-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathregression.qmd
104 lines (71 loc) · 1.35 KB
/
regression.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
title: "Regression"
date-modified: 'today'
date-format: long
format:
html:
footer: "CC BY 4.0 John R Little"
license: CC BY
---
## Load library packages
```{r}
#| message: false
#| warning: false
library(dplyr)
library(ggplot2)
#library(gapminder)
library(moderndive)
library(broom)
```
## Data
data are from the `moderndive` package. [*Modern dive*](https://moderndive.com/) by Ismay and Kim.
```{r}
evals_ch5 <- evals %>%
select(ID, score, bty_avg, age)
evals
evals_ch5
```
```{r}
evals_ch5 %>%
summary()
```
```{r}
skimr::skim(evals_ch5)
```
## Correlation
```{r}
starwars %>%
filter(mass < 500) %>%
summarise(cor(mass, height))
```
### weak correlation
```{r}
evals_ch5 %>%
ggplot(aes(score, age)) +
geom_jitter() +
geom_smooth(method = lm)
```
## Linear model
> For every increase of 1 unit increase in bty_avg, there is an associated increase of, on average, 0.067 units of score. from [*ModenDive*](https://moderndive.com/5-regression.html)
```{r}
# Fit regression model:
score_model <- lm(score ~ bty_avg, data = evals_ch5)
score_model
```
```{r}
summary(score_model)
```
## the tidy way
### broom
tidy the model fit with broom::tidy()
```{r}
broom::tidy(score_model)
```
get evaluative measure into a data frame
```{r}
broom::glance(score_model)
```
### More model data
```{r}
broom::augment(score_model)
```