-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrlhf_train.py
360 lines (304 loc) · 13.1 KB
/
rlhf_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
"""
======================================================================
RLHF_TRAIN ---
Training Language Models with Self-designed Training Loss Function.
Author: Zi Liang <[email protected]>
Copyright © 2024, ZiLiang, all rights reserved.
Created: 11 February 2024
======================================================================
"""
# ------------------------ Code --------------------------------------
import torch
import json
from torch.utils.tensorboard import SummaryWriter
from torch.distributions import Categorical
from torch.utils.data import TensorDataset, DataLoader
from tqdm import tqdm
import argparse
from transformers import AutoModelForCausalLM
from transformers import AutoModelForSequenceClassification
from transformers import AutoModelForTokenClassification
from transformers import AutoTokenizer, AutoConfig, AutoModel
from training_data_collecting_openai import load_raw_train_datals
def clip(tnsr, epsilon=0.5):
# print(f"TNSR: {tnsr}")
one_tensor = torch.ones_like(tnsr)
# print(f"ONE-TNSR: {one_tensor}")
one_tensor = one_tensor.to(tnsr.device)
tnsr = torch.min(tnsr, one_tensor*(1+epsilon)
)
# print(f"ONE-TNSR-MIN: {tnsr}")
# print(f"ONE-TNSR: {one_tensor}")
tnsr = torch.max(tnsr, one_tensor*(1-epsilon)
)
# print(f"ONE-TNSR-MAX: {tnsr}")
# print(f"ONE-TNSR: {one_tensor}")
return tnsr
def log_clip(tnsr, epsilon=0.2):
one_tensor = torch.ones_like(tnsr)
one_tensor = one_tensor.to(tnsr.device)
tnsr = torch.min(tnsr, torch.log(one_tensor*(1+epsilon))
)
tnsr = torch.max(tnsr, torch.log(one_tensor*(1-epsilon))
)
return tnsr
def train_one_period(lm, vmodel,
lm_tokenizer,
loader, epoch, device,
tb_writer,
tensorboard_name,
save_path,
v_save_path,
LR=3e-5,
acc_step=1,
log_step=100,
save_step=1000,
lambda1=0.7,
lambda2=0.7,
epsilon=0.2
):
overall_loss = 0.
overall_step = 0
opt1 = torch.optim.AdamW(lm.parameters(), lr=LR)
opt2 = torch.optim.AdamW(vmodel.parameters(), lr=LR)
for e in tqdm(range(epoch), desc="epoch"):
for item in tqdm(loader, desc="loader"):
overall_step += 1
loss_clip = 0.
loss_vfunc = 0.
loss_entropy = 0.
# print(item)
inps_idxs, reward, old_logits, A, V = item
bs, sqlen = inps_idxs.shape
inps_idxs = inps_idxs.to(device) # bs, sql
reward = reward.to(device) # bs, sql
old_logits = old_logits.to(device) # bs, sql, Vocab
old_logits = torch.softmax(old_logits, dim=-1)
old_logits = old_logits[torch.arange(bs).unsqueeze(1),
torch.arange(sqlen-1).unsqueeze(0),
inps_idxs[:, 1:]]
A = A.to(device) # bs, sql
V = V.to(device) # bs, sql
logits = lm(inps_idxs).logits[:, :-1, :]
logits = torch.softmax(logits, dim=-1)
logits = logits[torch.arange(bs).unsqueeze(1),
torch.arange(sqlen-1).unsqueeze(0),
inps_idxs[:, 1:]]
convince_gen = logits/old_logits
# print(convince_gen.shape)
# print(A.shape)
loss_clip = torch.sum(torch.min(
convince_gen*A,
clip(convince_gen, epsilon)*A))
values = vmodel(inps_idxs).logits.expand(bs, sqlen-1)
loss_vfunc = torch.sum((values-V)**2)
entropy = torch.sum(Categorical(logits).entropy())
loss_entropy = entropy
overall_loss += -1*loss_clip + lambda1*loss_vfunc\
+ lambda2*loss_entropy
if overall_step % log_step == 0:
print(" LOSS: {}\tCLIP: {}\tV: {}\tEntropy: {}".format(
overall_loss, loss_clip, loss_vfunc, loss_entropy
))
tb_writer.add_scalar("loss", overall_loss.item(),
overall_step)
tb_writer.add_scalar("cliploss", loss_clip.item(),
overall_step)
tb_writer.add_scalar("vfuncloss", loss_vfunc.item(),
overall_step)
tb_writer.add_scalar("entropyloss", loss_entropy.item(),
overall_step)
if overall_loss % save_step == 0:
print(" -->Regular Saving.")
print(f"in epoch {e}, step {overall_step}.")
lm_tokenizer.save_pretrained(save_path+"___"+overall_step)
lm.save_pretrained(save_path+"___"+overall_step)
lm_tokenizer.save_pretrained(v_save_path+"___"+overall_step)
vmodel.save_pretrained(v_save_path+"___"+overall_step)
if overall_step % acc_step == 0:
opt1.zero_grad()
opt2.zero_grad()
overall_loss.backward()
opt1.step()
opt2.step()
overall_loss = 0.
print(" -->Finally Saving.")
lm_tokenizer.save_pretrained(save_path+"___STEPfinally")
lm.save_pretrained(save_path+"___STEPfinally")
lm_tokenizer.save_pretrained(v_save_path+"___STEPfinally")
vmodel.save_pretrained(v_save_path+"___STEPfinally")
print("ONE PERIOD TRAINING DONE!")
return lm, vmodel
def ___V_target_compute(reward, lambdaa=0.95):
"""
shape of `reward`: bs, sql
"""
bs, sql = reward.shape
window_size = 150
V = torch.zeros((bs, sql)).to(reward.device)
for i in range(sql):
for j in range(i, min(i+window_size, sql)):
V[:, i] += reward[:, j]*(lambdaa**(j-1))
return V
def train_pod(lm, vmodel, rewardmodel,
lm_tokenizer,
args, raw_train_datals):
print(">>>> DATA PREPERATION")
# STEP 1: DATA Preperation.
rewardls = None
ITER_num = args.period_num
tb_writer = SummaryWriter(log_dir=args.save_path+"___log_writer")
for iter_idx in range(ITER_num):
tensorboard_name = f"Period {iter_idx}"
old_logitsls = []
Als = []
Vls = []
# collect data.
with torch.no_grad():
if rewardls is None:
rewardls = []
for inps_idxs in tqdm(raw_train_datals,
desc="Data Collecting..."):
inps_idxs = inps_idxs.to(args.device).unsqueeze(0)
bs, sql = inps_idxs.shape
reward = rewardmodel(inps_idxs[:, :-1])\
.logits.expand(bs, sql-1)
rewardls.append(reward.squeeze(0).to("cpu"))
old_logits = lm(inps_idxs[:, :-1])\
.logits
V = ___V_target_compute(reward, lambdaa=args.lambdaa)
A = V-vmodel(inps_idxs[:, :-1]).logits.expand(bs, sql-1)
old_logitsls.append(old_logits.squeeze(0).to("cpu"))
Als.append(A.squeeze(0).to("cpu"))
Vls.append(V.squeeze(0).to("cpu"))
rewardls = torch.stack(rewardls)
else:
rewardmodel = None
for i, inps_idxs in tqdm(
enumerate(raw_train_datals),
desc="Data Collecting..."):
inps_idxs = inps_idxs.to(args.device).unsqueeze(0)
bs, sql = inps_idxs.shape
reward = rewardls[i].to(args.device).unsqueeze(0)
old_logits = lm(inps_idxs[:, :-1])\
.logits
V = ___V_target_compute(reward, lambdaa=args.lambdaa)
A = V-vmodel(inps_idxs[:, :-1]).logits.expand(bs, sql-1)
old_logitsls.append(old_logits.squeeze(0).to("cpu"))
Als.append(A.squeeze(0).to("cpu"))
Vls.append(V.squeeze(0).to("cpu"))
overall_ls = zip(raw_train_datals, rewardls, old_logitsls,
Als, Vls)
old_logitsls = torch.stack(old_logitsls)
Als = torch.stack(Als)
Vls = torch.stack(Vls)
trainset = TensorDataset(
raw_train_datals,
rewardls,
old_logitsls,
Als, Vls)
loader = DataLoader(trainset,
batch_size=args.batch_size,
shuffle=True,
)
print(">>>> Period {}".format(iter_idx))
# STEP 2: Train the Model in a period
lm, vmodel = train_one_period(lm, vmodel,
lm_tokenizer,
loader,
args.epoch, args.device,
tb_writer,
tensorboard_name,
args.save_path,
args.v_save_path,
args.LR,
args.acc_step, args.log_step,
args.save_step,
args.epsilon,
)
print(" -->NOW save the ckpt in each period.")
print(f"in period {iter_idx}.")
lm_tokenizer.save_pretrained(args.save_path+"___period"+str(iter_idx))
lm.save_pretrained(args.save_path+"___period"+str(iter_idx))
lm_tokenizer.save_pretrained(
args.v_save_path+"___period"+str(iter_idx))
vmodel.save_pretrained(args.v_save_path+"___period"+str(iter_idx))
print(" -->ALL TRAINING DONE.")
lm_tokenizer.save_pretrained(args.save_path+"___finally")
lm.save_pretrained(args.save_path+"___finally")
lm_tokenizer.save_pretrained(args.v_save_path+"___finally")
vmodel.save_pretrained(args.v_save_path+"___finally")
print(" -->Save DONE.")
def setup_train_args():
"""
设置训练参数
"""
parser = argparse.ArgumentParser()
parser.add_argument('--device', default="cuda:3", type=str,
required=False)
parser.add_argument('--epoch', default=2, type=int,
required=False)
parser.add_argument('--period_num', default=3, type=int,
required=False)
parser.add_argument('--acc_step', default=4, type=int,
required=False)
parser.add_argument('--log_step', default=100, type=int,
required=False)
parser.add_argument('--save_step', default=10000, type=int,
required=False)
parser.add_argument('--LR', default=3e-4, type=float,
required=False)
parser.add_argument('--lambdaa', default=0.95, type=float,
required=False)
parser.add_argument('--lambda1', default=0.95, type=float,
required=False)
parser.add_argument('--lambda2', default=0.95, type=float,
required=False)
parser.add_argument('--epsilon', default=0.2, type=float,
required=False)
parser.add_argument('--batch_size', default=1, type=int,
required=False)
parser.add_argument('--task', default="pod", type=str,
required=False,)
parser.add_argument("--max_length", default=1024,
type=int, required=False)
parser.add_argument('--from_path', default='bert-tiny',
type=str, required=True,)
parser.add_argument('--save_path',
default='model_training_results',
type=str, required=True,)
parser.add_argument('--v_save_path',
default='value_model_training_results',
type=str, required=True,)
parser.add_argument('--v_from_path',
default='model_training_results',
type=str, required=True,)
return parser.parse_args()
def main():
args = setup_train_args()
lm = AutoModelForCausalLM.from_pretrained(
args.from_path,
device_map="auto",
)
lm_tokenizer = AutoTokenizer.from_pretrained(args.from_path)
if lm_tokenizer.pad_token is None:
lm_tokenizer.pad_token = lm_tokenizer.eos_token
rewardmodel = AutoModelForSequenceClassification.from_pretrained(
args.v_from_path,
device_map="auto",
num_labels=1,
)
vmodel = AutoModelForSequenceClassification.from_pretrained(
args.v_from_path,
device_map="auto",
num_labels=1,
)
raw_train_datals = load_raw_train_datals(lm_tokenizer, args.max_length)
print("Data LOADING done.")
train_pod(
lm, vmodel, rewardmodel,
lm_tokenizer,
args, raw_train_datals)
print("EVERYTHING in the TRAINING now DONE.")
if __name__ == "__main__":
main()