-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
1304 lines (1173 loc) · 57.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Run BERT on MRQA.
https://note.nkmk.me/en/python-break-nested-loops/
Script adapted from the span bert repo (Copyright (c) 2019, Facebook, Inc. and its affiliates. All Rights Reserved)
"""
from __future__ import absolute_import, division, print_function
import wandb
import argparse
import collections
import json
import logging
import math
import os
import random
import time
import gzip
import datetime
from io import open
import numpy as np
import torch
from torch.utils.data import DataLoader, TensorDataset
from transformers import BertTokenizer
from transformers import AdamW
from model import BertForQuestionAnswering
from transformers import get_scheduler
from pytorch_pretrained_bert.tokenization import BasicTokenizer
from util_mrqa_official_eval import exact_match_score, f1_score, metric_max_over_ground_truths
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
PRED_FILE = "predictions.json"
EVAL_FILE = "eval_results.txt"
TEST_FILE = "test_results.txt"
class MRQAExample(object):
"""
A single training/test example for the MRQA dataset.
For examples without an answer, the start and end position are -1.
"""
def __init__(self,
qas_id,
question_text,
doc_tokens,
orig_answer_text=None,
start_position=None,
end_position=None):
self.qas_id = qas_id
self.question_text = question_text
self.doc_tokens = doc_tokens
self.orig_answer_text = orig_answer_text
self.start_position = start_position
self.end_position = end_position
def __str__(self):
return self.__repr__()
def __repr__(self):
s = ""
s += "qas_id: %s" % (self.qas_id)
s += ", question_text: %s" % (self.question_text)
s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
if self.start_position:
s += ", start_position: %d" % (self.start_position)
if self.end_position:
s += ", end_position: %d" % (self.end_position)
return s
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
unique_id,
example_index,
doc_span_index,
tokens,
token_to_orig_map,
token_is_max_context,
input_ids,
input_mask,
segment_ids,
start_position=None,
end_position=None):
self.unique_id = unique_id
self.example_index = example_index
self.doc_span_index = doc_span_index
self.tokens = tokens
self.token_to_orig_map = token_to_orig_map
self.token_is_max_context = token_is_max_context
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.start_position = start_position
self.end_position = end_position
# new function to deal with .gz and .jsonl file
def get_data(input_file):
if input_file.endswith('.gz'):
with gzip.GzipFile(input_file, 'r') as reader:
# skip header
content = reader.read().decode('utf-8').strip().split('\n')[1:]
input_data = [json.loads(line) for line in content]
else:
with open(input_file, 'r', encoding="utf-8") as reader:
# lines = reader.readlines()
# input_data = [json.loads(line) for line in lines]
print(reader.readline())
input_data = [json.loads(line) for line in reader]
return input_data
def read_mrqa_examples(input_file, is_training, ignore=0, percentage=1):
"""Read a MRQA json file into a list of MRQAExample."""
input_data = get_data(input_file)
def is_whitespace(c):
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
return True
return False
examples = []
num_answers = 0
num_to_ignore = int(ignore * len(input_data))
num_to_load = int(percentage * len(input_data))
if ignore != 0 and percentage != 1 and ignore + percentage == 1:
num_to_load = max(num_to_load, len(input_data) - num_to_ignore)
logger.info('Notes: # documents loaded = {}'.format(num_to_load - num_to_ignore))
for entry in input_data[num_to_ignore:(num_to_ignore + num_to_load)]:
paragraph_text = entry["context"]
doc_tokens = []
char_to_word_offset = []
prev_is_whitespace = True
for c in paragraph_text:
if is_whitespace(c):
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_tokens.append(c)
else:
doc_tokens[-1] += c
prev_is_whitespace = False
char_to_word_offset.append(len(doc_tokens) - 1)
for qa in entry["qas"]:
qas_id = qa["qid"]
question_text = qa["question"]
start_position = None
end_position = None
orig_answer_text = None
if is_training:
answers = qa["detected_answers"]
spans = sorted([span for spans in answers for span in spans['char_spans']])
# take first span
char_start, char_end = spans[0][0], spans[0][1]
orig_answer_text = paragraph_text[char_start:char_end + 1]
start_position, end_position = char_to_word_offset[char_start], char_to_word_offset[
char_end]
num_answers += sum([len(spans['char_spans']) for spans in answers])
example = MRQAExample(qas_id=qas_id,
question_text=question_text,
doc_tokens=doc_tokens,
orig_answer_text=orig_answer_text,
start_position=start_position,
end_position=end_position)
examples.append(example)
logger.info('Num avg answers: {}'.format(num_answers / len(examples)))
return examples
def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length,
is_training):
"""Loads a data file into a list of `InputBatch`s."""
unique_id = 1000000000
features = []
for (example_index, example) in enumerate(examples):
query_tokens = tokenizer.tokenize(example.question_text)
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length]
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
for (i, token) in enumerate(example.doc_tokens):
orig_to_tok_index.append(len(all_doc_tokens))
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index.append(i)
all_doc_tokens.append(sub_token)
tok_start_position = None
tok_end_position = None
if is_training:
tok_start_position = -1
tok_end_position = -1
if is_training:
tok_start_position = orig_to_tok_index[example.start_position]
if example.end_position < len(example.doc_tokens) - 1:
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
else:
tok_end_position = len(all_doc_tokens) - 1
(tok_start_position,
tok_end_position) = _improve_answer_span(all_doc_tokens, tok_start_position,
tok_end_position, tokenizer,
example.orig_answer_text)
# The -3 accounts for [CLS], [SEP] and [SEP]
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
# We can have documents that are longer than the maximum sequence length.
# To deal with this we do a sliding window approach, where we take chunks
# of the up to our max length with a stride of `doc_stride`.
_DocSpan = collections.namedtuple( # pylint: disable=invalid-name
"DocSpan", ["start", "length"])
doc_spans = []
start_offset = 0
while start_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_spans.append(_DocSpan(start=start_offset, length=length))
if start_offset + length == len(all_doc_tokens):
break
start_offset += min(length, doc_stride)
for (doc_span_index, doc_span) in enumerate(doc_spans):
tokens = []
token_to_orig_map = {}
token_is_max_context = {}
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in query_tokens:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
for i in range(doc_span.length):
split_token_index = doc_span.start + i
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index)
token_is_max_context[len(tokens)] = is_max_context
tokens.append(all_doc_tokens[split_token_index])
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
start_position = None
end_position = None
if is_training:
# For training, if our document chunk does not contain an annotation
# we throw it out, since there is nothing to predict.
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
out_of_span = False
if not (tok_start_position >= doc_start and tok_end_position <= doc_end):
out_of_span = True
if out_of_span:
start_position = 0
end_position = 0
else:
doc_offset = len(query_tokens) + 2
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
if example_index < 0:
logger.info("*** Example ***")
logger.info("unique_id: %s" % (unique_id))
logger.info("example_index: %s" % (example_index))
logger.info("doc_span_index: %s" % (doc_span_index))
logger.info("tokens: %s" % " ".join(tokens))
logger.info("token_to_orig_map: %s" %
" ".join(["%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()]))
logger.info("token_is_max_context: %s" %
" ".join(["%d:%s" % (x, y) for (x, y) in token_is_max_context.items()]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
if is_training:
answer_text = " ".join(tokens[start_position:(end_position + 1)])
logger.info("start_position: %d" % (start_position))
logger.info("end_position: %d" % (end_position))
logger.info("answer: %s" % (answer_text))
features.append(
InputFeatures(unique_id=unique_id,
example_index=example_index,
doc_span_index=doc_span_index,
tokens=tokens,
token_to_orig_map=token_to_orig_map,
token_is_max_context=token_is_max_context,
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
start_position=start_position,
end_position=end_position))
unique_id += 1
return features
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text):
"""Returns tokenized answer spans that better match the annotated answer."""
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
for new_start in range(input_start, input_end + 1):
for new_end in range(input_end, new_start - 1, -1):
text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
if text_span == tok_answer_text:
return (new_start, new_end)
return (input_start, input_end)
def _check_is_max_context(doc_spans, cur_span_index, position):
"""Check if this is the 'max context' doc span for the token."""
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span.start + doc_span.length - 1
if position < doc_span.start:
continue
if position > end:
continue
num_left_context = position - doc_span.start
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"])
def make_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length,
do_lower_case, verbose_logging):
example_index_to_features = collections.defaultdict(list)
for feature in all_features:
example_index_to_features[feature.example_index].append(feature)
unique_id_to_result = {}
for result in all_results:
unique_id_to_result[result.unique_id] = result
_PrelimPrediction = collections.namedtuple(
"PrelimPrediction",
["feature_index", "start_index", "end_index", "start_logit", "end_logit"])
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
for (example_index, example) in enumerate(all_examples):
features = example_index_to_features[example_index]
prelim_predictions = []
for (feature_index, feature) in enumerate(features):
result = unique_id_to_result[feature.unique_id]
start_indexes = _get_best_indexes(result.start_logits, n_best_size)
end_indexes = _get_best_indexes(result.end_logits, n_best_size)
for start_index in start_indexes:
for end_index in end_indexes:
if start_index >= len(feature.tokens):
continue
if end_index >= len(feature.tokens):
continue
if start_index not in feature.token_to_orig_map:
continue
if end_index not in feature.token_to_orig_map:
continue
if not feature.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(feature_index=feature_index,
start_index=start_index,
end_index=end_index,
start_logit=result.start_logits[start_index],
end_logit=result.end_logits[end_index]))
prelim_predictions = sorted(prelim_predictions,
key=lambda x: (x.start_logit + x.end_logit),
reverse=True)
_NbestPrediction = collections.namedtuple("NbestPrediction",
["text", "start_logit", "end_logit"])
seen_predictions = {}
nbest = []
for pred in prelim_predictions:
if len(nbest) >= n_best_size:
break
feature = features[pred.feature_index]
if pred.start_index > 0:
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
tok_text = " ".join(tok_tokens)
tok_text = tok_text.replace(" ##", "")
tok_text = tok_text.replace("##", "")
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
else:
final_text = ""
seen_predictions[final_text] = True
nbest.append(
_NbestPrediction(text=final_text,
start_logit=pred.start_logit,
end_logit=pred.end_logit))
if not nbest:
nbest.append(_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
assert len(nbest) >= 1
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_logit + entry.end_logit)
if not best_non_null_entry:
if entry.text:
best_non_null_entry = entry
probs = _compute_softmax(total_scores)
nbest_json = []
for (i, entry) in enumerate(nbest):
output = collections.OrderedDict()
output["text"] = entry.text
output["probability"] = probs[i]
output["start_logit"] = entry.start_logit
output["end_logit"] = entry.end_logit
nbest_json.append(output)
assert len(nbest_json) >= 1
all_predictions[example.qas_id] = nbest_json[0]["text"]
all_nbest_json[example.qas_id] = nbest_json
return all_predictions, all_nbest_json
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
"""Project the tokenized prediction back to the original text."""
def _strip_spaces(text):
ns_chars = []
ns_to_s_map = collections.OrderedDict()
for (i, c) in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_chars)] = i
ns_chars.append(c)
ns_text = "".join(ns_chars)
return (ns_text, ns_to_s_map)
tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
tok_text = " ".join(tokenizer.tokenize(orig_text))
start_position = tok_text.find(pred_text)
if start_position == -1:
if verbose_logging:
logger.info("Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
return orig_text
end_position = start_position + len(pred_text) - 1
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
if verbose_logging:
logger.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text,
tok_ns_text)
return orig_text
tok_s_to_ns_map = {}
for (i, tok_index) in tok_ns_to_s_map.items():
tok_s_to_ns_map[tok_index] = i
orig_start_position = None
if start_position in tok_s_to_ns_map:
ns_start_position = tok_s_to_ns_map[start_position]
if ns_start_position in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
if verbose_logging:
logger.info("Couldn't map start position")
return orig_text
orig_end_position = None
if end_position in tok_s_to_ns_map:
ns_end_position = tok_s_to_ns_map[end_position]
if ns_end_position in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
if verbose_logging:
logger.info("Couldn't map end position")
return orig_text
output_text = orig_text[orig_start_position:(orig_end_position + 1)]
return output_text
def _get_best_indexes(logits, n_best_size):
"""Get the n-best logits from a list."""
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
best_indexes = []
for i in range(len(index_and_score)):
if i >= n_best_size:
break
best_indexes.append(index_and_score[i][0])
return best_indexes
def _compute_softmax(scores):
"""Compute softmax probability over raw logits."""
if not scores:
return []
max_score = None
for score in scores:
if max_score is None or score > max_score:
max_score = score
exp_scores = []
total_sum = 0.0
for score in scores:
x = math.exp(score - max_score)
exp_scores.append(x)
total_sum += x
probs = []
for score in exp_scores:
probs.append(score / total_sum)
return probs
def get_raw_scores(dataset, predictions):
answers = {}
for example in dataset:
for qa in example['qas']:
answers[qa['qid']] = qa['answers']
exact_scores = {}
f1_scores = {}
for qid, ground_truths in answers.items():
if qid not in predictions:
print('Missing prediction for %s' % qid)
continue
prediction = predictions[qid]
exact_scores[qid] = metric_max_over_ground_truths(exact_match_score, prediction,
ground_truths)
f1_scores[qid] = metric_max_over_ground_truths(f1_score, prediction, ground_truths)
return exact_scores, f1_scores
def make_eval_dict(exact_scores, f1_scores, qid_list=None):
if not qid_list:
total = len(exact_scores)
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores.values()) / total),
('f1', 100.0 * sum(f1_scores.values()) / total),
('total', total),
])
else:
total = len(qid_list)
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total),
('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total),
('total', total),
])
def evaluate(args,
model,
device,
eval_dataset,
eval_dataloader,
eval_examples,
eval_features,
verbose=True):
all_results = []
model.eval()
for input_ids, input_mask, segment_ids, example_indices in eval_dataloader:
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
with torch.no_grad():
batch_start_logits, batch_end_logits = model([input_ids, input_mask, segment_ids])
for i, example_index in enumerate(example_indices):
start_logits = batch_start_logits[i].detach().cpu().tolist()
end_logits = batch_end_logits[i].detach().cpu().tolist()
eval_feature = eval_features[example_index.item()]
unique_id = int(eval_feature.unique_id)
all_results.append(
RawResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits))
preds, nbest_preds = \
make_predictions(eval_examples, eval_features, all_results,
args.n_best_size, args.max_answer_length,
args.do_lower_case, args.verbose_logging)
exact_raw, f1_raw = get_raw_scores(eval_dataset, preds)
result = make_eval_dict(exact_raw, f1_raw)
if verbose:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
return result, preds, nbest_preds
def load_initialization(model, args):
if os.path.exists(args.initialize_model_from_checkpoint + '/pytorch_model.bin'):
ckpt = torch.load(args.initialize_model_from_checkpoint + '/pytorch_model.bin')
model.load_state_dict(ckpt)
else:
ckpt = torch.load(args.initialize_model_from_checkpoint + '/saved_checkpoint')
assert args.model == ckpt['args']['model'], args.model + ' vs ' + ckpt['args']['model']
model.load_state_dict(ckpt['model_state_dict'])
logger.info("***** Model Initialization *****")
logger.info("Loaded the model state from a saved checkpoint {}".format(
args.initialize_model_from_checkpoint))
def turn_off_dropout(m):
for mod in m.modules():
if isinstance(mod, torch.nn.Dropout):
mod.p = 0
def tune_bias_only(m):
for name, param in m.bert.named_parameters():
if 'bias' in name or 'LayerNorm' in name:
param.requires_grad = True
else:
param.requires_grad = False
def flip(scores, flip_prob, negative_reward):
if flip_prob != 0:
probs = torch.rand(scores.shape).to(scores.device)
# true for values to be flipped
mask = probs < flip_prob
positive = scores == 1
scores[mask & positive] = negative_reward
scores[mask & ~positive] = 1
return scores
def get_batch_rewards(start_probs, end_probs, start_positions, end_positions, device, args,
tokenizer, input_ids):
bs = start_probs.shape[0]
if args.argmax_simulation:
start_samples = torch.argmax(start_probs, dim=1)
end_samples = torch.argmax(end_probs, dim=1)
else:
start_samples = torch.multinomial(start_probs, 1).view(-1)
end_samples = torch.multinomial(end_probs, 1).view(-1)
log_prob = start_probs[torch.arange(bs), start_samples].log() + end_probs[torch.arange(bs),
end_samples].log()
# compute rewards
def binary_reward():
reward_mask = (start_samples == start_positions) & (end_samples == end_positions)
rewards = torch.tensor([args.negative_reward] * bs).to(device)
rewards[reward_mask] = 1
return rewards
rewards = eval(args.reward_fn)()
rewards = flip(rewards, args.flip_prob, args.negative_reward)
return start_samples, end_samples, log_prob, rewards
def collect_rewards_offline(model, train_batches, args, device, tokenizer, n_gpu):
total_pos = 0
total_neg = 0
for i in range(len(train_batches)):
batch = train_batches[i]
if n_gpu == 1:
batch = tuple(t.to(device) for t in batch)
# sampling
input_ids, input_mask, segment_ids, start_positions, end_positions = batch
with torch.no_grad():
start_probs, end_probs = model(batch=batch[:3], return_prob=True)
start_samples, end_samples, log_prob, rewards = get_batch_rewards(
start_probs, end_probs, start_positions, end_positions, device, args, tokenizer,
input_ids)
train_batches[i] = [
input_ids, input_mask, segment_ids, start_samples, end_samples, log_prob, rewards
]
count_pos = torch.sum(rewards > 0).item()
total_pos += count_pos
total_neg += input_ids.shape[0] - count_pos
return train_batches, total_pos, total_neg
def main(args):
args.timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("device: {}, n_gpu: {}".format(device, n_gpu))
args.n_gpu = n_gpu
# set up random seeds
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
# deal with gradient accumulation
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
# actual bs = bs // g i.e. 5 = 10 // 2
args.train_batch_size = \
args.train_batch_size // args.gradient_accumulation_steps
# parse dataset
if args.dataset is not None:
assert args.train_file is None
assert args.dev_file is None
if args.dataset == 'squad':
args.train_file = 'data/SQuAD_train.jsonl'
args.dev_file = 'data/SQuAD_dev.jsonl.gz'
elif args.dataset == 'hotpot':
args.train_file = 'data/HotpotQA-train.jsonl.gz'
args.dev_file = 'data/HotpotQA-dev.jsonl.gz'
elif args.dataset == 'nq':
args.train_file = 'data/NaturalQuestionsShort-train.jsonl.gz'
args.dev_file = 'data/NaturalQuestionsShort-dev.jsonl.gz'
elif args.dataset == 'news':
args.train_file = 'data/NewsQA-train.jsonl.gz'
args.dev_file = 'data/NewsQA-dev.jsonl.gz'
elif args.dataset == 'search':
args.train_file = 'data/SearchQA-train.jsonl.gz'
args.dev_file = 'data/SearchQA-dev.jsonl.gz'
elif args.dataset == 'trivia':
args.train_file = 'data/TriviaQA-train.jsonl.gz'
args.dev_file = 'data/TriviaQA-dev.jsonl.gz'
else:
raise ValueError('Unknown dataset')
# if args.dataset is not None and args.pretrainex is not None:
# assert args.initialize_model_from_checkpoint is None
# raise ValueError('What initialization to use?')
# if args.pretrainon is not None:
# assert args.initialize_model_from_checkpoint is None
# raise ValueError('Which dataset pretrained on?')
# argparse checkers
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if args.do_train:
assert args.train_file is not None
if args.eval_test:
assert args.test_file is not None
# only evaluate on the test set: need an initialization
if args.eval_test and not args.do_train:
assert args.initialize_model_from_checkpoint is not None
if args.percentage_train_data + args.percentage_train_data_to_ignore > 1:
raise ValueError(
"Problematic combination of percentages on training: {} to train but {} to ignore".
format(args.percentage_train_data, args.percentage_train_data_to_ignore))
# set up logging files
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# set up the logging for this experiment
args.output_dir += '/' + args.timestamp
os.makedirs(args.output_dir)
if args.do_train:
logger.addHandler(logging.FileHandler(os.path.join(args.output_dir, "train.log"), 'w'))
else:
logger.addHandler(logging.FileHandler(os.path.join(args.output_dir, "eval.log"), 'w'))
# log args
logger.info(args)
tokenizer = BertTokenizer.from_pretrained(args.model, do_lower_case=args.do_lower_case)
if args.do_train and args.do_eval:
# load dev dataset
eval_dataset = get_data(input_file=args.dev_file)
eval_examples = read_mrqa_examples(input_file=args.dev_file, is_training=False)
eval_features = convert_examples_to_features(examples=eval_examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=False)
logger.info("***** Dev *****")
logger.info(" Num orig examples = %d", len(eval_examples))
logger.info(" Num split examples = %d", len(eval_features))
logger.info(" Batch size = %d", args.eval_batch_size)
args.dev_num_orig_ex = len(eval_examples)
args.dev_num_split_ex = len(eval_features)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
eval_dataloader = DataLoader(eval_data, batch_size=args.eval_batch_size)
if args.do_train:
train_examples = read_mrqa_examples(input_file=args.train_file,
is_training=True,
ignore=args.percentage_train_data_to_ignore,
percentage=args.percentage_train_data)
train_features = convert_examples_to_features(examples=train_examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=True)
if args.train_mode == 'sorted' or args.train_mode == 'random_sorted':
train_features = sorted(train_features, key=lambda f: np.sum(f.input_mask))
else:
random.shuffle(train_features)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
all_start_positions = torch.tensor([f.start_position for f in train_features],
dtype=torch.long)
all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_start_positions, all_end_positions)
train_dataloader = DataLoader(train_data, batch_size=args.train_batch_size)
train_batches = [batch for batch in train_dataloader]
num_train_optimization_steps = \
len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
logger.info("***** Train *****")
logger.info(" Num orig examples = %d", len(train_examples))
logger.info(" Num split examples = %d", len(train_features))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
args.train_num_orig_ex = len(train_examples)
args.train_num_split_ex = len(train_features)
eval_step = max(1, len(train_batches) // args.eval_per_epoch)
best_result = None
lrs = [args.learning_rate] if args.learning_rate else \
[1e-4, 9e-5, 8e-5, 7e-5, 6e-5, 5e-5, 3e-5, 2e-5, 1e-5]
for lr in lrs:
if args.initialize_model_from_checkpoint:
model = BertForQuestionAnswering(model_type=args.model)
load_initialization(model=model, args=args)
else:
model = BertForQuestionAnswering(model_type=args.model)
if args.turn_off_dropout:
turn_off_dropout(model)
if args.tune_bias_only:
tune_bias_only(model)
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
param_optimizer = list(model.named_parameters())
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [{
'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay':
0.01
}, {
'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay':
0.0
}]
optimizer = AdamW(optimizer_grouped_parameters, lr=lr)
lr_scheduler = get_scheduler(args.scheduler,
optimizer=optimizer,
num_warmup_steps=int(num_train_optimization_steps *
args.warmup_proportion),
num_training_steps=num_train_optimization_steps)
if args.setup == 'offline':
train_batches, total_pos, total_neg = collect_rewards_offline(
model, train_batches, args, device, tokenizer, n_gpu)
logger.info("Offline regret computation: {} positives {} negatives".format(
total_pos, total_neg))
if args.wandb:
wandb.init(
project='bandit-qa',
name=
f'{args.percentage_train_data}-{args.train_num_orig_ex}{args.dataset}_{args.algo}_{args.model}_{args.scheduler}={lr}_{args.initialize_model_from_checkpoint}+{args.argmax_simulation}_{args.output_dir}',
notes=args.notes,
config=vars(args))
wandb.watch(model)
tr_loss = 0
nb_tr_examples = 0
nb_tr_steps = 0
global_step = 0
start_time = time.time()
simulation_log = None
one_epoch_f1 = None
dev_f1s = []
steps = []
total_pos, total_neg = 0, 0
for epoch in range(int(args.num_train_epochs)):
model.train()
logger.info("Start epoch #{} (lr = {})...".format(epoch, lr))
if args.train_mode == 'random' or args.train_mode == 'random_sorted':
random.shuffle(train_batches)
for step, batch in enumerate(train_batches):
if n_gpu == 1:
batch = tuple(t.to(device) for t in batch)
start_probs, end_probs = model(batch=batch[:3], return_prob=True)
bs = start_probs.shape[0]
if args.setup == 'online':
input_ids, _, _, start_positions, end_positions = batch
start_samples, end_samples, log_prob, rewards = get_batch_rewards(
start_probs, end_probs, start_positions, end_positions, device, args,
tokenizer, input_ids)
count_pos = torch.sum(rewards > 0).item()
total_pos += count_pos
total_neg += bs - count_pos
else:
input_ids, _, _, start_samples, end_samples, old_log_prob, old_rewards = batch
log_prob = start_probs[torch.arange(bs),
start_samples].log() + end_probs[torch.arange(bs),
end_samples].log()
ratios = torch.exp(log_prob - old_log_prob)
rewards = torch.clamp(ratios, 0, 1) * old_rewards
rewards = rewards.detach()
# compute values
if args.algo == 'Rwb':
values = torch.tensor([-0.05] * bs).to(device)
detached_advantages = rewards - values
elif args.algo == 'Rwmb':
detached_advantages = rewards - rewards.mean()
else:
detached_advantages = rewards
# compute probs
loss = (-log_prob * detached_advantages).mean() / 2
if n_gpu > 1:
loss = loss.mean()
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
global_step += 1
if args.wandb and (global_step + 1) % 25 == 0:
wandb.log(
{
'(Train) policy loss': loss.item(),
'(Train) reward': rewards.mean().item(),
'(Train) advantage': detached_advantages.mean().item(),
},
step=global_step)
if simulation_log is not None:
wandb.log(simulation_log, step=global_step)
if (step + 1) % eval_step == 0 or step + 1 == len(train_batches):
logger.info(
'Epoch: {}, Step: {} / {}, used_time = {:.2f}s, loss = {:.6f}'.format(