/f0008fPXr0Zz/72fLyMjoMDQ298MILH3/88alTp5RS3/rWt/bv399oNLz3PT09t2/ffuedd5j5hRde2LFjx/vvvz81NYWNGR0dPXnyJLq67kDMjC1gZtwNBbVa7aGHHjp8+PChQ4d27949ODjY39+fJEm1Wk2SJIoiY4wOlFJEBEBrDYACbICIAPDeF0XRarXW1tZu3bo1NTV17ty5ixcvXrt2bW1trdlslmVprS2KwjlnrRURfJqIoOuvhQJ0ICIAzKwDY0wU9Pb2DgTDw8NDQ0N79uzp7+/v6+urVCpJkkRRpJSKokhrrZTSWhOR1lopRUQAiAgBM2MDfADAew/Aey8iAJxz1lrnnIg456y1RVG02+1ms3n79u1r165dvnx5Jmg2m+12uyzLPM/bQVEU1lpmBuAD/N8nIrgvIvr+978fRdEnn3yye/fuPXv2KKWuB5cuXSqKAkGapi+99FKaplmWvfXWW+12G5+z733vez09PW+88Ya1Fh2SJHn11VdnZmZ+9atfIXjuueceeugh7/3Y2NiZM2eWl5eff/75ffv2ffTRR6dPn8aGjY6Onjx5El1ddyBmxhYwM+5BKVWv1x966KFHg507dw4ODvb39ydJUqlUkiSJosgYo5TSWiuliAiA1hoABdgAEQEgInmet9vtRqNx/fr1y5cvnz179sqVKzMzM2tra+12uyxLa21RFNZaEfHe49NEBF2fPyICQEQIKEDA65Ik0VqnaVqpVAYHB3fu3Dk8PDwU7Nixo1arVSqVarVqjNGBCZRSRKS1JiJmJiIARISAiHBf3nsA3nsEIgJAAuecBM457325rtForK6uzszMTExMjI2N3bhxY2lpqSiKPM+Lomi1Wo1GoyxLEfHeI/De42+CiOC+enp6Xn75ZRHRWovI4uKic25gYEApdfbs2f/93//13gNg5ueee27fvn2Tk5MffPCBcw6fpzRNX3nllSzLfvKTn4gIOmitX3vtNe/966+/bq1FoLX23jvnADz55JPHjx8fGxv78MMPsRmjo6MnT55EV9cdiJmxBcyMe9Ba1+v1AwcOHAl2BPV6PQ3iQGutlNJaK6WICIDWGgAF2AARASAiWbC2tnb16tVLly6dPXt2YmLi5s2ba2trWZYVRWGtLYqiLEsE3nt0EBF0ff6YGR2YmYgAMLMKtNZJUK/X+/v7h4aGdu3aNTw8PBD09fVVq9UkSdI01VqrQGttjGFmAFEUASAiBMyMjRERBN57ACICwHtvA++9BNbasiyLosjzfGFhYX5+fmJi4sqVKzMzM7dv326322VZZlnWbrdbrVa73RYRBCKCvyEigvsyxvzodEtzkgAAIABJREFURz8yxiwsLPz+97+fm5sD0NfX98wzzwwPD58+ffqjjz5CYIzp7+9fWloqyxKfM6XUj370o6Wlpffeew93ePnll5n5zTff9N7j0x5++OFvfvObN2/e/OUvfyki2IzR0dGTJ0+iq+sOxMzYAmbGPWit6/X6I488cvTo0SNHjuwIqtVqkiRpmsaB1loppbVWShERAK01AAqwASICQESyYGVlZXp6+tKlS2fPnh0fH79161ar1cqyrCgKa21RFGVZIvDeo4OIoOvzx8zowMxEBMAYo4M4jtM0rdVqAwMDO3bs2L17965du4aHh/uCarWapmmSJDrgQGvNzEQEIIoiAESEgJmxMSKCwHsPQEQAeO9t4L2XIM/zsizb7Xaj0Zidnb127drY2Nj4+PjCwkKj0bDW5nmeZVmj0cjzvCxLrBMR/A0REdyXMea1115TSv3iF7+Ym5vDumq1+i//8i/Ly8vvvvuu9x5/XUmSvPrqq3mev/HGGyKCDsaY1157zTn34x//2FqLDsPDw9/97neXl5fffffdsizjOK5Wq1mWtVotbMDo6OjJkyfR1XUHYmZsATPjHowx/f39Bw4cGAkGBwcHBgZqtVqlUknT1BgTRZExhpm11kopBFprABRgA0QEgPc+z/NGo7G6ujoxMXHu3LkLFy5MTU3Nzs62gqIorLXOubIsEXjv0UFE0PWXRgE6EBECIgJARFprFRhjoiiqVqvbtm3r7e3duXPn0NDQnj17BgcHBwYGqtVqGkRRpJSK41hrrQIAWmtmBqCUAkABNkNEAIiI9x5AWZYInHPWWgmcc9badnDr1q1r165dvnx5YmJidna20WgURZFlWTtotVrWWgAigr9FIoL7qtfrL7/8srX2X//1X0UEHf7pn/5pz549b7/99sLCAv7qXnzxxf7+/jfeeKMsS3SoVCqvvPLKxMTEBx98gA69vb0nTpyw1r777ruNRuOJJ54YGRmJosh7/5vf/GZychJ/zujo6MmTJ9HVdQdiZmwBM+MejDH9/f0HDhwYCQYHBwcGBmq1WqVSSdPUGBNFkTGGmbXWSikEWmsAFGADRASA9z7P80ajsbq6OjExce7cuTNnzkxNTc3Pz2dZ1mq1iqKw1jrnyrJE4L1HBxFB118aBehARACYWSkFgJl1EMdxmqZJktRqtZ07d+7YsWMoGBwc7O/vr9frSZKkaRpFkVJKa22MUUpprZkZADMTEQClFAAKsBkiAkBEvPcAyrJE4JyzgXPOWlsUxerq6vLy8tWrVycmJiYnJ2/cuLGystJut4uiyLKs2Wy22+2yLL33AEQEf4tEBPdFRC+99FKSJG+88YZzDh2+853v7Nmz5xe/+MXs7Cz+6p588snjx4+/88478/Pz6LB3795vf/vbf/zjH8+ePYt1cRyfOHGiWq2+9957c3NzjzzyyDe+8Y1WqzU5Obl///40TX/3u99dunQJ9zU6Onry5El0dd2BmBlbwMy4B2NMf3//wYMHR4LBwcHt27f39PSkQRRFJmBmrbVSCoHWGgAF2AARAeC9z/O80Wisrq6Oj4+fPXv21KlT09PTt2/fzvO83W4XRWGtdc6VZYnAe48OIoKuvwQiwjoKAHjvERARB0opZlZKGWOiKEqSpLe3t16vDwwM7N69e9euXTt27Ni5c2e9Xq9Wq2maRlEUx7HWWimltVZKMbPWWimFDkopBESEDfDeI/DeA3DOee8BWGtFBICI2KAsS2ttq9VaXFy8efPm2NjY5cuXZ2ZmVldXsyzL8zzLslar1Ww2i6Lw3iPw3uNvkYjgz/na1742MjLyn//5n7du3cK6SqXy/e9/v9FovP322957/NU99thjX//618+cOfO///u/6PD3f//3Bw4c+O1vfzs+Po5AKfXCCy/s2LHj/fffn5qaYuaXX365p6fnrbfeWlpaOnTo0LPPPvvJJ5/86U9/wn2Njo6ePHkSXV13IGbGFjAz7sEY09/ff/Dgwccff3xkZGQg6OnpSdM0CbTWSilm1lorpRBorQFQgA0QEQDe+zzPG43GysrK+Pj4qVOnzpw5c/Xq1YWFhSzL2u12WZbWWudcWZYIvPfoICLo2jJmRgciwqepgIM4jokojuNqtVqv1weCHTt27N69e2BgoC/o6emJoiiO4yiKlFJ6nVIKgAoAEBECZsZmiAgC7z0AFwAQERcAsNY65/I8z7Ls9u3bc3Nz4+Pjly9fvnr16uLiYhFkWdZqtRqNRp7nAETEe4+/XSKCP+fIkSPPPPPM/Pz8hx9+uLS0BKBarf6///f/HnjggXPnzv3hD39AcPjw4a997WsfffTRxYsX8flLkuSFF16o1+u//OUvb926heDBBx98/vnn5+bm/uM//kNEEDz//PP79u376KOPTp8+DYCIXn755Wq1+m//9m9FUTz11FMjIyN/+tOfPvnkE3R1fSbEzNgCZsY9GGP6+/sPHjz4+OOPj4yMDAQ9PT1pmiaB1lopxcxaa6UUAq01AAqwASICwHuf53mj0VhZWRkfHz916tSZM2euXr26sLCQZVm73S7L0lrrnCvLEoH3Hh1EBF1bxszoQEQIOACgAq21MSaKojiO6/V6b2/vtm3bhoLt27cPDg729/fXarVKpWKMiQIdcKC1RqACAESEgJmxGSKCwHsPwAUARMQ5Z60VkbIsRaTRaKytrd28eXNqaurChQvT09PLy8vNZrMsy6IomkGWZd57ACLivcffLhHBn0NER48efeqpp0Tkxo0b1to9e/ZorS9duvT73/9eRABUKpUf/OAHWmtr7U9/+tNms4nP39DQ0D//8z9772/durW6utrf379jxw7v/c9//vOlpSUEzzzzzJEjR8bGxj788EMEzPyNb3zj4MGD8/PzjUZj3759ZVn+5Cc/yfMcXV2fCTEztoCZcQ9a676+vv379x87dmxkZGRoaGj79u31ej1JkjRN4zjWWiulmFlrrZRCoLUGQAE2QEQAiEhZls1mc2lpaXx8/NSpU2fOnLl69erCwkKWZe12uyxLa61zrixLBN57dBARdG0YEeFuKADgvQfAAQAi4nVRFBlj4jiuVqs9PT3bt28fHBwcHh4eGhrasWNHvV7v7e2tVqtxHBtjdGCM0VoTkdZaKUVEzAyAiJgZABEhICJsgPcegfcegPdeRACIiAuIyFrrnLNBURTLy8u3b98eHx+/dOnS+Pj40tJS1mF1dTXPc2st1nnv8bdLRLABSqlDhw7t3bt3eHiYiObm5q5du3bhwoU8zxEw8/Hjx48dO3b69OlPPvlERPBXcfjw4QcffHB4eFgpZa2dmZkZHx+fnJxEoLX+x3/8RwD/9V//5b1Hh2eeeebIkSMAZmdnP/nkk5mZGXR1fVbEzNgCZsY9aK3r9fqDDz547NixkZGRvXv3btu2rbe3N0mSNE2jKNJaK6WYWWutlEKgtQZAATZARACIiHOu0WgsLi6Oj4+fOnXqzJkzV69eXVhYyLKs3W6XZWmtdc6VZYnAe48OIoKuDWNm3A0RISAiAMyslALAzHpdmqaVSqVWq23fvn3btm07g127dvX399fr9SRJ0sAYo5TSgQoAGGOYGYBSCgARIWBmbIYPAHjvAXjvRQSAiDjnrLXeexeUZdkOZmdnp6amzp07NzU1NT8/n2VZURR5njcajVarlee5tVZEvPf4EhARbEYcx8zcbrfx/ydxHGuty7IsigKfRkQAvPf4NCKK45iZ2+229x5dXVtAzIwtYGbcg9a6Xq/v3r37+PHjjz322L59+7Zt29bb25skSZqmURRprZVSzKy1Vkoh0FoDoAAbICIARMQ512g0FhcXx8fHT506debMmatXry4sLGRZ1m63y7K01jrnyrJE4L1HBxFB14YxM+6GiBAYYwAws1IKgAm01r1BvV7v7+/fuXPn4ODgjh07du7c2dPTkyRJtVpN09QYowOlFDNrrZVSRASAmYkIgFIKABEhYGZshg8AeO8BeO9FBICIOOds4Jyz1uZ5vra2try8PDk5efbs2cnJyfn5+UajYa3N87zVaq2trbVaLaWUtVZEvPf4EhARdHV1bQ0xMzaPAtyXMSZN0wceeODIkSPHjh178MEHd+7c2dfXl6zTWiulmFlrrZRCoLUGQAE2zHufZVmr1VpaWrpy5crp06fPnTs3NTU1Pz+f53m73S7L0lrrnCvLEoH3HncjIuhax8y4GyLCpxERAhUQkVKKmbXWSZJorWu1Wr1e7+vrGxgYGBwc3L59+65du/r6+np6emq1WrVajQKttVLKGKOUAmCMAcDMWmsAzIyAiABQgM0QEXRwzgEQEeccAO+9C0SkDFZWVubm5qampi5evDg9PX39+vViXaPRWFtby/PcWuucw5eJiKCrq2triJmxeRTgvowxaZoODg4eOXLk+PHjBw4c2Llz57Zt29I0TQKttVKKmbXWSikEWmsAFGDDvPdZlrVarZWVlfHx8TNnzpw9e3Zqampubq4dlGVprXXOlWWJwHuPuxERdK1jZtwNESFgZgBExMwAiEhrzUEcx8aYKIpqtVpPT09/f//27dsHBwcHgr6+vt7e3lqtlqZpHMdKqSiKtNZqHTMDMMYAICJmBsDMCIgIAAXYDBFBB+ccABFxzgFwztnAOdcO5ufnJycnL168ODExcfv27UajURRFFjQajXa7XZalcw5fMiKCrq6urSFmxuZRgPvSWidJ0t/ff+jQodHR0YcffnhoaGj79u1pEMexMUZrzcxaa6UUAq01AAqwYd77LMva7fbq6urExMTZYHJycnZ2ttVqtdvtsiztOgA+wN147wF47/ElQ0S4AwUAvPcIiAgBEQFQSjEzrVNKmXU9Qa1W2759e39///bt2wcGBvr6+rZt29bX15ckSRxEUaSUMsYopbTWHCiliAiAMQYdKABARAiICBvgvUfgvQfgvUdgrQXgvZfAOVeWpQ3W1tbm5+cnJibOnz8/Pj6+uLjYarXyoNVqNZvNdrtdlqWIeO/xJSMi6Orq2hpiZmweBbgvrbUxpq+v76GHHnriiScOHz68d+/ebdu2VYIoMMYws9ZaKYVAaw2AAmyYiBRF0W63V1dXp6amzp8/f+bMmYmJiVu3brVarSzL8jy31jrnyrIE4L0XEdybD/Clwcy4GyJCBwoAcADAe6+1VkoZY6Io0lqnaVqtViuVyrZt2/r7+/v6+nbs2NHf39/X19fb25skSSUwxmitjTFRFCmljDEAmFlrDUApxcwAmBkAEeHTmBmbISLoICLeewBlWSIQEWutc64sy6Ioms3m/Pz8xMTE+fPnJyYm5ufn8zwviiLLslar1Wg0siyz1jrnEIgIvkxEBF1dXVtDzIzNowD3pbU2xlSr1QceeOCJJ544evTogw8+uGPHjlqtVqlUosAYw8xaa6UUAq01AAqwYSJSFEW73W40GlevXr1w4cK5c+fGx8dv3LixurqaZVme59Za51xZlgC89yKCe/MBvjSYGXdDRAi01gAoAKC1ZmYASZIopbTWSZJUg3q93tfXNzAw0B/U6/X+/v7KujiOoygyxiiltNbMrNYBYGatNQAiQsDMAIgIn8bM2AwRQQcR8d4DKMsSgPe+LEvnnLW23W43m825ubnJycnz589PTU0tLi42m82yLIuiWF1dbbVa7XbbOWetBUBEAEQEXyYigq6urq0hZsbmUYD7UkpprSuVytDQ0OPB/v37d+3a1dPTU6vVjDFRFBljmNkYw8xEBEBrDYACbJiIFEWR53mj0bh27drly5fPnTt3+fLlmZmZ1dXVVquV57kLrLWyDvflvUcH7z3+zyIi3A0RYZ33HgAzIyAiBBwQEQAOtNZKKWOM1rparaZpWqvV6vV6b29vvV7v6+vbtm1bX19fvV7v7e1NgyRJooCZlVI6ICKlFDMTkTEGABExMwAiQkBECIgIHYgIG+C9R+C9B+ADABIAkA5FsLKyMj8/f/ny5UuXLl25cmVpaSnLsrIs8zzPsmxpaakoirIsRcR7j3Xee3yZiAi6urq2hpgZm0cB7ouZtdZpmg4ODj766KOPPfbYww8/vHv37t7e3lqtFgdaa6WU1lopRUQAtNYAKMCGiUhZlkVRNBqNmzdvTkxMnDt37tKlS9euXVtZWWk2m+1221rrAmutc857j80QEfyfRQHuQERY570HoLUGQETMDMB7rwIAURQppbTWSZKkaVqpVNI07e/vr9Vqvb29fUFPUK/XK5VKmqZJkiil4jg2xmitlVLMrLVWShERAK01EQEwxgCgAAARoQMF2DwfYJ33XkQAOOdEBICIWGtFxFrbbDYbjcatW7fGx8cvXrx49erV27dvF0Ge562g2Wxaa51zCHyALx8RQVdX19YQM2PzKMB9MbPWOo7jvr6+gwcPHj16dGRkZO/evb29vT09PZVKJY5jrbVSSmutlCIiAFprABRgw0SkLMuiKLIsm52dnZiYuHDhwqVLl6anpxcXF5tBWZYusNY657z32AwRwf9ZFOAORISAmYkIgNYaADMrpQBoraMoUkpprdMgjuOenp5qtdrT01Ov1/v7+2u1Wk9PT61W6+/vj4M0TZMkMcZorZVScRxzoJQCoLVmZgRaa2bGOgoAEBE6UIDN8wHWee9FBIBzTkQAFEXhgna7vbKyMjc3NzY2dvr06evXr6+srOR5XpZlURTtdrvRaDSbTWutc05EmBmAD/DlIyLo6uraGmJmbB4FuDdmJiIAURT19vY+8MADR44cefzxx/fv3z84ONjb2xvHcRQYY7TWSikiAqC1BkABNsx7X5ZlURRZlt2+ffvatWtjwfj4+MLCwu3bt4t1RGStdc6JCAAR8d7jL0dE8EVgZtwNEeHTiAgAEQHw3hOR1pqImFlr7b2PokgHxhitdZqm1Wo1iqKenp5arVatVuv1ek9PT71e7+3tra6LgiRJjDFaa2OMUkprrZQCYIxRSgEgIgDMrLUGwMwIiAh3w8z4TEQEgfcegIgAEBHnHAIRsdaKSJ7nRVEsLy9fu3bt4sWLY2NjMzMzq6urRVGUQaPRWFtby/PcWuucQyAi+BITEXR1dW0NMTM2jwLcGzMTEYAoiqrV6s6dOw8dOnTs2LGDBw/u2rWrt7e3p6cnCowxWmulFBEB0FoDoAAb5r0vy7IoiizLlpeXZ2dnx8fHx8bGrly5Mjs7u7Cw0Gq18jwvisI5Z611zokIABHx3uMvR0TwRWBm3A0RAaAAADMTEQClFAAi0lqrgJmVUsaYKIriOE6SpFqtViqVarVaqVRqtVpPT08tqNfrlUolXRcHWus4jplZddBaI1BKMTMAZgZARMwMgJkREBHuhpnxmYgIAu89ABEBICLOOQAiYq11zonISjA5OXnp0qWJiYmbN2+ura3leV4URZ7nWZY1Go0sy8qydM5hnYjgS0xE0NXVtTXEzNg8CnBvzExEAIwxSZL09/cfPHjw2LFjR44c2b17d28QRVEcx8YYrbVSipkBaK0BUIAN895ba8uyzLJsdXV1cXFxenp6bGzs8uXL169fX1hYWFtba7fbeZ7bwDnnvQfgnPPeY533HlvjvcdmeO8REBG2gIjwaUSEgDtQwOt0EEWRMSYKarVakiRpmlYqlZ6enlqtVqlUqtVqb29vpVKpVqtpmlar1TiOTZAkiVKKmZVSWmsVcKCUogCAUoqIADAzOlCADkSEDkSEjfHeo4P3HoAPADjnAHjvnXPee2utiJRl2Ww25+bmJicnL1y4MDk5OTc3t7a2Zq0tiiLP81aQZVlZliLinCMiBN57fImJCLq6uraGmBmbRwHujZmJCIBSKo7jWq22f//+xx9//OjRo/v27RsYGOjp6UkCrbVSSmvNzACMMQAowGY456y1eZ6vrq4uLy/fuHHjSjA9PT0/P7+0tNRut7Mss9Y656y1IgJAAgAigsB7j78iEQFAATaPiHA3SikiAsDMSilmJiKtNQBzhzRN4zhO07T6abWgUqkkSVKv16MoMkEcx8YYrbVSKo5jAEoprTUApRQzA9BaIyAiAFprZsY6IsLdUIDN8wE6eO8BiIj3HoC1FoD3XkSstUVRWGvX1tZu3749MTFx/vz5mZmZ2dnZdrtdFEVZlnmet1qtRqORZZm11jmHQETQBYgIurq6toaYGZtHAe6NmYkIgFIqjuM0TXft2vXoo48+9thjDz/88NDQ0LZt25JAa62U0lozMwBjDAAKsBnOOWutc67RaCwvLy8sLExPT09OTo6Pj9+4cWN+fr7ZbGZZVhSFDcqyBCABABFB4L3HX5GIAKAAm0dECLTWAIiImQForZVSAJRSWmullNbaGKOUioIkSaIoSpKkUqmkaVqpVKrrKpVKtVpN07RWq8VxnARRoII4jolIBcYYAESklAJAAQCtNQIiAkAB1hER7oYCbJ4P0MF7D0BEvPcArLUARKQsS2ttURRra2s3b968fPnyxYsXp6enl5aWWq2WiBRBo9FotVrtdts5Z60FQEQARARdgIjgvpIkGRwctNbiDsYY59yNGze89/jiENHevXuVUq1Wa3Z21nuPOwwNDaVpaq29evUqPs0Ys2vXrtnZ2aIo0NX1mRAzY/MowL1RAICZjTFJkgwODh48ePCxxx47cuTIAw880NfXV6vV0jTV65gZgDEGAAXYDBEpy1JE2u12s9lcXFycmZm5du3a+Pj41atXb9682QjKoCgKEXGB9x6Acw4dvPf4TLz32AzvPQAiwjoiAiAiAIgI64gIHYgIAAdKKSLidVprZlbr4jiOgjiIoihJkp6enjiO0zStVqtpmlYqlWq1mqZptVqN47hSqSRJEsdxFEVmHTMrpbgDERljABCRUgoBEQFgZgREhICIcAciQgciwiZ57wF47xGICADvvYgg8N4DEBEXFMHy8vKNGzfGxsbOnz9/69atpaWlPM+LonDOZcHKykpRFGVZioj3Huu89+gCRAT3RkRf//rXR0ZGcA/W2vfff39mZgZfBCJ6/PHHDx061NPTQ0Te+6WlpfPnz1+6dMl7jyBJkr/7u7978MEHmRnAtWvXLly4cPPmTRExxuzbt+/IkSPbtm07GaCr6zMhZsbmUYB7IyIEKoiiqL+/f+/evSPBQw89tH379p6enmq1aozRWhtjmBmAMQYABdgMEbHWikie51mWrayszM7O3rx5c2pqanp6emZmZmlpaXl5Oc/zsiyLorDWOuestSICwDmHwHsPwAfYPO89toCIEHjvAVAAgAMASikARKSUQqDWaa2ZWWsdBXEcG2OiKIrjOEkSY0yapsm6Wq2WJEklSNM0WRet04FSSmutlDLGAGBmpRQADgAopQBwAICIEDAzOhAR7oaZsTUigg7OOQDee+ccAB8AsIGINJvNxcXF6enpy5cvX7p0aW5urtFotNtta21RFGVZtoJ2u22tdc4h8AG61okI7qtarR45cgR3SJLk0KFDi4uLb7/9tojgi7B///5/+Id/yLJseno6y7JKpbJv3z5jzC9+8YvZ2VkETz/99NGjR2/dujU7O/voo49GUYQ7LC8v/+Y3v1lcXERX12dCzIzNowD3RkQIVKC1rtVqu3btOnz48PHjxx9++OHh4eFardbT0xPHsdbaGMPMAIwxACjAZoiItRZAURRZlrXb7cXFxfn5+atXr05PT1+7dm1ubm5+fr7VahVBWZY28N4DcM4BEBHnHAAfYPO899gCIkKglAJAAQAVADDGAFBKRVEEQGttjFFKJUmigujTKpVKEsRxnKZppVJJ0zRJkmq1miRJHMfGmDRNlVJRFKVpysxRFGmtmVlrDYCZVQCAmZVSACgAoLUG4L1HQEQImBkdiAh3w8zYGhFBB+ccAO+9cw6AtVZEABRF4ZzLsuzWrVsTExOXL1+enJycn59fXV21QVEUeZ5nWdYMRMQ5JyLMDMAH6FonIvhMvvrVrx47duzXv/715OQkvgi9vb0vvvgiM7/11lutVgtBf3//iRMnWq3W22+/ned5mqY//OEPReT111+31j755JPHjx+fmZlJ09Ram6ZpvV5vt9vvvvvu2toauro+K2JmbB4FuDciQqC1BqCUStN0cHDwwQcfPB4MDQ0NDg5WKhVjTBRFxhi1DgAF2AwRASAiNmg2m6urq8vLy9fX3bhxY3Z2ttlsrq2ttVota21RFCLiAu89ABFxzgHwAQAiAuC9FxFsADMD8AE2gJkREBEADgAQkVKKmYlIddABM2utoygyQRQYY6IgTdMoipKgUqkkSRLHcRRFcRyngTEmTVOlVBRFSZKoQGutlIqiCIBSyhgDgJmJCIAxBgARIVBKEREAZsbdEBHuhpmxBT5AB+89AB8AsNYC8AEAF4hIlmXNZvPWrVuXL18eGxu7evXq8vJyo9FwzhVFked5lmXtdrvVapVl6ZwryxKBiKDrDiKCzYvj+JVXXmk0Gj//+c9FBF+EkZGRp5566uOPPz516hQ6PPXUUyMjI7/97W/Hx8eNMa+99lpZlq+//jqA73znO8PDw7/+9a+npqbiOD5x4kS1Wn3vvffm5ubQ1bUFxMzYPApwb0SEQGsNgJnjOO7r6xsaGjoWHDhwYHBwsFarpWkaRZExRq0DQAE2Q0QAiIgN8jxvBbPBjRs3rl+/Pjs7u7i4uLa21mw28zwviqIsSxGx1ooIABcA8N4jcM5hM5RSuC8iQgdjDAIiAqC1VkoBUAEHxhgdKKX0OmNM1CFJkmhdmqZRFMVxnCSJMSZJkjRNoyiK49gEURRprZVSxhgdcKADAESklALAAQAiAkBECJRSRASAmXE3RIS7YWZsgQ/QwXsPwAcArLUARMRaC8A5VxRFnuerq6s3b94cGxu7dOnSjRs3VlZWiqLI87wsy6Io8jxvt9tZlhVFYa11zokIAhFB1x1EBJt37Nixr371q//93/99+fJlrBsaGjp8+PDFixdv3ryJz9+SNXSMAAAgAElEQVTTTz999OjRn/3sZ8vLy+gwNDT0wgsvfPzxx6dOnVJKfetb39q/f3+j0fDe9/T03L59+5133mHmF154YceOHe+///7U1BQ2ZnR09OTJk+jqugMxMzaPiBAQEe6GiBBorQEwszGmWq0ODAwcPXr0iSeeOHLkyI4dO3p7eyuVShzHxhgVaK0BUIDN8N4DEBEXFEVRlmWWZUtLSwsLC7Ozszdu3Lh169aNGzdWgzzPsywrisIGzjnvvYhYaxF47wGICALvPQAiQkBE+DQiAkBEAIiImdGBiAAQkVIKHYwxCJiZiLTWzExEURSpdaZDFEVaa2NMHMdRFMWBMSZN0yhIkiQOokBrHUWRMUZrbYzRWpuAA6WU1pqZiYgDrTUACgAwMxFhHREhYGYiAsDMuC8iQgciwmZ479HBe4/Aew/ABwB8AEBEvPfOOWut974sy1artbKyMj4+fvny5StXrszPz6+trbXbbWttWZZF0G63syzL89wFPkDgvUfXHUQEm2SM+cEPfmCt/elPfyoiCNI0femll9I0zbLsrbfearfb+Jx973vf6+npeeONN6y16JAkyauvvjozM/OrX/0KwXPPPffQQw9578fGxs6cObO8vPz888/v27fvo48+On36NDZsdHT05MmT6Oq6AzEztoCZcTdEhEBrDYCIjDFpmvb29j7yyCNPPPHEY489tnv37m3btqVpmiRJFEVaaxUAICJmxuaJiPceQJZlRdBsNpeC2dnZuWBxcXFpaanZbDYajTzPywCADZxzAHwAwHsPwAcAKADAzOjAzEQEgIgAEJFSCgARIWBmAESklAJAAYA4jgEQkTFGKcXMSimttTFGa83MWus4jo0xWusoiowxURQZY6J1cRxH63QQBVprpVQcx0opHagOWmsASimtNQBmJiIAURQBICIEzExEAIgIAAXoQES4NwqwBSKCT/PeAxARAN575xwC7z0A771zTkScc0VRNJvN2dnZ6enpS5cuTUxM3L59O8/zIijLsiiKLGi320VRWGudcwhEBF33JiLYpKNHjz799NP/8z//c/78eaxj5ueee27fvn2Tk5MffPCBcw6fpzRNX3nllSzLfvKTn4gIOmitX3vtNe/966+/bq1FoLX23jvnADz55JPHjx8fGxv78MMPsRmjo6MnT55EV9cdiJmxBcyMuyEiBFprBMycpmmtVtu3b9/IyMjo6Oi+fft27txZq9WSJImiSGutAgBExMzYPBHx3gMoy7IoirIs8zxvNptra2tLwc2bNxcXF5eWltbW1prNZqvVyvO8CJxz1lrnHADnnPcegIggICIAFABgZgBExMwAmJmIAGitARARMwOgAAAzAyAiZgaglCIiAFprAMwcx7FSSgdKqSRJlFJa6ygwQRRFWus4jnUQRZEJoihSSkVRpLVWSkVRpAOllNZadQCgAmYGQETMDEApRUQAmBkAESFgZiICQEQAKEAHIsK9UYAtEBF8mvcegIgA8N475xB47wGUZemcs9ZmWba0tLSwsHDx4sXJycmZmZmFhYUsy6y1eZ6XZVkEWZDnuXPOWguAiACICLruTUSwGUqpl19+mZnffPNNay06GGP6+/uXlpbKssTnTCn1ox/9aGlp6b333sMdXn75ZWZ+8803vff4tIcffvib3/zmzZs3f/nLX4oINmN0dPTkyZPo6roDMTO2gJlxN0SEQCmFgJmjKKpWq8PDw4cOHXryyScPHTo0PDzc09NTrVaNMSowxgAgImbG3RAROnjv0cEHAETEWluWZVEUWbC6urqysrK8vHz79u2FhYWVlZW1tbVW0G63y8BaKyIu8N4D8N4jICIARITAGAOAAgBKKWYGwMwAiEgpBYCZiQgAMyPgQAXMHEURM2utjTFKqShg5kqlopQyxkRRpLU2xmitjTFaa2OMDowxSin9aUSklNJaK6WISClFREoprTV1YGYAHACgAIBSCgERAaAA6yjAvREROhARPhPvPQLvPTqIiPcegHMOgPdeRBB470WkKAoRabVaCwsLMzMzV65cmZiYuH79eqPRyLLMWuucy/O8KIo8z4uiaLVaZSAi3nus896j695EBJtx6NChZ5999qOPPjp9+jS+OEmSvPrqq3mev/HGGyKCDsaY1157zTn34x//2FqLDsPDw9/97neXl5fffffdsizjOK5Wq1mWtVotbMDo6OjJkyfR1XUHYmZsATPjbogIATMDICKllNY6juOBgYEDBw6Mjo4+/vjje/fu7evrq1arcRxrrZVSxhgARMTMuAMR4dO89+jgAwTWWudcWZZF0Gq1ms1mo9FYXl5eWVlZW1tbXV1tBc1msyiKsiyLorDWusB7D8BaC4CImBkABQCiKAJAAQCtNREB0FoDICJmBsABAKUUACJiZq01MyulmDmKIqWUXmcCrXUcx0oprbVSSmutlNJaK6W01koprbVSSmvNzCpgZqWU1lopBUBrzcwAlFIAmFlrDYCIEGitARARMwMgIgRKKQBEhICZ0YGIcF/MjL8EH6CD9x6AiHjvAVhrEYgIABFxzllry7JsNBpzc3PT09NXrlyZmppaXFxcWlry3hdFUZaltbYoiizL8jwviiLPc2utcw6BD9D154gINoyZX3rppSRJ3nzzzaIo8IV68cUX+/v733jjjbIs0aFSqbzyyisTExMffPABOvT29p44ccJa++677zYajSeeeGJkZCSKIu/9b37zm8nJSfw5o6OjJ0+eRFfXHYiZsQXMjLshIgTMDICIlFJaa6VUb2/v3r17jx079pWvfOXAgQPbt2+v1WppmhpjlFLGGABExMy4AxHh07z36OADBNZaHxRFYa0tyzLP82az2Wg0msHa2lqr1WoGWZaVZVkEzrmiKEQEgPceAAUAiAiBMQYAM2utASilmBlAFEUAiIiZAXAAQCkFgJm11kopZlaBMUZrrZQyxiil9KepQGvNgVKKmZVSHGitiYiZlVIAVMDMACgAoLUGQETMDICZiQiAUgqA9x4BESFQSgEgIgTMjA5EhPtiZvwl+AAdvPcARMR7D8Bai0BEAJRlWRSFtXZpaenGjRsTExNXrly5cePG4uJiHjjniqIoy7IIsizL87woCheICDMD8AG6/hwRwYY99NBDzz333CeffPKnP/0JX7Qnn3zy+PHj77zzzvz8PDrs3bv329/+9h//+MezZ89iXRzHJ06cqFar77333tzc3COPPPKNb3yj1WpNTk7u378/TdPf/e53ly5dwn2Njo6ePHkSXV13IOb/jz14cdKrqvIG/Ftrn3Pee/qSdCfpxKQTQgghAcx4QSx1RHBGoyU1VTg6/n0yOMqgqKU1Mur4aZVikZRAKeDEQAiTdCd9fy/n7L32Wl/VruqqN5UmhCTNzfM8jDuBmbEVIgLgEgDOuYmJid27dx8/fvzUqVMnT56cmZmZmJjI87zZbOZ5XhQFACJiZlyHiPA2zAxjVBWAmcUYAYREREajkfe+qqrhcDhKhsNhWZbD4dB7H0KQxHuvqgBEBAkzA2BmIgJQFAUAIsqyzCVEBCDPcwDM7JwD4JxjZgBZlgFg5izLADjnmBlAo9EA4JzLsgxAnufMDKDZbAJgZuccAOccMwPIsgwAMzvnAHACIM9zAETEzACYmYgAEBEAZnbOASAiJM45jCEiJMyMrRARtsLMuBNUFdcyMwCqCsDMYowAVNXMsElVRcTMYoxra2srKytvvPHGuWR5eXljY6MsyxBCjDGE4JPRaOS9L8syxgjAe48xlqD2TlQVN4eZv/GNb/R6ve9///uj0Qjvt5MnT376059+6aWX/vCHP2DMF7/4xbvuuutXv/rVuXPnkDjnTp8+PTs7+9xzz73++uvM/MQTT/R6vaeffnplZeWee+753Oc+d/bs2RdeeAE3dOrUqTNnzqBWuw4xM+4EZsZWiAiASwAwc6fT2blz55EjRz7+8Y8/8MADc3NzMzMzzSTP86IoABARM+M6RIS3YWYYo6oAzCzGCMDMRCTGKCLe+xCC974sS+99VVVlWYYQfCIiMcYQgqoCiDEiMTMAnADI8xwAEWWJcw5JnucAmDnLMgDMTEQAnHMAiIiZAeR57pwDQEQAmNk5B8A5R0QA8jwHQETMDICZiQhAlmUAiIiZATAzEQHIsgwJEQHgBAAzIyEiAESExDmHMUSEhJmxFSLCVpgZd4Kq4lpmBkBVAZhZjBGAqpoZgBACkhjjYDAYDof/93//d/HixVdeeeXy5cuLi4tlEkJQVRGpqsp7X1VVWZbe+xCCqgJQVYyxBLV3oqq4OQcOHHjsscdefvnlP/zhD9jKsWPHPvWpTz3//POvvPIKtl+z2Tx9+vSOHTt+9rOfXb58GcnBgwcfffTRxcXFn/70p6qK5NFHH52fn3/++edffPFFAET0xBNPdDqd7373u977hx566MSJEy+88MLZs2dRq90SYmbcCcyMrRARAGZ2zgFg5maz2ev1Dh48+OCDD546dWp+fn7Pnj2dTqfZbBZFkWUZETnniAjXISLckJkhMTMAZqaqSMxMVWOMIhJjFJEQgqqKSFVVMcaQxEREVBVAjBGJmQHgBECWZQCY2TnHzM45IgKQ5zkAInLOAWBmIgLAzEiICGOccwAoAcDMSLIsQ0JEACgBwMxIiAgAMxMRAOccEiICwMxEBICIkBAREiICwMy4FhEBICIkRIQbIiIARIR3w8ywFTMDYGZILAGgqgDMTFUBWKKqImJmMcbBYLC0tPTWW2+dO3fu9ddfv3Tp0mAw6Pf7qioiYdNoNPLeV4mIqKqZATAzXMvMUHsnqoqbQESnT5/euXPn008/3e/3cZ12u/3Nb34zyzIR+f73vz8YDLD99u7d+9WvftXMLl++vL6+PjU1NTs7a2bPPPPMysoKkocffvj48eOvvfbab37zGyTM/PnPf/7IkSNXrlzp9/vz8/MhhO9973tVVaFWuyXEzLgTmBlbISIAnABwzjWbzVartX///nvvvffUqVNHjx6dm5ubmJhoJkSUZZlzjohwHSLCOzEzXEdVzQyA9x6AqoYQAKhqjFGSGKOIxBgBiIiqAlBVjGFmIgLAzACY2TkHgBMAzjkARMTMAIgICTNjK0QEgBKMcc5hDCUAmBkJEQGgBAAzA6AEABFhDBExMwAiwhhKcB0iwg0xM26JqmIrZoZEVQFoAsDMAFiCJMYoImY2Go0Gg8Hi4uKFCxf+9re/Xbhw4erVq/1+P4TgvZckxuiT0Wjkva+qSkQAqKqZAVBV1N49VcVNaDQa//RP/7S8vPzb3/4WW2HmBx988IEHHnjxxRfPnj2rqnhPHDt27ODBg3Nzc845Ebl48eK5c+fOnz+PJMuyxx57DMDPf/5zM8OYhx9++Pjx4wAWFhbOnj178eJF1Gq3ipgZdwIzYytEBIATAM65ZrPZarWmp6ePHDnywAMPHD9+/ODBg7t27WomeZ5nWeacIyJch4jwTswM11FVMwMQYwRgZqoKwMxiQkQioqpmBkATAGaGrTAzAEoAcIJNRMTMAMwMCRHhhogIY4gIY4gIiXMOCREBoASAqgKgBAARYQwRMTMAIsIYSnAdIsINMTNuiapiK2aGRFUBaALAzACoqogAUNUYo4h47xeTc+fOXbhw4fLlyysrK2VZhhB8EhPvfVVV3vuqqkKCRFXNDICqovbuqSpuDhEBMDN88DQajSzLQgjee1yLiACYGa5FRI1Gg5lHo5GZoVa7DcTMuBOICAkRYQwRAeAEADMXyfT09P79+0+ePHn//fffdddds7Oz7Xa72+0yc5YwMwAiwhgiws0xM4wxMySqisTMAKiqJapqCRJLAKgqtkJEAIgICREhYWYkRASAiHBDqoqEiDCGiLAVIgJAREiICAkRISEiJESETZTgOkSETUSEd0JESIgIN8fMMMbMMMYSADFGJGYGQFXNDICqAlDVGKOZiUhZlqPRaHFx8Y033jh//vxbb7119erVfr9flmVMvPchBBHx3leJiJRlGWM0MySWADAz1N49VUWtVrs9xMy4cyjBGCICwAkAIsqTqampXbt23XvvvSdPnjx27Njc3FwvyfM8S5gZADNjDBHh5pgZtqKqSMwMgKqaGQBVxRhLAKgqtsLM2AozYwwR4YbMDImZYQwz4+0REa7lnMMYIsIYSvD2iAg3gRK8G6qKrZgZAEsAiAgSMwOgqmYGQESQiEhVVaPRaHl5+cqVK6+++uqlpN/vb2xseO/NTBKfhBC892VZhhBEJISAxMwAWILarVJV1Gq120PMjDuHEowhIgCcACCiPOl2u5OTk4cPH77vvvtOnjw5Pz8/MTHR7XY7nU6WMDMAZsYYIsLNMTNsRVWRmBkAVTUzAESEMWaGRFWxFWbGVogIYyzB22NmAJpgDDPj7RERruWcwxgiwhhK8PaICDeBErwbqoqtmBkASwCICBIzA6CqZgbAew8gxjgYDFZXV5eXly9cuPDGG2+89dZba4n3XkRCCDEJIXjvq6ry3ldVFUKQBJvMDIAlqN0qVUWtVrs9xMy4cyjBdYiImQG4JMuyZrM5OTm5b9++Y8eOnThx4q677pqbm9uxY0er1SqKwjlHRFmWMTO2QkR4l8wMb09VsRUzwwcPEWErlOCmERFuDjPjhlQVWzEzjFFVAGYWY0RiZgBijAAsQaKqZhZCKMuy3+8vJm+++ealZG1tLYTgvZckxui9DyFUVeU3iUgIQVUBmBkSVUXttqkqarXa7SFmxp1DCa5DRMwMwCVZljWbzU6nMzMzc+jQoRMnThw9enR+fn56errdbhdFkee5cy7LMmbGVogI75KZ4e2pKrZiZvjgISJshRLcNCLCzWFm3JCqYitmhjGqCsDMYoxIzAxAjBGAqsYYkYQQvPfD4fBq8uabb7711luXL19eX1/f2NiIMYYkJiGEqqr8phBCjFFEYoxIzAyJqqJ221QVtVrt9hAz484hIiREhDGUAHDOZVnmnGu1Ws1mc2JiYt++fffee+/x48fvuuuuPXv2dLvdRqNRFIVzLssyZkZCRLgWEeHdMzNsxcywFTPDBxIRYStEhBsiIrx7RIQbMjOMMTOMUVUkqgrAzFQVgCUAYowAVDXGqKohhH6/v76+vri4eDFZWFhYWVnZ2NgQkRCCqoZEVUMI3vuqqrz3ZVmKiCYxRjMjIgCqisTMULttqoparXZ7iJmxDZgZY4gIiXMuS/I873Q63W53z549hw8fPnbs2D333LNv377Jycl2u91sNonIJUQEgJmxFSLCu2FmeE+oKrYBM+M2EBG2mZkBUFWM0QRAjBFjNAFgZjHx3g+SheTSpUuXL1++cuXKKAkhxBhFRFVDCN77EIL3PoTgk7IsAahqjBFjVBW1O0dVUavVbg8xM7YBM2MMESFxzmUJM7eT6enpj33sY0eOHDl+/Pj8/Pzu3bvbSZ7nLiEiAMyMrRAR3g0zw3tCVbENmBm3gYiwzcwMgKoCMLMYI8bEGAGYWYwRgKqaGYAQQlmWVVVtbGwsLCxcuXLl8uXLCwsLV69e7ff7w+EwhBATEYkxioj3vqoqn4hICMF7H2NEYmYYo6qo3TmqilqtdnuImbENmBljiAgJM2dZ5pJmMjExsXfv3vn5+Xvvvffuu++em5ubmJhotVqNRiPPc2YmIgBZlmErRITbYGbYHmaGbUBEuCVEhG1jCRIiAhBCQGJmACwBoKoAVDXGaGaqKiIxxsFgsLa2trKysri4ePHixcXFxdXV1fX19cFgIImZiUiMMYTgkxBCVVXe+5DEGFXVzDDGzJCYGWp3jqqiVqvdHmJmbANmxhgiQsLMLsnzvCiKZrPZ7XZ37dq1b9++o8nBgwdnZmba7XZRFI1GwzlHRACKosDbIyLcKjPDRx0R4U4zM4xRVQBmhkREkJgZgBijmQGIMQIwM1X1yWAw6Pf7y8vLl5OrV68uLS0Nh8NRYmYxRhGJMYYQRMQnIQSfiEiMUUTMDICZYYwlqN1pqoparXZ7iJmxDZgZY4gICTO7JM/zoiiazWar1ZqYmJidnT1y5MjRo0cPHz48NzfX6/UajUaRMDOAoijw9ogIt8rM8FFHRLjTzAxjVBVAjNHMAJgZAFWNMQJQVTMD4L0HEGMcjUbD4XB9fX1paenq1auXL19eSgaDQVVV3vuQABCRkIiI3xRj9N6HEFRVRAAQEQAzwxhLULvTVBW1Wu32EDNjOzEzxhCRcy7LMudckbTb7W63OzU1dfDgwaNHj95999379+/fuXNns9lstVrOOWZ2zuV5DoCImBk3jYjwLpkZPnKICLfKzDBGVZEQEYAQAsZYAkBEkKhqTCzx3g+SjY2N5eXlxeTq1avr6+vD4bAsS+99jNHMYoyS+CSEUCUhBEkAqKqIYIyqorb9VBW1Wu32EDNjOzEzxhCRcy7LMudcURR5njebzU6nMzExsWfPnsOHDx89enR+fn7Pnj3tdrvVahVFkWWZcy7PcwBExMy4aUSEd8nM8JFDRLhVZoYxqgpAVc0MgJkBMLMYIwBLAMQYAZhZ3DQajYbDYb/fX11dXV5eXlpaunz58vr6+mAw6Pf7ZVlKoqoiEhMRqarKJyGEqqpEJMYoIqoKwBKMUVXUtp+qolar3R5iZmwnZsYY3uScK4oiz/Nms9lutzudzq5duz72sY8dPXr08OHD+/fv7/V63W632WxmWeacy/McABE55zCGiHBDRISbZmb4iCIivHuWYIyqAogxmhkAMwNgZppYAiDGqKoiUpal935jY2NlZWV1dfXq1asrKyvLy8tra2uDwaCqqpBoEmMUkRCC915EQgij0ShsEhHdZGa4lpkBMDPUtp+q4ua0Wq19+/YNh0NmDiEsLi6aGT4AiOjAgQPOueFwuLCwYGa4zt69e1utlohcuHAB18rzfM+ePQsLC9571Gq3hJgZ24mZMYaZiQhAlmVF0mw2W8nExMTc3NyRI0cOHTo0Pz8/OTk5NTXVbDadc1kCwCUAiAgJM+PdIyJcy8xQu44lAMwMgJmpKgBVNTMAIgKAiMxMRFQ1Jt77sixHo9HGxsbKysry8vJqsrS0NBwOB4OBJCEEEYkxmplsqqrKe19Vlfe+qqoYo4ioKgBNAJgZxliC2ntFVfFO2u32P/zDPxw6dKgoCiSqury8/PLLL//v//4v3j9EdP/9999zzz29Xo+IzGxlZeXPf/7zq6++amZIms3mZz/72YMHDzIzgDfffPMvf/nLpUuXVDXP8/n5+ePHj09PT59JUKvdEmJmbCdmxhhmJiIAWZYVRZFlWVEUraTT6czMzMzPzx86dOjIkSMzMzOTk5PdbjfP8yzLGo0GAJcAICIkzIx3j4hwLTND7TqWAAghALAEgCYAYowAzCyEICIxxqqqyrLc2NhYXl5eTZaXl9fX14fD4WAwGI1G3nsRUVURiYmIeO9jjCEE731VVSHx3qtqTMwMY8wMYyxB7b2iqngnX/jCF+6+++6VlZWLFy+qKoButzs/P8/MP/jBD9bW1vA+OXTo0Je+9KWyLN94442yLNvt9vz8fJ7nP/7xjxcWFpB85jOfue+++y5fvrywsHDvvfcWRYHrrK6u/vKXv1xeXkatdkuImbGdmBljKAGQJXnSaDTa7Xav15uYmJibmzt8+PBdd921b9++6enpbrfbSJxzzOycY2YAzExEAJxzSIgI7wYRYYyZ4e+YmSEhIgBmpqoAzAxJVVUAiAhAjFFVLRERTaqqGgwG/X5/LVlJVldX+/3+YDCoqiqE4L2PMYqIJiEEVRWREMJoNPLeh00iEmNU1RijqpoZNhERAFXFGDND7T2kqrihbrf7xBNPeO+feuqpGCM2nThx4qGHHvrLX/7yu9/9Du+HiYmJr33ta8z89NNPD4dDJFNTU48//vhwOPzhD39YVVWr1frXf/1XVX3yySdF5BOf+MSDDz548eLFVqslIq1Wa8eOHaPR6Nlnn93Y2ECtdquImbGdmBljiAhJnufOuTzPi6TRaHS73V6vt3v37oMHDx46dOjAgQOzs7MTExOtVqvZbDrnmNk5x8wAmJmIAGRZBoAS1G6VJQDMDIAmAMwMifceiaqKiJnFGEMI3vvRaDQYDNbX11eTtbW19fX1jY2Nfr8/Go1EpKqqGKOqxkREYuK9F5EQgve+qqoQgvfezEIIMUYzA6CqSMwMY1QVtfePquKGms3mt7/97dXV1WeeeQZjDhw48OUvf/nll1/+/e9/j/fDiRMnHnrooT/+8Y9/+tOfMOahhx46ceLEr371q3PnzuV5/p3vfCeE8OSTTwL453/+57m5uf/+7/9+/fXXG43G448/3ul0fvKTnywuLqJWuw3EzNhOzIwxRIQkz3PnXJ7nReKc63Q6vV5venp63759Bw4cOHz48L59+3bu3NlqtZrNZqPRYGbnHDMDYGYiApBlGQBKULtVlgAQEQBmpqoAVNXMAIgIgBij9z7GKCLD4XA0GvX7/dXV1eXl5fX19ZWVlfX19X6/X5ZljLGqqhBCjFFV4yYRiTGKSAjBe19VlU9ijN57VSUiEVFVIsIYM8MYVUXt/aOquKEsy77xjW9MTk7+9re//etf/6qqANrt9mOPPTYzM/M///M/f/3rX5Hs3bv32LFjr7zyyqVLl7D9PvOZz9x3330/+MEPVldXMWbv3r2nT5/+4x//+Kc//ck594//+I+HDh3q9/tm1uv1rl69+qMf/YiZT58+PTs7+9xzz73++uu4OadOnTpz5gxqtesQM2P7UQKAiJAQUZZlzrksy4qiaDQanWTHjh179+7dv3///Pz8/v37d+/e3e12e71elmUuISIAzjlmBuCcA8AJAGZG7e1ZAoCIAGgCwMyQxBgBaALAzGKMIqKqIhJCqKpqOBwOBoPV1dW1tbWlpaX19fW1tbXBYDAcDsuyDCGISExU1cxiEpIYo/e+qirvvYiUZSkiAMsjpfUAAB9ZSURBVKqqQmJm2IqqovaBoap4J/Pz81/60peIaDQaLS4utlqtmZkZIrpy5cqPf/xjVQXQarX+5V/+pdVqlWX59NNPj0YjbLNvfOMbvV7vqaeeEhGMaTab3/72ty9evPiLX/wCySOPPHL48GEze+2111566aXV1dVHH310fn7++eeff/HFF3HTTp06debMGdRq1yFmxvajBAARISGiLMucc1mWFUWR53k76Xa7u3bt2rt374EDB/YnExMT3W631WpliXMOgHOOmQE45wBwAoCZUXt7lgCIMQIwM1UFYAmAEAIATQCISAghJqPRqN/vr21a3TQcDsuyDEmMUVVFJG5SVUm89yHxSUxCCGYGIMaIxMywFVVF7QNDVfFOiOiTn/zkyZMniQibRqPRs88+u7GxgYSZH3nkkfn5+fPnz//617+OMWI7tVqtb33rW2VZfu9731NVjMmy7Dvf+Y6ZPfnkkyKCJMsyM4sxAvjEJz7x4IMPvvbaa7/5zW/wbpw6derMmTOo1a5DzIztRwkSIgJARM45Zs6yLE9aSbvdnpqa2rVr14EDB/bv33/gwIGdO3dOTk62Wq08z4uicM5xQkQAsiwDQETOOQCUACAi/D0xM9yQmQGwBECMEYAmAMxMVc3Mew/AzGKMqhpCKJOVlZX19fWVTRvJcDgUkRCCiGgSExFR1RCCiIQQYoze+6qqRMR7LyIxRk3MDGPMDJvMDGPMDLUPDFXFDTHzyZMnP/nJT4rIq6++urKykuf54cOHZ2Zmrl69+v/+3/9bWlpCkuf51NTUyspKCAHbzDn3b//2bysrKz/5yU9wnSeeeIKZ/+M//sPMcK277777C1/4wqVLl372s5+pKt6NU6dOnTlzBrXadYiZsf0owRjnHABmds5lWVYURbPZbCWTk5NTU1P79++fm5vbt2/f7t27Z2dnm0mj0WDmLMuYGUme5wCIiJkBMDMRAXDO4e+JquJaZoZNZqaqAFTVzACoKgBNAKhqTADEGEMI3vthsr6+vrq6ury8vJr0k6qqRCTGGEKIMYqImYlIjFFEYowiEkLw3ocQYoze+xBCjFFEAGiCxMxwHUtQ+6BSVdzQ7t27v/71r/f7/WeeeaaqKmw6efLkpz/96YsXL/785z/He67ZbH7729+uquqpp55SVYzJ8/w73/lOjPHf//3fRQRj5ubmvvKVr6yurj777LMhhEaj0el0yrIcDoe4CadOnTpz5gxqtesQM2P7UYIxzjkAzOycy7LMOddoNFqtVqPRmJyc7PV6MzMzc3NzH/vYx/bs2TM7Ozs5OdlMsixzzuV5TkQA8jwHQETMDICZiQiAcw5/T1QV1zIzACICwBIAmgAQEQCaAIgxyqayLKuqGgwGy8vLq6urKysra2try8vLw+FwNBqFELz3IhJjFBFVjTFKEmMMIUjiExExs7hJRMwM1zIzXMcS1D6oVBU39Mgjjxw+fPgXv/jFG2+8gTHM/PWvf33Xrl3PPPPM8vIy3nNf+9rXpqamnnrqqRACxrTb7W9961t/+9vffv3rX2PMxMTE448/LiLPPvtsv9//+Mc/fuLEiaIozOyXv/zl+fPn8U5OnTp15swZ1GrXIWbG9qMEY5gZiXMuyzLnXKPRKIqi1Wp1u91OpzM9PT2X7Nu3b+/evVNTU+12u9Vq5XleFIVLOAHACQBmJiIAzjkkRASAiPBhYGa4ITPDtYgIQIwRY1TVzADEGAGYmaoCiDGaGQAR0TExRu99VVWDwWAtWV1dXVxcXFtb6yej0SgkqioiZhaTEEKMMSQxRu+9iMQYvfcxRlWNMZoZAFW1BAkRATAzJGaGMWaG2geYquKGHnnkkYMHDz755JNVVeFan/rUp+6///4f/OAHq6ureM994hOfePDBB3/0ox9duXIFYw4cOPDlL3/597///csvv4xNjUbj8ccf73Q6P/nJTxYXF48ePfr5z39+OByeP3/+0KFDrVbrt7/97auvvoobOnXq1JkzZ1CrXYeYGduPEowhIiTMnGUZMxdJs9nsdDrtdnvHjh27d+/etWvX/v379+3bNz09PTEx0ev1iqJoNBpZljnnsixjZgDM7JwDwMxIsiwDQERImBkfBpbg7ZkZxlgCQFWRmBmAGKOZAYgxAtAEQIzRzABIEpOyLL33/X5/fX19ZWVleXl5aWlpbW1tdXW1LMsQQlVVqioicZOIqKqIeO9lTIxRVUUkxgjAzGKMACwBYGbYiqqi9uGhqnh7RPSVr3xl7969P/zhD5eWlnCtRx99dH5+/qc//emlS5fwnjt58uSnP/3pl1566Q9/+APGfPGLX7zrrrt+9atfnTt3Dolz7vTp07Ozs88999zrr7/OzE888USv13v66adXVlbuueeez33uc2fPnn3hhRdwQ6dOnTpz5gxqtesQM2P7UYIxRISEmbMsI6Isy/I8L4qi0+m0Wq1OpzM9PT05Obl///69e/fu3r17586dU1NTzWaz0WgURZFlmXOuKAoAzOycA8DMSLIsA0BESJgZHwaW4O2ZGcbEGFUVgJkBMDNVBaCqZgbAew/AzFQVgIioKgDvfYzRez8cDvvJ0tLS4uLi2traysrK2tpaCKEsyxBCjFFVQwgxRhGJiWyqqipuEhEiMjMRQWJmSCwBYGbYiqqi9uGhqrihw4cPP/LIIwsLC//1X/9VVRUSIjp8+PAXvvCFtbW1//zP/zQzAMeOHfvUpz71/PPPv/LKK9h+zWbz9OnTO3bs+NnPfnb58mUkBw8efPTRRxcXF3/605+qKpJHH310fn7++eeff/HFFwEQ0RNPPNHpdL773e967x966KETJ0688MILZ8+eRa12S4iZ8R5iZowhIiRZ4pxrNBrNZrPdbne73V4yOzu7O5mdnZ2Zmel0Ou12u9VqFUWR5zkA51yWZUQEgJmJCIBzDgAnAIgICTPj/aCquCEzA6CqZoYxRATAzJCoKsZoAiDGiMTMAIiIqgIwMwCqGmMUkZiEEKqqGgwG/X5/dXX16tWrK5v6/b5PQggiYmYxRhnjvY8xVlUVYwRQVRUAM0MiIjFGjDEzjFFV1D78VBU31Gg0Tp8+PT09XVXVxYsXRcTMpqenZ2ZmAPzud7975ZVXALTb7W9+85tZlonI97///cFggO23d+/er371q2Z2+fLl9fX1qamp2dlZM3vmmWdWVlaQPPzww8ePH3/ttdd+85vfIGHmz3/+80eOHLly5Uq/35+fnw8hfO9736uqCrXaLSFmxnuImTGGiJAQkXMuS5pJq9Xq9XrdbndycnLXrl0zMzO7d++emZmZnJycmJjodDqNxDmXZZlzjogA5HnOzACccwA4AUBESJgZ7wdVxQ2ZGQBVNTNssgSAJQBUFYAlAFTVzACICBIzAyAiqgpARACoagghxhhCKMtyNBqtJlevXl1aWlpbW1tfXx8Oh6PRSFW99yEEEYmJXCfGKCJmBkBEAFgCQFXNDGPMDGNUFbUPP1XFO+l0OsePHz9w4MDU1BSSEMKbb775+uuvnz9/3swAMPODDz74wAMPvPjii2fPnlVVvCeOHTt28ODBubk555yIXLx48dy5c+fPn0eSZdljjz0G4Oc//7mZYczDDz98/PhxAAsLC2fPnr148SJqtVtFzIz3EBEhISIkRISEiJg5y7JGo1EURbPZ7Ha77Xa7l8zMzOxOpqend+3atWPHjlar1Wg0iqLI8zzLMiJi5izLmBlAlmUAiIiZAVACgJkxhohwe8wMN8HMMMbMkJgZxqiqmWGTJgAsARBjBGBmqgpAVc0MgIggMTNVjTGqKgARUVUR8d6XZdnv91eTxcXFlZWV5eXljY2N0WjkvReRGKOIhCTGKCIhBBFRVe+9XguJiCAxM1zHEowxM9Q+/FQVN4eZm80mM5uZ9z6EgA+MRqORZVkIwXuPaxERADPDtYio0Wgw82g0MjPUareBmBnvB2bGGCJC0mg0nHNZljUajVar1U46nc7OnTt37dq1c+fOqampmZmZqampHUme561WqygKZnYJEQEoigIJEQFgZiIC4JwDQERImBm3R1VxE8wMY1TVzACYGcaoqpkBiDECMDNVBWAJABEBYGaqCsASACKCRFVFxMxUNcbovR+NRmVZDgaD1dXVlZWV5U2DwWA4HIYQZEwIIcYYQpAkhGBmAKqqQmJmADQBoKpIzAxbUVXUPnJUFbVa7fYQM+P9wMwYQ0RIXMLMeZ43m81Go9FqtTqdTrfbnZiYmJycnJ6enp2dnZqamp6enpqa6vV6zSTP8yxhZgBFUQBgZuccAGYmIgDOOQBEhISZcXtUFTfBzDBGVc0MgJkBMLMYIwBVNTMAIQQAmgAwMyQiAsDMVBWAJQCqqgJgZjFGEYkxVlVVJhsbG6urq8vLyysrK6urq2tra/1+vyzLkKiqiFRVJWNijCISY1RVJDFGAJZgjKoiMTNsRVVR+8hRVdRqtdtDzIz3AxEhISIkRISEkyzLiqLI87zZbDYajV6v1263O53OxMTErk07d+6cmprqdrudTqfRaBRFkWVZnufOOSJiZpcAYGYiApBlGcYwMxHhVpkZtmIJxpgZxqiqmQEQEQBmpqoANAHgvUeiqgBijGYGQFUBmJluAhBjDCGoaoxRRKqqKstyI1lZWVldXV1aWlpdXd3Y2BiNRj6JiYjEGEWkLEsRMTPvvZlpYmaqamYAzAyAmWErluA6ZobaR5Gqolar3R5iZrx/KMEYIgJARFmWOefypCiK1qZer7djx46JiYmpqanp6endu3dPTU1NTEx0Op12u50nRVEwc5ZlLgHAzEQEIM9zAESExDlHRLgTzAybzExVMcbMkJgZgBijmQEIIQAwM1UFICKqCkBEAKiqmQEQEVUFEGMEYGYiEhNVFZEYY5mMRqP19fWNjY21tbXV1dWlpaV+vz8YDMqyrKpKVc1MrhNCUFUAIQQAZhZjBGAJxpgZtqKqqP3dUFXUarXbQ8yM9w8lGENESIgoyzIiyrKsKApmbjabrVar2Wy22+1OpzM5OTk9PT01NTU7Ozs9Pd3tdicnJ3u9XrPZLJJsEwBOABRFAYCImBmAc46IcCeYGTaZmapijJkBUNUYIwBVNTMAIQQAMQEQY1RVAN57AKoqIgBijGYGwHsPQFVDCDHGsiy99yLSTwaDQb/fX1pa2tjYWF9fX1tbK8tSkhijJpJUVRU3iYiqmhkAMwNgZqqKrZgZtqKqqP3dUFXUarXbQ8yMDwBmxlayLGNmAEVROOeKomi1WkVRNJvNTqfT7XYnJiZ27tw5nezcuXNycrLX63U6nUaS5zkzNxoN5xwzO+eICIBzLssyAJQAyLIMgJnhhlTVzLAVMwNARAAsAWBmSEQEgKqaGQARUVUAqioiqgpARMwsxigiRCQiqioi3vsYo5mpalVVklRVNRgMRslgMFhfX19bW1tfXx8MBsPhsCzLEIKIxBhFRBMZ470HYGaqCiDGqKoAzAw3pKqo/d1TVdRqtdtDzIwPAGbGVigBkGWZcy5LiqTZbDYajXa7PbFp586dU8nk5OSOHTs6nU673c7zvCiKLMvcJgDOuSzLAHACwDkHgBO8PVU1M2zFzADEGAFYAsASADFGAKoaYwQgIqoKQFVFJMaoqjFGEYlJCCFu8klVVT4ZDoej0ajf7w8Gg+Fw2O/3h8PhYDAYDodlWXrvQwiWxBjNTJJ4LVUFYGYxRgBmhsTMcEOqitrfPVVFrVa7PcTM+AAgImyFiJAQkXOOiJg5yzLnXJY0Go1ms9lut3fs2DE1NbVjx46pqanpZHJycmpqqtVqtdvtZrNZFEWWMLNzLssyTihxzhGRS7AVMwNgCQAiQmJmACwBICJIVBWAJQBijABijCEEM9PEzGKMkqiqJCHxSVVVw+GwLMvRaDRMyrIcDAb9fn+YjEajqqq89yFRVTNTVQCqKiIxRlWVRDfFGIkIgCUYY2a4ITND7e+eqqJWq90eYmZ8gDEzxjCzcw4AEbmkKIosabVa3W633W53u91er7dz587p6empqamJiYmpqalOp9NMGo1GURR5njvnsixjZpcwc5ZlzjkiQkJEAIgIiZnhOpYA0ASAmQHQBICqmhkAEQFgZiISQjAzVY2JT0IIVVWFEMqyrKpqMBgMk9FoNEhGo1FZlv1+fzQaVVUlIj5RVQDee2wSETNT1RhjVVUAVDXGCEATAGaGMZagVrs5qoparXZ7iJnxAcbMuBYRIWFm5xwRuU2NRiPP82YyMTHR7XZ3JFNTU5OTkxMTE71er9vtdjqdVquV53mWOOeyTS4BkGUZMwNgZiREhDExRiRmBiDGaGYAVBWAmakqAE0AVFUFwMxijCISQhCRGGNZlj6pqqrf75dlORgMNjY21tfXh8loNBoMBt77qqrKsgwhSBJCsASJiAAwM1UVkRijqoqIqiJRVYwxM4yxBLXazVFV1Gq120PMjA82IsJWKAHAiXOOiFzCzJ1OpyiKZrPZ6XR6vd5E0uv1Jicnd+zY0ev1WklRFM1msygK51yj0SiKwjmXJc65LMs4AcCJqpoZAFUFYGaqCsASAKqKJMaoqjFG3SQiMUZVDSGISFVVZVkOBoNh0u/319fX+8nGxsZwOBwlVVV570MIcRMAM1NVIrIEgPcegJmJiJmJSIzRzLDJzPD2zAy12k1TVdRqtdtDzIwPIWZGQkQAKAHgnGNmAG5TlmWNRqPZbLaSHTt2dLvdXq/XTTqdTrvdbjabrVar0Wg0m808aTQaRVHkeV4URZ7nzjkiyrKMiJCYGQBLAKgqkhgjADNTVRExM1WVxHsfQhCRqqqGw+FgMBgOh2traxsbG+vr6/1+f2NjY5iMRqOYeO8lMTMkqgpAEwBmpqoAQggAVDXGCMDMVBVjVBW12h2iqqjVareHmBkfQsyMhIjwNrIs44SIsizL8zzLsjzPG41GURSNRqPb7bbb7VbS6XQajUa73W4k7Xa71Wrled5ut1utVrvdzvM8y7I8z5kZQJ7nGGMJgBACADNTVREJSYxxOBx676uqGgwGG0m/3x8Oh+vr6xsbG/1+vyzLqqpCIomZEVGMUUTMDAkRAVBVEQEQY1RVACKCMWaGa6kqarU7RFVRq9VuDzEzPkKYGWOICIlzjpkBFEUBgJnzPM+yrCiKPM+zLGskzWaz1WoVRdFoNJrNZp7nnU6nm7SSRqPRbDYbjYbbREQAVNXMAKhqTFS1qirv/Wg0Ksuyqqp+MhgMNjY2BoPBcDgcjUb9fj/G6L0PIQAQEVUFICJIzAyAqpoZgBgjAFWNMQLQBGNUFbXaNlNV3LTpZGFhYWNjAx8YRHTgwAHn3HA4XFhYMDNcZ+/eva1WS0QuXLiAa+V5vmfPnoWFBe89arVbQsyMjxBmxhgiQkJESLIsA2BmALIsoyRLnHPM7JxrNBpZluV5XhRFnueNRqPZbDYajVar1Wg0Wq1Ws9ns9XrOuTzBmJiEEHwyGo2Gw2FZlsPhsKqq0WhUJlVVhURVRURVzQyAqpoZABFBYmYAVNXMAMQYAZiZqmIrqopabZupKm7CwYMH77vvvj179jCziFy8ePGll15aWFjA+4qI7r///nvuuafX6xGRma2srPz5z39+9dVXzQxJs9n87Gc/e/DgQWYG8Oabb/7lL3+5dOmSquZ5Pj8/f/z48enp6TMJarVbQsyMjxAiwhgiwiYzA8DMAMyMiJxzZgaAmZ1zZgaAmbMsA+ASZnbOMbNzrigK51yeFEXBzFmW5XkOgJmJCIAmMiYk3ntVjTGKiKqKiKqaGQBNzAyJmQEQESRmBsASAKqKGzIz1GrbTFVxQ0Q0Pz//xS9+kYguXLiwtrY2MzOzd+/esiyfe+65hYUFM8P75NChQ1/60pfKsnzjjTfKsmy32/Pz83me//jHP15YWEDymc985r777rt8+fLCwsK9995bFAWus7q6+stf/nJ5eRm12i35/+3Bj0/U9R8H8Of7dQfHcQG7Ldm4Nn6UIrMrrxvV5SYmo2ZiiW6kxN8XPzIqGM5Wlma1FcIdYj+UiTB3DUI2bokcx+dzr/d3+2xs5zD04434tp6PhxER/JeICEoYY+AREQDGA0BEjDEARAQeEQEgHgAiAsAYIyLwWGsBGGMAWGtVFYD1AHBdFx5rLQBVtdYCKBaLKGE9AIrFIh5HVUG011QVO6qtre3t7XUcZ2xsLJfLwfPCCy+cOHHCcZzBwUHHcbAX6urqTp06JSIjIyPr6+vwRKPRnp6e9fX1L774olAohMPhc+fOqerAwIDruu3t7YlEIpvNhsNh13XD4XBtbW0+nx8bG3vw4AGInpUREfyXiAhKGGPgsdbCY4xBCRFBCeMBYIwBYK3F3zDGACgWi6oKQEQAWGuxxVqLbay12JGqgmivqSp21Nra2tHRMTk5OT09jS3GmM7OzqampgsXLjx48AB7IR6Pp1Kp69ev37hxAyVSqVQ8Hr9y5crc3FxFRUV/f7/jOAMDAwBOnDgRi8W++eabhYWFUCjU09MTiUTGx8eXl5dBVAYjIvgvMcbgcay1AIwH2xhj4DHGwKOqeJQxBoC1Fo9jjAFgrVVVeIwx2MZaC48xBo9jrQXRXlNV/D1jzAcffLBv377x8fGlpSWUiMfjqVRqcnJyenoanoaGhra2tlu3bi0uLmL3vfXWWy+//PKnn36ay+VQoqGhobu7+/r16zdu3AgEAm+//XZLS8va2pq1tqamZmVlZXR0VES6u7vr6+svX768sLCAp5NMJtPpNIi2MSIC2mI82E2qCqJ/OVXFjo4dO3bgwIGLFy8uLi6ixOHDh19//fXbt29///33AMLh8NmzZ8Ph8MbGxsjISD6fxy47ffp0TU3N0NCQ67ooUVVV1dfXl81mv/76a3g6OztffPFFa+3s7OzNmzdzuVxXV1dzc/PExMTMzAyeWjKZTKfTINrGiAhoi/FgN6kqiP7lVBU7isViJ0+evHPnznfffWethUdE3n///X379mUymampKQAi0tnZ2dzcPD8/f/Xq1WKxiN0UDofPnz+/sbExPDysqigRDAb7+/uttQMDA67rwhMMBq21xWIRQHt7eyKRmJ2dvXbtGvxIJpPpdBpE2xgRARGRH6qKHYXD4TNnzlRXV09PT//666/5fL62tjaRSLS2tgJIe+CpqKiIRqOrq6uO42CXBQKBjz76aHV1dXx8HNv09vaKyCeffGKtxaMOHDhw7NixxcXFS5cuqSr8SCaT6XQaRNsYEQERkR+qiieprKw8ffp0XV2dqhaLxUAgICKFQiEUCv3+++8//vgj/nFVVVV9fX2FQmFoaEhVUaKioqK/v79YLA4ODrquixKxWOy9997L5XJjY2OO44RCoUgksrGxsb6+jqeQTCbT6TSItjEiAiIiP1QVTyESiTQ2Nh48ePD555//448/7ty5U1NTk0wmv/rqq3v37mEvnDp1KhqNDg0NOY6DEtXV1efPn7979+7Vq1dRoq6urqenx3XdsbGxtbW11157LR6PV1ZWWmu//fbb+fl5PEkymUyn0yDaxogIiIj8UFX4ISKqCuD48eMtLS3Dw8MPHz7EXmhvb08kEqOjo/fv30eJxsbGd99996effvrll1+wJRQK9fT0RCKR8fHx5eXl1tbWjo6O9fX1+fn5lpaWcDj8ww8/3L59GztKJpPpdBpE2xgRARGRH6qKJ4nFYpubmysrK9hSWVnZ19dnrR0cHHQcB3vhlVdeefPNN2/evPnzzz+jxPHjx1966aUrV67Mzc3BEwgEuru76+vrL1++vLCwICK9vb01NTUjIyOrq6sHDx48evRoJpOZmprCjpLJZDqdBtE2RkRAROSHqmJHlZWV586dU9XPPvssn88DCAQCR48e3b9//+Tk5PT0NLa0tbW98cYbExMTt27dwu6rqqrq7u6ura29dOnS0tISPE1NTV1dXcvLyxcvXlRVeLq6upqbmycmJmZmZgAYY3p7eyORyMcff7y5uZlKpeLx+NTUVCaTAdEzMSICIiI/VBVPkkql4vF4oVDIZrPFYjEWiz333HMrKyujo6PWWniqq6s//PDDYDDouu6FCxcePnyI3dfQ0HDy5Elr7dLS0l9//RWNRuvr6621n3/++erqKjxHjhw5dOjQ7OzstWvX4BGRjo6O/fv3379/f21trbm52XGc4eHhQqEAomdiRARERH6oKp4kFAq9+uqrjY2N0WgUwNra2r1793777bdcLoctIpJIJA4fPjwzM5PJZFQV/4i2trampqZYLBYIBFzXzWazc3Nz8/Pz8ASDwXfeeQfAl19+aa1FiSNHjhw6dAjAn3/+mclkstksiJ6VEREQEfmhqng6IlJVVWWMyefzqor/J6FQKBgMOo6zubmJRxljAFhr8ShjTCgUEpF8Pm+tBVEZjIiAiMgPVQURlceICIiI/FBVEFF5jIiAiMgPVQURlceICIiI/FBVEFF5jIiAiMgPVQURlceICIiI/FBVEFF5jIiAiMgPVQURlceICIiI/FBVEFF5jIiAiMgPVQURlceICIiI/FBVEFF5jIiAiMgPVQURlceICIiI/FBVEFF5jIiAiMgPVQURlceICIiI/FBVEFF5jIiAiMgPVQURlceICIiI/FBVEFF5jIiAiMgPVQURlceICIiI/FBVEFF5jIiAiMgPVQURlceICIiI/FBVEFF5jIiAiMgPVQURlceICIiI/FBVEFF5jIiAiMgPVQURled/1FpAAguV4vMAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -672,82 +882,86 @@ "mnist_prediction_path = 'images/mnist_dream_predicted.mp4'\n", "\n", "# download the video if running in Colab\n", - "if not os.path.isfile(mnist_dream_path): \n", + "if not os.path.isfile(mnist_dream_path):\n", " print('downloading the sample video...')\n", " vid_url = this_tutorial_url + '/' + mnist_dream_path\n", - " \n", + "\n", " mnist_dream_path = urllib.request.urlretrieve(vid_url)[0]\n", - " \n", + "\n", + "\n", "def cv2_imshow(img):\n", - " ret = cv2.imencode('.png', img)[1].tobytes() \n", + " ret = cv2.imencode('.png', img)[1].tobytes()\n", " img_ip = IPython.display.Image(data=ret)\n", " IPython.display.display(img_ip)\n", "\n", - "cap = cv2.VideoCapture(mnist_dream_path) \n", + "\n", + "cap = cv2.VideoCapture(mnist_dream_path)\n", "vw = None\n", - "frame = -1 # counter for debugging (mostly), 0-indexed\n", + "frame = -1 # counter for debugging (mostly), 0-indexed\n", "\n", "# go through all the frames and run our classifier on the high res MNIST images as they morph from number to number\n", - "while True: # should 481 frames\n", + "while True: # should 481 frames\n", " frame += 1\n", " ret, img = cap.read()\n", " if not ret: break\n", - " \n", - " assert img.shape[0] == img.shape[1] # should be a square\n", + "\n", + " assert img.shape[0] == img.shape[1] # should be a square\n", " if img.shape[0] != 720:\n", " img = cv2.resize(img, (720, 720))\n", - " \n", + "\n", " #preprocess the image for prediction\n", " img_proc = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n", " img_proc = cv2.resize(img_proc, (28, 28))\n", " img_proc = preprocess_images(img_proc)\n", - " img_proc = 1 - img_proc # inverse since training dataset is white text with black background\n", + " img_proc = 1 - img_proc # inverse since training dataset is white text with black background\n", + "\n", + " net_in = np.expand_dims(img_proc, axis=0) # expand dimension to specify batch size of 1\n", + " net_in = np.expand_dims(net_in, axis=3) # expand dimension to specify number of channels\n", "\n", - " net_in = np.expand_dims(img_proc, axis=0) # expand dimension to specify batch size of 1\n", - " net_in = np.expand_dims(net_in, axis=3) # expand dimension to specify number of channels\n", - " \n", " preds = model.predict(net_in)[0]\n", " guess = np.argmax(preds)\n", " perc = np.rint(preds * 100).astype(int)\n", - " \n", + "\n", " img = 255 - img\n", " pad_color = 0\n", - " img = np.pad(img, ((0,0), (0,1280-720), (0,0)), mode='constant', constant_values=(pad_color)) \n", - " \n", + " img = np.pad(img, ((0, 0), (0, 1280 - 720), (0, 0)), mode='constant', constant_values=(pad_color))\n", + "\n", " line_type = cv2.LINE_AA\n", " font_face = cv2.FONT_HERSHEY_SIMPLEX\n", - " font_scale = 1.3 \n", + " font_scale = 1.3\n", " thickness = 2\n", " x, y = 740, 60\n", " color = (255, 255, 255)\n", - " \n", + "\n", " text = \"Neural Network Output:\"\n", " cv2.putText(img, text=text, org=(x, y), fontScale=font_scale, fontFace=font_face, thickness=thickness,\n", - " color=color, lineType=line_type)\n", - " \n", + " color=color, lineType=line_type)\n", + "\n", " text = \"Input:\"\n", " cv2.putText(img, text=text, org=(30, y), fontScale=font_scale, fontFace=font_face, thickness=thickness,\n", - " color=color, lineType=line_type) \n", - " \n", + " color=color, lineType=line_type)\n", + "\n", " y = 130\n", " for i, p in enumerate(perc):\n", - " if i == guess: color = (255, 218, 158)\n", - " else: color = (100, 100, 100)\n", - " \n", + " if i == guess:\n", + " color = (255, 218, 158)\n", + " else:\n", + " color = (100, 100, 100)\n", + "\n", " rect_width = 0\n", " if p > 0: rect_width = int(p * 3.3)\n", - " \n", + "\n", " rect_start = 180\n", - " cv2.rectangle(img, (x+rect_start, y-5), (x+rect_start+rect_width, y-20), color, -1)\n", + " cv2.rectangle(img, (x + rect_start, y - 5), (x + rect_start + rect_width, y - 20), color, -1)\n", "\n", " text = '{}: {:>3}%'.format(i, int(p))\n", " cv2.putText(img, text=text, org=(x, y), fontScale=font_scale, fontFace=font_face, thickness=thickness,\n", " color=color, lineType=line_type)\n", " y += 60\n", - " \n", + "\n", " # if you don't want to save the output as a video, set this to False\n", " save_video = True\n", - " \n", + "\n", " if save_video:\n", " if vw is None:\n", " codec = cv2.VideoWriter_fourcc(*'DIVX')\n", @@ -756,12 +970,12 @@ " # 15 fps above doesn't work robustly so we right frame twice at 30 fps\n", " vw.write(img)\n", " vw.write(img)\n", - " \n", + "\n", " # scale down image for display\n", - " img_disp = cv2.resize(img, (0,0), fx=0.5, fy=0.5)\n", + " img_disp = cv2.resize(img, (0, 0), fx=0.5, fy=0.5)\n", " cv2_imshow(img_disp)\n", " IPython.display.clear_output(wait=True)\n", - " \n", + "\n", "cap.release()\n", "if vw is not None:\n", " vw.release()" @@ -787,6 +1001,14 @@ "\n", "The contents of this tutorial is based on and inspired by the work of [TensorFlow team](https://www.tensorflow.org) (see their [Colab notebooks](https://www.tensorflow.org/tutorials/)), our [MIT Human-Centered AI team](https://hcai.mit.edu), and individual pieces referenced in the [MIT Deep Learning](https://deeplearning.mit.edu) course slides." ] + }, + { + "cell_type": "code", + "outputs": [], + "source": [], + "metadata": { + "collapsed": false + } } ], "metadata": {