forked from USTC-Hackergame/hackergame2023-writeups
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mvcoppersmith.py
132 lines (123 loc) · 4.36 KB
/
mvcoppersmith.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from sage.all import *
def coppersmith_monomials(f, mult=1, extras=[]):
"""
Return a list of monomials to be included as columns in the coppersmith lattice
f: multivariate polynomial over ZZ
mult: multiplicity
extras: list of extra monomials to include with the highest power of f. Result may be incorrect if anything in the list isn't a monomial.
"""
if extras is None: extras = []
# replace all coefficients with +1 so that there won't be any cancellation
g = sum(f.monomials())
gk = g**mult
gkextra = (1+sum(extras)) * gk
#return gkextra.monomials() # to use only these monomials -- need to edit poly-for to be sure other monomials aren't introduced
## Alternatively, add missing monomials here:
monomials = set(gkextra.monomials())
more_extras = {
mono
for m in monomials
for mono in poly_for(f, m, mult, extras=monomials, want_monomials=True)
} - monomials
while more_extras:
monomials |= more_extras
more_extras = {
mono
for m in more_extras
for mono in poly_for(f, m, mult, want_monomials=True)
} - monomials
return sorted(list(monomials))[::-1]
def poly_for(f, m, mult=1, extras=None, want_monomials=False):
"""
Returns the polynomial (or maybe a tuple (power of f, power of N, extra terms) that goes in the coppersmith lattice with leading term m
"""
j = 0
l = f.lm() # leading monomial
for i in range(mult,0,-1):
if (l**i).divides(m):
## To avoid introducing any new monomials:
#if extras and (m // (l**i)) not in extras:
# #print(f"rejecting {m // (l**j)}")
# continue
j = i
break
assert (l**j).divides(m)
extra = m // (l**j)
# The polynomial is f**j * extra * N**(mult-j)
assert ((f**j)*extra).lm() == m
if want_monomials: return (f**j * extra).monomials()
return (j, mult-j, extra)
def coppersmith_params(f, mult=1, extras=[]):
ms = coppersmith_monomials(f, mult, extras)
#print(ms)
det_powN = 0
det_powB = 0
for m in ms:
powf, powN, extra = poly_for(f, m, mult, extras=extras)
assert f.lm()**powf * extra == m
#basis[i] = f**powf * N**powN * extra
#print(f"{m}: N**{powN} f**{powf} {extra}")
det_powN += powN
det_powB += m.total_degree()
dim = len(ms)
print(f"determinant = p**{det_powN} B**{det_powB}")
# Condition for coppersmith to succeed:
# (1.03**dim) * (N**powN * B**powB)^(1/dim) < N**mult
# or equivalently: 1.03**(dim^2) * N**powN * B**powB < N**(mult*dim)
# ===> 1.03**(dim^2 / (mult*dim - powN)) * B**(powB / (mult*dim - powN)) < N
expB = float(det_powB / (mult*dim - det_powN))
print(f"1.03**{dim**2} B**{det_powB} N**{det_powN} < N**{dim*mult}")
print("2**{logconst:.4f} B**{expB:.2f} < N".format(
logconst=float(log(1.03,2)*(dim**2 / (mult*dim - det_powN))),
expB=expB
))
print("dimension", dim)
return (expB, dim)
def quick_params(nvars, mult, extras=None):
global xs
if isinstance(nvars, (int, Integer)): xs = polygens(ZZ, 'x', nvars)
else: xs = nvars
f = prod((xi + 1) for xi in xs[:len(xs)//2]) + prod((xi + 1) for xi in xs[len(xs)//2:])
if extras is None:
extras = [prod(xs[:len(xs)//2])**i for i in range(1,mult)]
return coppersmith_params(f, mult, extras=extras)
def coppersmith_makelattice(f, B, N, mult=1, extras=[]):
if extras is None: extras = []
ms = coppersmith_monomials(f,mult,extras)
M = matrix(ZZ, len(ms), len(ms), sparse=True)
scalefactors = [B**m.total_degree() for m in ms]
for row,m in enumerate(ms):
# make the polynomial that has this monomial as a leading term
powf, powN, extra = poly_for(f, m, mult, extras=extras)
rowpoly = f**powf * extra * N**powN
assert set(ms).issuperset(rowpoly.monomials())
for col in range(len(ms)):
M[row,col] = rowpoly.monomial_coefficient(ms[col]) * scalefactors[col]
return M, ms, scalefactors
def vec_to_poly(vec, ms, scalefactors):
if not all(c % s == 0 for (c,s) in zip(vec,scalefactors)):
raise ValueError("vec not divisible by scalefactors")
return sum(m*Integer(c//s) for (m,c,s) in zip(ms,vec,scalefactors))
def export_lattice(M, filename, reorder=True):
if reorder:
M = M[::-1,::-1]
with open(filename, 'x') as f:
f.write("[");
for row in M:
f.write("[")
for elem in row:
f.write(elem.str())
f.write(" ")
f.write("]\n")
f.write("]\n")
f.flush()
def import_lattice(filename, reorder=True):
with open(filename, 'r') as f:
M = matrix([
[Integer(x) for x in line.strip().strip("[]").strip().split()]
for line in f
if line.strip("[]").strip()
])
if reorder:
M = M[:,::-1]
return M