-
Notifications
You must be signed in to change notification settings - Fork 4
/
streamlit_app.py
505 lines (415 loc) · 20 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import os
import re
from hashlib import blake2b
from tempfile import NamedTemporaryFile
import dotenv
from grobid_quantities.quantities import QuantitiesAPI
from langchain.memory import ConversationBufferWindowMemory
# from langchain_community.callbacks import PromptLayerCallbackHandler
from langchain_community.chat_models import ChatOpenAI
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_openai import OpenAIEmbeddings
from streamlit_pdf_viewer import pdf_viewer
from document_qa.ner_client_generic import NERClientGeneric
dotenv.load_dotenv(override=True)
import streamlit as st
from document_qa.document_qa_engine import DocumentQAEngine, DataStorage
from document_qa.grobid_processors import GrobidAggregationProcessor, decorate_text_with_annotations
OPENAI_MODELS = ['gpt-3.5-turbo',
"gpt-4",
"gpt-4-1106-preview"]
OPENAI_EMBEDDINGS = [
'text-embedding-ada-002',
'text-embedding-3-large',
'openai-text-embedding-3-small'
]
OPEN_MODELS = {
'Mistral-Nemo-Instruct-2407': 'mistralai/Mistral-Nemo-Instruct-2407',
'mistral-7b-instruct-v0.3': 'mistralai/Mistral-7B-Instruct-v0.3',
'Phi-3-mini-4k-instruct': "microsoft/Phi-3-mini-4k-instruct"
}
DEFAULT_OPEN_EMBEDDING_NAME = 'Default (all-MiniLM-L6-v2)'
OPEN_EMBEDDINGS = {
DEFAULT_OPEN_EMBEDDING_NAME: 'all-MiniLM-L6-v2',
'SFR-Embedding-Mistral': 'Salesforce/SFR-Embedding-Mistral',
'SFR-Embedding-2_R': 'Salesforce/SFR-Embedding-2_R',
'NV-Embed': 'nvidia/NV-Embed-v1',
'e5-mistral-7b-instruct': 'intfloat/e5-mistral-7b-instruct',
'gte-large-en-v1.5': 'Alibaba-NLP/gte-large-en-v1.5'
}
if 'rqa' not in st.session_state:
st.session_state['rqa'] = {}
if 'model' not in st.session_state:
st.session_state['model'] = None
if 'api_keys' not in st.session_state:
st.session_state['api_keys'] = {}
if 'doc_id' not in st.session_state:
st.session_state['doc_id'] = None
if 'loaded_embeddings' not in st.session_state:
st.session_state['loaded_embeddings'] = None
if 'hash' not in st.session_state:
st.session_state['hash'] = None
if 'git_rev' not in st.session_state:
st.session_state['git_rev'] = "unknown"
if os.path.exists("revision.txt"):
with open("revision.txt", 'r') as fr:
from_file = fr.read()
st.session_state['git_rev'] = from_file if len(from_file) > 0 else "unknown"
if "messages" not in st.session_state:
st.session_state.messages = []
if 'ner_processing' not in st.session_state:
st.session_state['ner_processing'] = False
if 'uploaded' not in st.session_state:
st.session_state['uploaded'] = False
if 'memory' not in st.session_state:
st.session_state['memory'] = None
if 'binary' not in st.session_state:
st.session_state['binary'] = None
if 'annotations' not in st.session_state:
st.session_state['annotations'] = None
if 'should_show_annotations' not in st.session_state:
st.session_state['should_show_annotations'] = True
if 'pdf' not in st.session_state:
st.session_state['pdf'] = None
if 'embeddings' not in st.session_state:
st.session_state['embeddings'] = None
if 'scroll_to_first_annotation' not in st.session_state:
st.session_state['scroll_to_first_annotation'] = False
st.set_page_config(
page_title="Scientific Document Insights Q/A",
page_icon="📝",
initial_sidebar_state="expanded",
layout="wide",
menu_items={
'Get Help': 'https://github.com/lfoppiano/document-qa',
'Report a bug': "https://github.com/lfoppiano/document-qa/issues",
'About': "Upload a scientific article in PDF, ask questions, get insights."
}
)
st.markdown(
"""
<style>
.block-container {
padding-top: 3rem;
padding-bottom: 1rem;
padding-left: 1rem;
padding-right: 1rem;
}
</style>
""",
unsafe_allow_html=True
)
def new_file():
st.session_state['loaded_embeddings'] = None
st.session_state['doc_id'] = None
st.session_state['uploaded'] = True
if st.session_state['memory']:
st.session_state['memory'].clear()
def clear_memory():
st.session_state['memory'].clear()
# @st.cache_resource
def init_qa(model, embeddings_name=None, api_key=None):
## For debug add: callbacks=[PromptLayerCallbackHandler(pl_tags=["langchain", "chatgpt", "document-qa"])])
if model in OPENAI_MODELS:
if embeddings_name is None:
embeddings_name = 'text-embedding-ada-002'
st.session_state['memory'] = ConversationBufferWindowMemory(k=4)
if api_key:
chat = ChatOpenAI(model_name=model,
temperature=0,
openai_api_key=api_key,
frequency_penalty=0.1)
if embeddings_name not in OPENAI_EMBEDDINGS:
st.error(f"The embeddings provided {embeddings_name} are not supported by this model {model}.")
st.stop()
return
embeddings = OpenAIEmbeddings(model=embeddings_name, openai_api_key=api_key)
else:
chat = ChatOpenAI(model_name=model,
temperature=0,
frequency_penalty=0.1)
embeddings = OpenAIEmbeddings(model=embeddings_name)
elif model in OPEN_MODELS:
if embeddings_name is None:
embeddings_name = DEFAULT_OPEN_EMBEDDING_NAME
chat = HuggingFaceEndpoint(
repo_id=OPEN_MODELS[model],
temperature=0.01,
max_new_tokens=4092,
model_kwargs={"max_length": 8192},
# callbacks=[PromptLayerCallbackHandler(pl_tags=[model, "document-qa"])]
)
embeddings = HuggingFaceEmbeddings(
model_name=OPEN_EMBEDDINGS[embeddings_name])
# st.session_state['memory'] = ConversationBufferWindowMemory(k=4) if model not in DISABLE_MEMORY else None
else:
st.error("The model was not loaded properly. Try reloading. ")
st.stop()
return
storage = DataStorage(embeddings)
return DocumentQAEngine(chat, storage, grobid_url=os.environ['GROBID_URL'], memory=st.session_state['memory'])
@st.cache_resource
def init_ner():
quantities_client = QuantitiesAPI(os.environ['GROBID_QUANTITIES_URL'], check_server=True)
materials_client = NERClientGeneric(ping=True)
config_materials = {
'grobid': {
"server": os.environ['GROBID_MATERIALS_URL'],
'sleep_time': 5,
'timeout': 60,
'url_mapping': {
'processText_disable_linking': "/service/process/text?disableLinking=True",
# 'processText_disable_linking': "/service/process/text"
}
}
}
materials_client.set_config(config_materials)
gqa = GrobidAggregationProcessor(grobid_quantities_client=quantities_client,
grobid_superconductors_client=materials_client)
return gqa
gqa = init_ner()
def get_file_hash(fname):
hash_md5 = blake2b()
with open(fname, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def play_old_messages(container):
if st.session_state['messages']:
for message in st.session_state['messages']:
if message['role'] == 'user':
container.chat_message("user").markdown(message['content'])
elif message['role'] == 'assistant':
if mode == "LLM":
container.chat_message("assistant").markdown(message['content'], unsafe_allow_html=True)
else:
container.chat_message("assistant").write(message['content'])
# is_api_key_provided = st.session_state['api_key']
with st.sidebar:
st.title("📝 Document Q/A")
st.markdown("Upload a scientific article in PDF, ask questions, get insights.")
st.markdown(
":warning: [Usage disclaimer](https://github.com/lfoppiano/document-qa?tab=readme-ov-file#disclaimer-on-data-security-and-privacy-%EF%B8%8F) :warning: ")
st.divider()
st.session_state['model'] = model = st.selectbox(
"Model:",
options=OPENAI_MODELS + list(OPEN_MODELS.keys()),
index=(OPENAI_MODELS + list(OPEN_MODELS.keys())).index(
os.environ["DEFAULT_MODEL"]) if "DEFAULT_MODEL" in os.environ and os.environ["DEFAULT_MODEL"] else 0,
placeholder="Select model",
help="Select the LLM model:",
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
)
embedding_choices = OPENAI_EMBEDDINGS if model in OPENAI_MODELS else OPEN_EMBEDDINGS
st.session_state['embeddings'] = embedding_name = st.selectbox(
"Embeddings:",
options=embedding_choices,
index=0,
placeholder="Select embedding",
help="Select the Embedding function:",
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
)
if (model in OPEN_MODELS) and model not in st.session_state['api_keys']:
if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
api_key = st.text_input('Huggingface API Key', type="password")
st.markdown("Get it [here](https://huggingface.co/docs/hub/security-tokens)")
else:
api_key = os.environ['HUGGINGFACEHUB_API_TOKEN']
if api_key:
# st.session_state['api_key'] = is_api_key_provided = True
if model not in st.session_state['rqa'] or model not in st.session_state['api_keys']:
with st.spinner("Preparing environment"):
st.session_state['api_keys'][model] = api_key
# if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
st.session_state['rqa'][model] = init_qa(model, embedding_name)
elif model in OPENAI_MODELS and model not in st.session_state['api_keys']:
if 'OPENAI_API_KEY' not in os.environ:
api_key = st.text_input('OpenAI API Key', type="password")
st.markdown("Get it [here](https://platform.openai.com/account/api-keys)")
else:
api_key = os.environ['OPENAI_API_KEY']
if api_key:
if model not in st.session_state['rqa'] or model not in st.session_state['api_keys']:
with st.spinner("Preparing environment"):
st.session_state['api_keys'][model] = api_key
if 'OPENAI_API_KEY' not in os.environ:
st.session_state['rqa'][model] = init_qa(model, st.session_state['embeddings'], api_key)
else:
st.session_state['rqa'][model] = init_qa(model, st.session_state['embeddings'])
# else:
# is_api_key_provided = st.session_state['api_key']
# st.button(
# 'Reset chat memory.',
# key="reset-memory-button",
# on_click=clear_memory,
# help="Clear the conversational memory. Currently implemented to retrain the 4 most recent messages.",
# disabled=model in st.session_state['rqa'] and st.session_state['rqa'][model].memory is None)
left_column, right_column = st.columns([5, 4])
right_column = right_column.container(border=True)
left_column = left_column.container(border=True)
with right_column:
uploaded_file = st.file_uploader(
"Upload a scientific article",
type=("pdf"),
on_change=new_file,
disabled=st.session_state['model'] is not None and st.session_state['model'] not in
st.session_state['api_keys'],
help="The full-text is extracted using Grobid."
)
placeholder = st.empty()
messages = st.container(height=300)
question = st.chat_input(
"Ask something about the article",
# placeholder="Can you give me a short summary?",
disabled=not uploaded_file
)
query_modes = {
"llm": "LLM Q/A",
"embeddings": "Embeddings",
"question_coefficient": "Question coefficient"
}
with st.sidebar:
st.header("Settings")
mode = st.radio(
"Query mode",
("llm", "embeddings", "question_coefficient"),
disabled=not uploaded_file,
index=0,
horizontal=True,
format_func=lambda x: query_modes[x],
help="LLM will respond the question, Embedding will show the "
"relevant paragraphs to the question in the paper. "
"Question coefficient attempt to estimate how effective the question will be answered."
)
st.session_state['scroll_to_first_annotation'] = st.checkbox(
"Scroll to context",
help='The PDF viewer will automatically scroll to the first relevant passage in the document.'
)
st.session_state['ner_processing'] = st.checkbox(
"Identify materials and properties.",
help='The LLM responses undergo post-processing to extract physical quantities, measurements, and materials mentions.'
)
# Add a checkbox for showing annotations
# st.session_state['show_annotations'] = st.checkbox("Show annotations", value=True)
# st.session_state['should_show_annotations'] = st.checkbox("Show annotations", value=True)
chunk_size = st.slider("Text chunks size", -1, 2000, value=-1,
help="Size of chunks in which split the document. -1: use paragraphs, > 0 paragraphs are aggregated.",
disabled=uploaded_file is not None)
if chunk_size == -1:
context_size = st.slider("Context size (paragraphs)", 3, 20, value=10,
help="Number of paragraphs to consider when answering a question",
disabled=not uploaded_file)
else:
context_size = st.slider("Context size (chunks)", 3, 10, value=4,
help="Number of chunks to consider when answering a question",
disabled=not uploaded_file)
st.divider()
st.header("Documentation")
st.markdown("https://github.com/lfoppiano/document-qa")
st.markdown(
"""Upload a scientific article as PDF document. Once the spinner stops, you can proceed to ask your questions.""")
if st.session_state['git_rev'] != "unknown":
st.markdown("**Revision number**: [" + st.session_state[
'git_rev'] + "](https://github.com/lfoppiano/document-qa/commit/" + st.session_state['git_rev'] + ")")
if uploaded_file and not st.session_state.loaded_embeddings:
if model not in st.session_state['api_keys']:
st.error("Before uploading a document, you must enter the API key. ")
st.stop()
with left_column:
with st.spinner('Reading file, calling Grobid, and creating memory embeddings...'):
binary = uploaded_file.getvalue()
tmp_file = NamedTemporaryFile()
tmp_file.write(bytearray(binary))
st.session_state['binary'] = binary
st.session_state['doc_id'] = hash = st.session_state['rqa'][model].create_memory_embeddings(tmp_file.name,
chunk_size=chunk_size,
perc_overlap=0.1)
st.session_state['loaded_embeddings'] = True
st.session_state.messages = []
def rgb_to_hex(rgb):
return "#{:02x}{:02x}{:02x}".format(*rgb)
def generate_color_gradient(num_elements):
# Define warm and cold colors in RGB format
warm_color = (255, 165, 0) # Orange
cold_color = (0, 0, 255) # Blue
# Generate a linear gradient of colors
color_gradient = [
rgb_to_hex(tuple(int(warm * (1 - i / num_elements) + cold * (i / num_elements)) for warm, cold in
zip(warm_color, cold_color)))
for i in range(num_elements)
]
return color_gradient
with right_column:
if st.session_state.loaded_embeddings and question and len(question) > 0 and st.session_state.doc_id:
st.session_state.messages.append({"role": "user", "mode": mode, "content": question})
for message in st.session_state.messages:
# with messages.chat_message(message["role"]):
if message['mode'] == "llm":
messages.chat_message(message["role"]).markdown(message["content"], unsafe_allow_html=True)
elif message['mode'] == "embeddings":
messages.chat_message(message["role"]).write(message["content"])
elif message['mode'] == "question_coefficient":
messages.chat_message(message["role"]).markdown(message["content"], unsafe_allow_html=True)
if model not in st.session_state['rqa']:
st.error("The API Key for the " + model + " is missing. Please add it before sending any query. `")
st.stop()
text_response = None
if mode == "embeddings":
with placeholder:
with st.spinner("Fetching the relevant context..."):
text_response, coordinates = st.session_state['rqa'][model].query_storage(
question,
st.session_state.doc_id,
context_size=context_size
)
elif mode == "llm":
with placeholder:
with st.spinner("Generating LLM response..."):
_, text_response, coordinates = st.session_state['rqa'][model].query_document(
question,
st.session_state.doc_id,
context_size=context_size
)
elif mode == "question_coefficient":
with st.spinner("Estimate question/context relevancy..."):
text_response, coordinates = st.session_state['rqa'][model].analyse_query(
question,
st.session_state.doc_id,
context_size=context_size
)
annotations = [[GrobidAggregationProcessor.box_to_dict([cs for cs in c.split(",")]) for c in coord_doc]
for coord_doc in coordinates]
gradients = generate_color_gradient(len(annotations))
for i, color in enumerate(gradients):
for annotation in annotations[i]:
annotation['color'] = color
st.session_state['annotations'] = [annotation for annotation_doc in annotations for annotation in
annotation_doc]
if not text_response:
st.error("Something went wrong. Contact Luca Foppiano ([email protected]) to report the issue.")
if mode == "llm":
if st.session_state['ner_processing']:
with st.spinner("Processing NER on LLM response..."):
entities = gqa.process_single_text(text_response)
decorated_text = decorate_text_with_annotations(text_response.strip(), entities)
decorated_text = decorated_text.replace('class="label material"', 'style="color:green"')
decorated_text = re.sub(r'class="label[^"]+"', 'style="color:orange"', decorated_text)
text_response = decorated_text
messages.chat_message("assistant").markdown(text_response, unsafe_allow_html=True)
else:
messages.chat_message("assistant").write(text_response)
st.session_state.messages.append({"role": "assistant", "mode": mode, "content": text_response})
elif st.session_state.loaded_embeddings and st.session_state.doc_id:
play_old_messages(messages)
with left_column:
if st.session_state['binary']:
with st.container(height=600):
pdf_viewer(
input=st.session_state['binary'],
annotation_outline_size=2,
annotations=st.session_state['annotations'],
render_text=True,
scroll_to_annotation=1 if (st.session_state['annotations'] and st.session_state['scroll_to_first_annotation']) else None
)