forked from ageron/handson-ml2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
requirements.txt
94 lines (69 loc) · 2.31 KB
/
requirements.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# TensorFlow is much easier to install using Anaconda, especially
# on Windows or when using a GPU. Please see the installation
# instructions in INSTALL.md
##### Core scientific packages
jupyter==1.0.0
matplotlib==3.1.2
numpy==1.17.3
pandas==0.25.3
scipy==1.3.1
##### Machine Learning packages
scikit-learn==0.22
# Optional: the XGBoost library is only used in chapter 7
xgboost==0.90
##### TensorFlow-related packages
# If you have a TF-compatible GPU and you want to enable GPU support, then
# replace tensorflow with tensorflow-gpu, and replace tensorflow-serving-api
# with tensorflow-serving-api-gpu.
# Your GPU must have CUDA Compute Capability 3.5 or higher support, and
# you must install CUDA, cuDNN and more: see tensorflow.org for the detailed
# installation instructions.
tensorflow==2.0.1
#tensorflow-gpu==2.0.0
# Optional: the TF Serving API library is just needed for chapter 19.
tensorflow-serving-api==2.0.0
#tensorflow-serving-api-gpu==2.0.0
tensorboard==2.0.0
tensorflow-datasets==1.3.0
tensorflow-hub==0.6.0
tensorflow-probability==0.7
# Optional: only used in chapter 13.
# NOT AVAILABLE ON WINDOWS
tfx==0.15.0
# Optional: only used in chapter 16.
# NOT AVAILABLE ON WINDOWS
tensorflow-addons==0.6.0
##### Reinforcement Learning library (chapter 18)
# There are a few dependencies you need to install first, check out:
# https://github.com/openai/gym#installing-everything
gym[atari]==0.15.4
# On Windows, install atari_py using:
# pip install --no-index -f https://github.com/Kojoley/atari-py/releases atari_py
tf-agents==0.3.0rc0
##### Image manipulation
imageio==2.6.1
Pillow==6.2.1
scikit-image==0.16.2
graphviz
pydot==1.4.1
opencv-python==4.1.2.30
pyglet==1.3.2
#pyvirtualdisplay # needed in chapter 16, if on a headless server
# (i.e., without screen, e.g., Colab or VM)
##### Additional utilities
# Efficient jobs (caching, parallelism, persistence)
joblib==0.14.0
# Easy http requests
requests==2.22.0
# Nice utility to diff Jupyter Notebooks.
nbdime==1.1.0
# May be useful with Pandas for complex "where" clauses (e.g., Pandas
# tutorial).
numexpr==2.7.0
# Optional: these libraries can be useful in the classification chapter,
# exercise 4.
nltk==3.4.5
urlextract==0.13.0
# Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook support
tqdm==4.40.0
ipywidgets==7.5.1