-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathderivations_equations.tex
175 lines (160 loc) · 6.47 KB
/
derivations_equations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
What we want is
$\mdot[S] = \doverdt{\mass[S]}$, and its derivatives:
$\doverdT{\mdot[S]}$, $\doverdm[j]{\mdot[S]}$ with respect to species $j$.
%
The kinetics model's value is noted \kinMod, the rate constant is noted \rateCons, the
rate of the reaction is noted \rate.
%
We use the equations
\begin{equation}
\mass[S] = \Mm[S] \conc[S]
\end{equation}
and
\begin{equation}
\dd\mass[S] = \Mm[S]\,\dd\conc[S]
\end{equation}
as everything in kinetics theory is expressed in concentrations and
not in terms of mass.
We have thus:
\begin{equation}
\mdot[S] = \doverdt{\mass[S]} = \Mm[S] \doverdt{\conc[S]}
\end{equation}
\begin{equation}
\doverdm[E]{\mdot[S]} = \frac{\Mm[S]}{\Mm[E]}\doverdc[E]{\doverdt{\conc[S]}}
\label{derive:m_T}
\end{equation}
\begin{equation}
\doverdT{\mdot[S]} = \Mm[S]\doverdT{\doverdt{\conc[S]}}
\label{derive:m_c}
\end{equation}
but for Paul's sake, we will do the full differentiation with mass as well
as the differentiation with respect to concentration.
Kinetics theory gives us:
\begin{equation}
\begin{split}
\doverdt{\conc[S]} & = \sum_{\text{reactions}} \scoef[r,S] \rate[r] \\
& = \sum_{\text{reactions}} \scoef[r,S] \left[\fwdrate[r] - \bkwdrate[r]\right]\\
& = \sum_{\text{reactions}} \scoef[r,S]
\left[ \fwdratecons[r] \prodReac - \bkwdratecons[r] \prodProd \right]
\end{split}
\end{equation}
The game now is thus to differentiate the forward and backward components.
\subsection{Forward rate}
The forward rate \fwdrate[r] for a reaction $r$ is given by:
\begin{equation}
\fwdrate[r] = \fwdratecons[r] \prodReac
\label{ratefDef}
\end{equation}
with
\begin{equation}
\fwdratecons = \chemProc
\end{equation}
The differentiates are straightforward, just look at Tab.~\ref{antioch::kinMod}
and \ref{antioch::chemProc}
\subsubsection{To derive with respect to \Temp}
For any species \ce{S} participating in the reaction.
\begin{equation}
\begin{split}
\doverdT{\fwdrate} & = \doverdT{\fwdratecons} \prodReac \\
& = \doverdT{\left(\chemProc\right)} \prodReac \\
\end{split}
\end{equation}
\subsubsection{To derive with respect to \mass}
Knowing that $\conc = \frac{\mass}{\Mm}$, we substitute in~\ref{ratefDef}
\begin{equation}
\fwdrate[r] = \fwdratecons[r] \prod_\text{reactants} \left(\frac{\mass[\reac]}{\Mm[\reac]}\right)^{\scoefabs[\reac]}
\end{equation}
The differenciation with respect to concentration is:
\begin{equation}
\doverdc[E]{\fwdrate[r]} = \left\{\begin{array}{ll}
\fwdrate[r]\left[ \frac{1}{\fwdratecons[r]} \doverdc[E]{\left(\chemProc[r]\right)} + \frac{\scoefabs[E]}{\conc[E]}\right] & \text{if \ce{E} is a reactant} \\[5pt]
\fwdrate[r]\left[ \frac{1}{\fwdratecons[r]} \doverdc[E]{\left(\chemProc[r]\right)}\right] & \text{else} \\
\end{array}\right.
\end{equation}
We obtain for a derivation with respect to \mass[E]\ of species \ce{E}:
\begin{equation}
\doverdm[E]{\fwdrate[r]} = \left\{\begin{array}{ll}
\fwdrate[r] \left[\doverdm[E]{\fwdratecons[r]} \frac{1}{\fwdratecons[r]} + \frac{\scoefabs[E]}{\mass[E]}\right] & \text{if \ce{E} is a reactant} \\[5pt]
\fwdrate[r] \left[\doverdm[E]{\fwdratecons[r]} \frac{1}{\fwdratecons[r]}\right] & \text{else}
\end{array}\right.
\end{equation}
\subsection{Backward}
The backward rate is
\begin{equation}
\bkwdrate[r] = \bkwdratecons[r]\prodProd
\end{equation}
The backward rate constant is given by
\begin{equation}
\bkwdratecons[r] = \frac{\fwdratecons[r]}{\Eqconst}
\end{equation}
\subsubsection{Derive with respect to \Temp}
It makes:
\begin{equation}
\doverdT{\bkwdrate[r]} = \doverdT{\bkwdratecons[r]}\prodProd
\end{equation}
Decomposition gives
\begin{equation}
\doverdT{\bkwdratecons[r]} = \doverdT{\fwdratecons[r]}\Eqconst^{-1} - \doverdT{\Eqconst}\frac{\bkwdratecons[r]}{\Eqconst^{2}}
\label{rateb-decomp}
\end{equation}
For \Eqconst we have \eqref{therm:K_therm}
\begin{equation}
\begin{split}
\doverdT{\Eqconst} & = \doverdT{\left[\left(\frac{\pz}{\Rg \Temp}\right)^{\sum_s \scoef[s]} \exp\left(-\frac{\DGibbsZ(\Temp)}{\Rg \Temp}\right)\right]} \\
& = \Eqconst\left[-\frac{\sum_s\scoef[s]}{\Temp} - \doverdT{\left[\frac{\DGibbsZ(\Temp)}{\Rg \Temp}\right]}\right]
\end{split}
\end{equation}
The derived value of \DGibbsZ(\Temp) is easily given,
see Eq.~\ref{therm:DH} and \ref{therm:DS}:
\begin{equation}
\begin{split}
\doverdT{\left[\frac{\DGibbsZ(\Temp)}{\Rg \Temp}\right]}
& = \doverdT{\left[\frac{\DenthZ(T)}{\Rg \Temp}\right]} - \doverdT{\left[\frac{\DentrZ(\Temp)}{\Rg}\right]} \\
& = 2\tc{0}\Temp^{-3} + \tc{1}\Temp^{-2}\left(1+\ln(\RedTemp)\right) + \frac{\tc{3}}{2} +
\frac{2}{3}\tc{4}\Temp + \frac{3}{4}\tc{5}\Temp^{2} + \frac{4}{5}\tc{6}\Temp^3 \\
& \spacehack - \tc{8}\Temp^{-2} + \tc{0}\Temp^{-3} + \tc{1}\Temp^{-2} + \tc{2}\Temp^{-1} + \tc{3} + \tc{4}\Temp + \tc{5} \Temp^{2} + \tc{6} \Temp^{3}
\end{split}
\end{equation}
with \RedTemp\ the reduced temperature: $\RedTemp = \frac{\Temp}{\Tref}$, here $\Tref = 1~\unit{K}$.
Finally,
\begin{equation}
\doverdT{\left[\frac{\DGibbsZ(\Temp)}{\Rg \Temp}\right]} =
3\tc{0}\Temp^{-3} + \tc{1} \Temp^{-2} \left(2 + \ln(\RedTemp)\right) + \frac{3}{2} \tc{3} + \frac{5}{3} \tc{4} \Temp
+ \frac{7}{4}\tc{5} \Temp^2 + \frac{9}{5}\tc{6} \Temp^3 - \tc{8} \Temp^{-2}
\end{equation}
\subsubsection{Derivation with respect to \mass}
Using~\ref{rateb-decomp}
\begin{equation}
\begin{split}
\doverdm[E]{\bkwdratecons[r]} & = \doverdm[E]{\fwdratecons[r]}\Eqconst^{-1} - \doverdm[E]{\Eqconst}\frac{\bkwdratecons[r]}{\Eqconst^{2}} \\
& = \doverdm[E]{\fwdratecons[r]}\Eqconst^{-1}
\end{split}
\label{rateb-decomp-m}
\end{equation}
\subsection{Net rate}
The net rate is
\begin{equation}
\rate[r] = \fwdrate[r] - \bkwdrate[r]
\end{equation}
thus,
\begin{equation}
\doverdT{\rate[r]} = \doverdT{\fwdrate[r]} - \doverdT{\bkwdrate[r]}
\end{equation}
and
\begin{equation}
\doverdm{\rate[r]} = \doverdm{\fwdrate[r]} - \doverdm{\bkwdrate[r]}
\end{equation}
\subsection{Back to \texorpdfstring{\mdot}{omega dot}}
\begin{equation}
\begin{split}
\mdot[S] &= \Mm[S] \doverdt{\ce{S}} \\
&= \Mm[S] \sum_{\text{reactions}}\scoef[r,S]\rate[r]
\end{split}
\end{equation}
\begin{equation}
\doverdT{\mdot[S]} = \Mm[S] \sum_{\text{reactions}}\scoef[r,S]\doverdT{\rate[r]}
\end{equation}
and
\begin{equation}
\doverdm[E]{\mdot[S]} = \Mm[S] \sum_{\text{reactions}}\scoef[r,S]\doverdm[E]{\rate[r]}
\end{equation}