-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrewardmodel_train.py
150 lines (136 loc) · 5.19 KB
/
rewardmodel_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
======================================================================
REWARDMODEL_TRAIN ---
Training of the reward model.
Author: Zi Liang <[email protected]>
Copyright © 2024, ZiLiang, all rights reserved.
Created: 10 February 2024
======================================================================
"""
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
python examples/scripts/reward_modeling.py \
--model_name_or_path=facebook/opt-350m \
--output_dir="reward_modeling_anthropic_hh" \
--per_device_train_batch_size=64 \
--num_train_epochs=1 \
--gradient_accumulation_steps=16 \
--gradient_checkpointing=True \
--learning_rate=1.41e-5 \
--report_to="wandb" \
--remove_unused_columns=False \
--optim="adamw_torch" \
--logging_steps=10 \
--evaluation_strategy="steps" \
--max_length=512 \
"""
import torch
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser
from trl import ModelConfig, RewardConfig, RewardTrainer, get_kbit_device_map, get_peft_config, get_quantization_config
tqdm.pandas()
if __name__ == "__main__":
parser = HfArgumentParser((RewardConfig, ModelConfig))
reward_config, model_config = parser.parse_args_into_dataclasses()
reward_config.per_device_train_batch_size = 1
reward_config.per_device_eval_batch_size = 1
print("reward config:", reward_config)
print("model config:", model_config)
reward_config.gradient_checkpointing_kwargs = dict(use_reentrant=False)
################
# Model & Tokenizer
################
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
# device_map=get_kbit_device_map() if quantization_config is not None else None,
device_map="auto",
quantization_config=quantization_config,
)
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path,
# use_fast=True,
# padding="max_length",
)
model = AutoModelForSequenceClassification.from_pretrained(
model_config.model_name_or_path,
num_labels=1, **model_kwargs
)
# if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
################
# Dataset
################
raw_datasets = load_dataset("Anthropic/hh-rlhf")
eval_datasets = load_dataset("Anthropic/hh-rlhf",
split="test[:200]")
# Tokenize chosen/rejected pairs of inputs
# Adapt this section to your needs for custom datasets
def preprocess_function(examples):
new_examples = {
"input_ids_chosen": [],
"attention_mask_chosen": [],
"input_ids_rejected": [],
"attention_mask_rejected": [],
}
for chosen, rejected in zip(examples["chosen"], examples["rejected"]):
tokenized_chosen = tokenizer(chosen, padding="max_length")
tokenized_rejected = tokenizer(rejected, padding="max_length")
new_examples["input_ids_chosen"].append(
tokenized_chosen["input_ids"])
new_examples["attention_mask_chosen"].append(
tokenized_chosen["attention_mask"])
new_examples["input_ids_rejected"].append(
tokenized_rejected["input_ids"])
new_examples["attention_mask_rejected"].append(
tokenized_rejected["attention_mask"])
return new_examples
# Preprocess the dataset and filter out examples that are longer than args.max_length
raw_datasets = raw_datasets.map(
preprocess_function,
batched=True,
num_proc=16,
)
eval_dataset = eval_datasets.map(
preprocess_function,
batched=True,
num_proc=16,
)
raw_datasets = raw_datasets.filter(
lambda x: len(x["input_ids_chosen"]) <= reward_config.max_length
and len(x["input_ids_rejected"]) <= reward_config.max_length
)
train_dataset = raw_datasets["train"]
################
# Training
################
trainer = RewardTrainer(
model=model,
tokenizer=tokenizer,
args=reward_config,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
peft_config=get_peft_config(model_config),
)
trainer.train()
trainer.save_model(reward_config.output_dir)