-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgo_4.py
403 lines (387 loc) · 16.2 KB
/
algo_4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import csv
import numpy as np
import datetime
from copy import deepcopy
a_limit = 24520
b_limit = 24600
vehicle = dict()
with open('vehicle.csv') as csvf:
reader = csv.reader(csvf, delimiter=',')
header = True
for row in reader:
if header:
header = False
continue
_, code, length, _, height = row
vehicle[code] = (int(length), int(height))
class Car:
def __init__(self, vin, t, code, plant, uuid, dda=None) -> None:
self.vin = vin
self.t = t
self.code = code
self.plant = plant
self.dda = dda
self.length, self.height = vehicle[code]
self.uuid = uuid
btime = datetime.datetime.strptime('2021-08-01 00:00:00', '%Y-%m-%d %H:%M:%S')
dda_to_int = {'CD':0, 'XA':1, 'ZZ':2}
int_to_dda = ['CD', 'XA', 'ZZ']
int_to_seat = ['A1', 'A2', 'A3', 'A4', 'A5', 'B1', 'B2', 'B3', 'B4', 'B5']
cars = []
cars_dda = [[], [], []]
ts = []
car_loading_table = []
with open('schedule.csv') as csvf:
reader = csv.reader(csvf, delimiter=',')
uuid = 0
for row in reader:
vin, t, code, plant, dda = row
t = (datetime.datetime.strptime(t, '%Y-%m-%d %H:%M:%S') - btime).total_seconds()
ts.append(t)
cars.append((t, Car(vin, t, code, plant, uuid, dda)))
cars_dda[dda_to_int[dda]].append(Car(vin, t, code, plant, uuid))
car_loading_table.append([vin, "WAIT", "None", "None", "None"])
uuid += 1
total_length = len(ts)
class Wagon:
def __init__(self) -> None:
self.idx = None
self.loads = [None for _ in range(10)] # In order A1-A5 B1-B5, 5 for B1, 9 for B5
self.al = self.bl = 0
def full(self) -> bool:
return all(self.loads)
def empty(self) -> bool:
return not any(self.loads)
def available_seats(self) -> list:
l = []
for i in range(10):
if self.loads[i] is None:
l.append(i)
return l
def insert_DD(self, car): # 2xG38+3xG08 in A, 3xG38+2xG08 in B
code = car.code
loc = None
G38locs = [0,1,5,6,9]
G08locs = [2,3,4,7,8]
if self.full():
return loc
if code in ['G38']:
for x in G38locs:
if self.loads[x] is None:
loc = x
break
if code in ['G08', 'F52', 'F49', 'F39']:
for x in G08locs:
if self.loads[x] is None:
loc = x
break
if loc is not None:
if loc in range(0,5):
valid = (car.length <= a_limit - self.al)
else:
valid = (car.length <= b_limit - self.bl)
if valid:
self.loads[loc] = car
if loc in range(0,5):
self.al += car.length
else:
self.bl += car.length
else:
loc = None
return loc
def insert_TX(self, car):
code = car.code
loc = None
if self.full():
return loc
if code in ['F52', 'G20', 'G28', 'G38']:
if self.loads[5] is None:
loc = 5
elif self.loads[9] is None:
loc = 9
else:
for i in range(10):
if self.loads[i] is None:
loc = i
break
else:
for i in range(10):
if self.loads[i] is None and i not in [5,9]:
loc = i
break
if loc is not None:
if loc in range(0,5):
valid = (car.length <= a_limit - self.al)
else:
valid = (car.length <= b_limit - self.bl)
if valid:
self.loads[loc] = car
if loc in range(0,5):
self.al += car.length
else:
self.bl += car.length
else:
loc = None
return loc
def latest_time(self):
assert not self.empty()
t = 0
for i in range(10):
if self.loads[i] is not None:
if self.loads[i].t > t:
t = self.loads[i].t
return t
def demand_predict(ct, ind, cars, nfwtx, nfwdd):
# current time, current index, cars data, not_full_wagons(tx and dd)
not_full_wagon_dd = deepcopy(nfwdd)
not_full_wagon_tx = deepcopy(nfwtx)
i = ind
counts = [0, 0, 0]
while True:
if i >= len(cars):
break
if cars[i][0] > ct + 7200:
break
t, curr_car = cars[i]
d = dda_to_int[curr_car.dda]
if curr_car.plant == "TX":
if len(not_full_wagon_tx[d]) == 0:
not_full_wagon_tx[d].append(Wagon())
not_full_wagon_tx[d][-1].insert_TX(curr_car)
else:
for j in range(len(not_full_wagon_tx[d])):
ret = not_full_wagon_tx[d][j].insert_TX(curr_car)
if ret is not None:
if not_full_wagon_tx[d][j].full():
not_full_wagon_tx[d].pop(j)
# full_wagon_tx[d].append(not_full_wagon_tx[d].pop(j))
break
if ret is None:
not_full_wagon_tx[d].append(Wagon())
not_full_wagon_tx[d][-1].insert_TX(curr_car)
if curr_car.plant == "DD":
if len(not_full_wagon_dd[d]) == 0:
not_full_wagon_dd[d].append(Wagon())
not_full_wagon_dd[d][-1].insert_DD(curr_car)
else:
for j in range(len(not_full_wagon_dd[d])):
ret = not_full_wagon_dd[d][j].insert_DD(curr_car)
if ret is not None:
if not_full_wagon_dd[d][j].full():
not_full_wagon_dd[d].pop(j)
# full_wagon_dd[d].append(not_full_wagon_dd[d].pop(j))
break
if ret is None:
not_full_wagon_dd[d].append(Wagon())
not_full_wagon_dd[d][-1].insert_DD(curr_car)
i += 1
# count position [2,3,4,7,8] vacancy
for d in range(3):
wl = len(not_full_wagon_dd[d])
for j in range(wl-1):
for p in [2,3,4,7,8]:
if not_full_wagon_dd[d][j].loads[p] is None:
counts[d] += 1
return counts
full_wagon_tx = [[], [], []]
not_full_wagon_tx = [[], [], []]
head_wagon_tx = [0, 0, 0]
departed_wagon_tx_dda = [[], [], []]
departed_wagon_tx = []
full_wagon_dd = [[], [], []]
not_full_wagon_dd = [[], [], []]
head_wagon_dd = [0, 0, 0]
departed_wagon_dd_dda = [[], [], []]
departed_wagon_dd = []
transit_schedule = list(range(0, total_length, 320))
buffer = [[], [], []]
buffer_counts = [0, 0, 0]
scheduling = False
trunk_tx_dd = []
trunk_ind = 1
cars_transit_table = []
i = 0
while True:
if i>= len(cars):
break
t, curr_car = cars[i]
d = dda_to_int[curr_car.dda]
if curr_car.plant == "TX":
skipped = False
demands = demand_predict(t, i, cars, not_full_wagon_tx, not_full_wagon_dd)
if not scheduling:
if sum(demands) >= 6:
demand_target = deepcopy(demands)
trunk_target = sum(demands)//6
count_target = trunk_target * 6
scheduling = True
if scheduling:
code = curr_car.code
dda = dda_to_int[curr_car.dda]
if code in ['F52', 'F49', 'F39']:
if buffer_counts[dda] < demand_target[dda]:
buffer[dda].append(curr_car)
buffer_counts[dda] += 1
skipped = True
if sum(buffer_counts) == count_target:
buffer_total = []
for x in buffer:
buffer_total += x
buffer_total = sorted(buffer_total, key=lambda x: x.t)
for j in range(trunk_target):
trunk_time = buffer_total[6*(j+1)-1].t
trunk_time_str = btime + datetime.timedelta(seconds=trunk_time)
trunk_time_str = trunk_time_str.strftime('%Y-%m-%d %H:%M:%S')
trunk_tx_dd.append(("TK{}".format(trunk_ind), "TX", "DD", trunk_time_str))
for k in range(6):
t_car = buffer_total[6*j+k]
new_car_time = trunk_time+7200
new_car = Car(t_car.vin, new_car_time, t_car.code, "DD", t_car.uuid, t_car.dda)
inserted = False
for l in range(i,len(cars)):
if new_car_time > cars[l][0]:
cars.insert(l+1, (new_car_time, new_car))
inserted = True
break
if not inserted:
cars.append((new_car_time, new_car))
cars_transit_table.append((buffer_total[6*j+k].uuid, "TK{}".format(trunk_ind)))
trunk_ind += 1
scheduling = False
buffer_counts = [0,0,0]
buffer = [[], [], []]
# if len(transit_schedule) != 0:
# if len(buffer)<=6 and i>=transit_schedule[0]:
# if curr_car.code in ['F52', 'F49', 'F39']:
# buffer.append(curr_car)
# skipped = True
# if len(buffer)==6:
# trunk_time = buffer[-1].t
# trunk_time_str = btime + datetime.timedelta(seconds=trunk_time)
# trunk_time_str = trunk_time_str.strftime('%Y-%m-%d %H:%M:%S')
# trunk_tx_dd.append(("TK{}".format(trunk_ind), "TX", "DD", trunk_time_str))
# for j in range(6):
# t_car = buffer[j]
# new_car_time = trunk_time+7200
# new_car = Car(t_car.vin, new_car_time, t_car.code, "DD", t_car.uuid, t_car.dda)
# inserted = False
# for k in range(i,len(cars)):
# if new_car_time > cars[k][0]:
# cars.insert(k+1, (new_car_time, new_car))
# inserted = True
# break
# if not inserted:
# cars.append((new_car_time, new_car))
# #cars.append((trunk_time+7200, Car(t_car.vin, trunk_time+7200, t_car.code, "DD", t_car.uuid, t_car.dda)))
# cars_transit_table.append((buffer[j].uuid, "TK{}".format(trunk_ind)))
# #cars = sorted(cars, key=lambda x: x[0])
# trunk_ind += 1
# buffer = []
# transit_schedule.pop(0)
if not skipped:
if len(not_full_wagon_tx[d]) == 0:
not_full_wagon_tx[d].append(Wagon())
not_full_wagon_tx[d][-1].insert_TX(curr_car)
else:
for j in range(len(not_full_wagon_tx[d])):
ret = not_full_wagon_tx[d][j].insert_TX(curr_car)
if ret is not None:
if not_full_wagon_tx[d][j].full():
full_wagon_tx[d].append(not_full_wagon_tx[d].pop(j))
break
if ret is None:
not_full_wagon_tx[d].append(Wagon())
not_full_wagon_tx[d][-1].insert_TX(curr_car)
if curr_car.plant == "DD":
if len(not_full_wagon_dd[d]) == 0:
not_full_wagon_dd[d].append(Wagon())
not_full_wagon_dd[d][-1].insert_DD(curr_car)
else:
for j in range(len(not_full_wagon_dd[d])):
ret = not_full_wagon_dd[d][j].insert_DD(curr_car)
if ret is not None:
if not_full_wagon_dd[d][j].full():
full_wagon_dd[d].append(not_full_wagon_dd[d].pop(j))
break
if ret is None:
not_full_wagon_dd[d].append(Wagon())
not_full_wagon_dd[d][-1].insert_DD(curr_car)
# Train departure check
if len(full_wagon_dd[d]) - head_wagon_dd[d] + len(full_wagon_tx[d]) - head_wagon_tx[d] >= 29:
departed_wagon_dd_dda[d].append((head_wagon_dd[d], len(full_wagon_dd[d]))) # [head, tail)
departed_wagon_tx_dda[d].append((head_wagon_tx[d], len(full_wagon_tx[d])))
departed_wagon_dd.append((d, head_wagon_dd[d], len(full_wagon_dd[d])))
departed_wagon_tx.append((d, head_wagon_tx[d], len(full_wagon_tx[d])))
head_wagon_dd[d] = len(full_wagon_dd[d])
head_wagon_tx[d] = len(full_wagon_tx[d])
i += 1
train_time_table = []
tr_ind = 1
for i in range(len(departed_wagon_tx)):
tr_ind_str = "TR{}".format(tr_ind)
d, h_tx, t_tx = departed_wagon_tx[i]
d, h_dd, t_dd = departed_wagon_dd[i]
wagon_t_tx = btime + datetime.timedelta(seconds=full_wagon_tx[d][t_tx-1].latest_time()+14400)
wagon_t_tx_str = wagon_t_tx.strftime('%Y-%m-%d %H:%M:%S')
wagon_t_dd = btime + datetime.timedelta(seconds=full_wagon_dd[d][t_dd-1].latest_time()+14400)
wagon_t_dd_str = wagon_t_dd.strftime('%Y-%m-%d %H:%M:%S')
train_time_table.append((tr_ind_str, t_tx - h_tx, t_dd - h_dd, int_to_dda[d], wagon_t_tx_str, wagon_t_dd_str))
tr_ind += 1
for i_tx in range(h_tx, t_tx):
for p in range(10): # Position
curr_car = full_wagon_tx[d][i_tx].loads[p]
uuid = curr_car.uuid
car_loading_table[uuid][1] = tr_ind_str
car_loading_table[uuid][2] = "T{}".format(i_tx - h_tx + 1)
car_loading_table[uuid][3] = int_to_seat[p]
for i_dd in range(h_dd, t_dd):
for p in range(10): # Position
curr_car = full_wagon_dd[d][i_dd].loads[p]
uuid = curr_car.uuid
car_loading_table[uuid][1] = tr_ind_str
car_loading_table[uuid][2] = "D{}".format(i_dd - h_dd + 1)
car_loading_table[uuid][3] = int_to_seat[p]
non_departed_wagon_tx = [[], [], []]
non_departed_wagon_dd = [[], [], []]
init_dict = {'F52':0, 'G20':0, 'G28':0, 'G38':0, 'F49':0, 'F39':0, 'G08':0}
non_departed_wagon_code_tx = [dict(init_dict), dict(init_dict), dict(init_dict)]
non_departed_wagon_code_tx_total = dict(init_dict)
non_departed_wagon_code_dd = [dict(init_dict), dict(init_dict), dict(init_dict)]
non_departed_wagon_code_dd_total = dict(init_dict)
for d in range(3):
tail = departed_wagon_tx_dda[d][-1][1]
non_departed_wagon_tx[d] += full_wagon_tx[d][tail:]
non_departed_wagon_tx[d] += not_full_wagon_tx[d]
tail = departed_wagon_dd_dda[d][-1][1]
non_departed_wagon_dd[d] += full_wagon_dd[d][tail:]
non_departed_wagon_dd[d] += not_full_wagon_dd[d]
for d in range(3):
for i in range(len(non_departed_wagon_tx[d])):
for p in range(10):
curr_car = non_departed_wagon_tx[d][i].loads[p]
if curr_car is not None:
non_departed_wagon_code_tx[d][curr_car.code] += 1
non_departed_wagon_code_tx_total[curr_car.code] += 1
for i in range(len(non_departed_wagon_dd[d])):
for p in range(10):
curr_car = non_departed_wagon_dd[d][i].loads[p]
if curr_car is not None:
non_departed_wagon_code_dd[d][curr_car.code] += 1
non_departed_wagon_code_dd_total[curr_car.code] += 1
for i in range(len(cars_transit_table)):
car_loading_table[cars_transit_table[i][0]][-1] = cars_transit_table[i][1]
with open('trains.csv', 'w') as csvf:
writer = csv.writer(csvf, delimiter=',')
writer.writerow(('TrainID', 'TX_Wagon', 'DD_Wagon', 'DDA', 'TX_Time', 'DD_Time'))
for item in train_time_table:
writer.writerow(item)
with open('trunks.csv', 'w') as csvf:
writer = csv.writer(csvf, delimiter=',')
writer.writerow(('TrunkID', 'From', 'To', 'Time'))
for item in trunk_tx_dd:
writer.writerow(item)
with open('vehicles.csv', 'w') as csvf:
writer = csv.writer(csvf, delimiter=',')
writer.writerow(('VIN', 'TrainID', 'Cabin', 'Seat', 'Transit'))
for item in car_loading_table:
writer.writerow(item)