-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_experiment.py
242 lines (185 loc) · 11.9 KB
/
run_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import argparse
import os
import wandb
import numpy as np
from src.experiments.utils import ExperimentContextManager
from src.icl.context_generators import ContextGenerator, load_context_generator
from src.icl.utils import find_maximum_number_examples
from src.task.task import load_task
from src.model.model import load_model
from src.utils.random import set_seed_everywhere
from src.utils.logger import get_logger
from time import time
def init_wandb(run_name: str = None):
wandb.init(project="iclf", name=run_name, mode="offline")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str) # "microsoft/Phi-3.5-mini-instruct" "meta-llama/Meta-Llama-3.1-8B-Instruct"
parser.add_argument("--task_name",type=str)
parser.add_argument("--context_strategy_name", type=str)
parser.add_argument("--temperature", type=float)
parser.add_argument("--context_p_keep", type=float, default=1.0)
parser.add_argument("--max_context_examples", type=int, default=None)
parser.add_argument("--icrl", action=argparse.BooleanOptionalAction)
parser.add_argument("--icrl_omit_feedback", action=argparse.BooleanOptionalAction)
parser.add_argument("--icrl_flip_feedback", action=argparse.BooleanOptionalAction)
parser.add_argument("--icrl_flip_feedback_prob", type=float, default=None)
parser.add_argument("--max_contexts", type=int, default=-1)
parser.add_argument("--approximate_context_sampling_method", type=str, default=None)
parser.add_argument("--train_k", type=int)
parser.add_argument("--test_every", type=int)
parser.add_argument("--test_k", type=int)
parser.add_argument("--exemplars_per_label", type=int, default=0)
parser.add_argument("--ucb_alpha", type=float, default=1.0)
parser.add_argument("--prob_reset", type=float, default=0.0)
parser.add_argument("--p_exploration", type=float, default=0.0)
parser.add_argument("--debug_k", type=int)
parser.add_argument("--seed", type=int)
parser.add_argument("--training_seed", type=int)
parser.add_argument("--test_seed", type=int)
parser.add_argument("--hf_token", type=str)
parser.add_argument("--verbose", action=argparse.BooleanOptionalAction)
return parser.parse_args()
def generate_random_float(seed):
rng = np.random.default_rng(seed)
return rng.random()
def main():
args = get_args()
# Preliminary setup
init_wandb()
os.environ["HF_TOKEN"] = args.hf_token
set_seed_everywhere(args.seed)
# Print args
if args.verbose:
get_logger().info(f"Arguments: {args}")
# Load task
task = load_task(
task_name=args.task_name,
verbose=False
)
# Load model
model = load_model(
model_name=args.model_name,
icl=args.max_context_examples != 0,
icrl=args.icrl,
temperature=args.temperature,
verbose=args.verbose
)
model.set_task(task)
# Load data
exemplar_data = None
if args.exemplars_per_label > 0:
exemplar_data = task.get_exemplar_data(exemplars_per_label=args.exemplars_per_label, seed=args.training_seed)
training_data = task.get_training_data(size=args.train_k if args.max_context_examples != 0 else 0, seed=args.training_seed) # If we are doing zero shot, we don't need any training data
training_size = len(training_data)
test_data = task.get_test_data(size=args.test_k, seed=args.test_seed)
get_logger().info(f"Training data size: {len(training_data)}")
get_logger().info(f"Test data size: {len(test_data)}")
steps = training_size if args.max_context_examples != 0 else 1
steps_to_test = [0] + [i for i in range(steps) if (i+1) % args.test_every == 0]
# With exemplars we remove some data from the training as we use it for the exemplars
# We still want to test at the last step even in this case
if steps-1 not in steps_to_test:
steps_to_test += [steps-1]
debug_k = 0
with ExperimentContextManager(args) as experiment_data:
# Define max context examples
if args.max_context_examples is None: # when using maximum possible based on model, task
if experiment_data.data_manager.get_maximum_context_length() is None:
max_context_examples = find_maximum_number_examples(model, task, args.verbose)
experiment_data.data_manager.set_maximum_context_length(max_context_examples)
else:
max_context_examples = experiment_data.data_manager.get_maximum_context_length()
else: # when specified
max_context_examples = args.max_context_examples
get_logger().info(f"Max context examples: {max_context_examples}")
# If exemplars are used, decrease the number of max_context examples properly
if exemplar_data:
max_context_examples = max(0, max_context_examples - len(exemplar_data))
get_logger().info(f"Max context examples after accounting for exemplars: {max_context_examples}")
# If standard ICL, we stop at the minimum test step bigger or equal to the number of maximum context examples
if not args.icrl:
earlier_last_step = min([step for step in steps_to_test if step >= max_context_examples], default=None)
if earlier_last_step is not None:
steps = earlier_last_step + 1
# Load context generator
context_generator: ContextGenerator = load_context_generator(
context_generator_name=args.context_strategy_name,
max_examples=max_context_examples,
p_keep=args.context_p_keep,
max_contexts=args.max_contexts,
approximate_context_sampling_method=args.approximate_context_sampling_method,
ucb_alpha=args.ucb_alpha,
prob_reset=args.prob_reset,
p_exploration=args.p_exploration,
verbose=args.verbose
)
training_task_prompt_list, training_model_prediction_list, training_task_feedback_list, training_task_answer_list, training_accuracies = [], [], [], [], []
exemplar_task_prompt_list, exemplar_model_prediction_list, exemplar_task_feedback_list, exemplar_task_answer_list, exemplar_accuracies = [], [], [], [], []
if exemplar_data:
# Add exemplars
for exemplar in exemplar_data:
exemplar_task_prompt_list.append(task.get_prompt(exemplar))
exemplar_model_prediction_list.append(task.get_answer(exemplar))
exemplar_task_feedback_list.append(1.0)
exemplar_task_answer_list.append(task.get_answer(exemplar))
exemplar_accuracies.append(1.0)
get_logger().info("Starting experiment")
tik = time()
for step in range(steps):
get_logger().info(f"Step {step}")
step_data = experiment_data.get_step_data(step)
if (max_context_examples > 0 and not step_data.context_processed()):
# Set random seed for context generator
context_generator.set_random_seed(args.seed+step)
# Generate context
icl_task_prompt_list, icl_model_prediction_list, icl_task_feedback_list, icl_task_answer_list, icl_task_accuracies = context_generator.generate(training_task_prompt_list, training_model_prediction_list, training_task_feedback_list, training_task_answer_list, training_accuracies)
additional_metrics = context_generator.get_context_additional_metrics() # Get additional metrics from context generator
# Set context for next training / test step
step_data.set_context(icl_task_prompt_list, icl_model_prediction_list, icl_task_feedback_list, icl_task_answer_list, icl_task_accuracies, additional_metrics)
if (max_context_examples > 0 and not step_data.training_step_processed()) or (not step_data.test_step_processed() and step in steps_to_test):
# If we need to perform a training or test step and this is not zero shot, we need to refresh the model cache
if max_context_examples > 0:
icl_task_prompt_list, icl_model_prediction_list, icl_task_feedback_list, icl_task_answer_list, icl_task_accuracies = step_data.get_context()
model.refresh_cache(exemplar_task_prompt_list + icl_task_prompt_list, exemplar_model_prediction_list + icl_model_prediction_list if args.icrl else [], exemplar_task_feedback_list + icl_task_feedback_list if (args.icrl and not args.icrl_omit_feedback) else [], exemplar_task_answer_list + icl_task_answer_list if not args.icrl else [])
if not step_data.training_step_processed():
train_example = training_data[step]
new_training_task_prompt = task.get_prompt(train_example)
if args.icrl:
new_training_model_prediction = model.predict_labels([new_training_task_prompt], generation_seed=args.seed+step, force_verbose=debug_k < args.debug_k)[0]
new_training_task_accuracy = task.get_feedback(train_example, new_training_model_prediction)
new_training_task_feedback = new_training_task_accuracy
if args.icrl_flip_feedback:
if generate_random_float(args.seed + step) < args.icrl_flip_feedback_prob:
new_training_task_feedback = 1 - new_training_task_feedback
if args.verbose:
get_logger().info(f"Flipping feedback for example {step}")
else:
new_training_model_prediction = None
new_training_task_accuracy = 1.0 # We arbitrarily assign 1 for implementation reasons. This number is never used.
new_training_task_feedback = None
# Get correct answer for new data point
new_training_task_answer = task.get_answer(train_example)
# Update step training data
step_data.set_training_data(new_training_task_prompt, new_training_model_prediction, new_training_task_feedback, new_training_task_answer, new_training_task_accuracy)
if not step_data.test_step_processed() and step in steps_to_test:
test_task_prompt_list = [task.get_prompt(test_example) for test_example in test_data]
test_predictions = model.predict_labels(test_task_prompt_list, generation_seed=args.seed+step, force_verbose=debug_k < args.debug_k)
test_task_feedback_list = [task.get_feedback(test_example, test_prediction) for test_example, test_prediction in zip(test_data, test_predictions)]
test_task_answer_list = [task.get_answer(test_example) for test_example in test_data]
test_accuracies = [task.get_feedback(test_example, test_prediction) for test_example, test_prediction in zip(test_data, test_predictions)]
step_data.set_test_data(test_task_prompt_list, test_predictions, test_task_feedback_list, test_task_answer_list, test_accuracies)
tok = time()
step_data.set_time(tok-tik)
debug_k += 1
new_training_task_prompt, new_training_model_prediction, new_training_task_feedback, new_training_task_answer, new_training_task_accuracy = step_data.get_training_data()
# Update training data
training_task_prompt_list.append(new_training_task_prompt)
training_model_prediction_list.append(new_training_model_prediction)
training_task_feedback_list.append(new_training_task_feedback)
training_task_answer_list.append(new_training_task_answer)
training_accuracies.append(new_training_task_accuracy)
experiment_data.save_changes()
get_logger().info("Ending experiment")
if __name__ == "__main__":
main()