-
Notifications
You must be signed in to change notification settings - Fork 0
/
costFunctionReg.m
executable file
·39 lines (27 loc) · 1.23 KB
/
costFunctionReg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%========================Compute costFunc=======================
H = sigmoid(X*theta);
T = y.*log(H) + (1 - y).*log(1 - H);
J = -1/m*sum(T) + lambda/(2*m)*sum(theta(2:end).^2);
%========================Compute Gradient======================
for i = 1 : m,
grad = grad + (H(i) - y(i)) * X(i,:)';
end
ta = [0;theta(2:end)];
grad = 1/m*grad + lambda/m*ta;
% =============================================================
end