From baa13b2d58f2460d276b9e8b5fcf2ea2ad2f0b15 Mon Sep 17 00:00:00 2001 From: lindexi Date: Wed, 18 Sep 2024 14:38:28 +0800 Subject: [PATCH] =?UTF-8?q?=E5=B0=9D=E8=AF=95=E6=B7=BB=E5=8A=A0=E5=AD=97?= =?UTF-8?q?=E7=AC=A6=E4=B8=B2=E8=BE=85=E5=8A=A9=E7=B1=BB?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- src/Common/Common.sln | 28 + src/Common/Core/Core.csproj | 11 + .../Core/Text/ArrayPoolStringBuilder.cs | 646 ++++++++++++++++++ src/Common/WpfHelp/App.xaml | 9 + src/Common/WpfHelp/App.xaml.cs | 13 + src/Common/WpfHelp/AssemblyInfo.cs | 10 + src/Common/WpfHelp/MainWindow.xaml | 12 + src/Common/WpfHelp/MainWindow.xaml.cs | 23 + src/Common/WpfHelp/WpfHelp.csproj | 11 + 9 files changed, 763 insertions(+) create mode 100644 src/Common/Common.sln create mode 100644 src/Common/Core/Core.csproj create mode 100644 src/Common/Core/Text/ArrayPoolStringBuilder.cs create mode 100644 src/Common/WpfHelp/App.xaml create mode 100644 src/Common/WpfHelp/App.xaml.cs create mode 100644 src/Common/WpfHelp/AssemblyInfo.cs create mode 100644 src/Common/WpfHelp/MainWindow.xaml create mode 100644 src/Common/WpfHelp/MainWindow.xaml.cs create mode 100644 src/Common/WpfHelp/WpfHelp.csproj diff --git a/src/Common/Common.sln b/src/Common/Common.sln new file mode 100644 index 0000000..b72a8a6 --- /dev/null +++ b/src/Common/Common.sln @@ -0,0 +1,28 @@ + +Microsoft Visual Studio Solution File, Format Version 12.00 +# Visual Studio Version 17 +VisualStudioVersion = 17.0.31903.59 +MinimumVisualStudioVersion = 10.0.40219.1 +Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Core", "Core\Core.csproj", "{F1E5BC9E-0822-4012-A91D-E4D483D638CE}" +EndProject +Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "WpfHelp", "WpfHelp\WpfHelp.csproj", "{581B74CB-EC73-41AA-8283-3FC036A6BFEF}" +EndProject +Global + GlobalSection(SolutionConfigurationPlatforms) = preSolution + Debug|Any CPU = Debug|Any CPU + Release|Any CPU = Release|Any CPU + EndGlobalSection + GlobalSection(SolutionProperties) = preSolution + HideSolutionNode = FALSE + EndGlobalSection + GlobalSection(ProjectConfigurationPlatforms) = postSolution + {F1E5BC9E-0822-4012-A91D-E4D483D638CE}.Debug|Any CPU.ActiveCfg = Debug|Any CPU + {F1E5BC9E-0822-4012-A91D-E4D483D638CE}.Debug|Any CPU.Build.0 = Debug|Any CPU + {F1E5BC9E-0822-4012-A91D-E4D483D638CE}.Release|Any CPU.ActiveCfg = Release|Any CPU + {F1E5BC9E-0822-4012-A91D-E4D483D638CE}.Release|Any CPU.Build.0 = Release|Any CPU + {581B74CB-EC73-41AA-8283-3FC036A6BFEF}.Debug|Any CPU.ActiveCfg = Debug|Any CPU + {581B74CB-EC73-41AA-8283-3FC036A6BFEF}.Debug|Any CPU.Build.0 = Debug|Any CPU + {581B74CB-EC73-41AA-8283-3FC036A6BFEF}.Release|Any CPU.ActiveCfg = Release|Any CPU + {581B74CB-EC73-41AA-8283-3FC036A6BFEF}.Release|Any CPU.Build.0 = Release|Any CPU + EndGlobalSection +EndGlobal diff --git a/src/Common/Core/Core.csproj b/src/Common/Core/Core.csproj new file mode 100644 index 0000000..cd63f94 --- /dev/null +++ b/src/Common/Core/Core.csproj @@ -0,0 +1,11 @@ + + + + net9.0 + enable + enable + Lindexi.Src.Core + Lindexi.Src.Core + + + diff --git a/src/Common/Core/Text/ArrayPoolStringBuilder.cs b/src/Common/Core/Text/ArrayPoolStringBuilder.cs new file mode 100644 index 0000000..f23bac4 --- /dev/null +++ b/src/Common/Core/Text/ArrayPoolStringBuilder.cs @@ -0,0 +1,646 @@ +using System; +using System.Buffers; +using System.Collections.Generic; +using System.Diagnostics; +using System.Globalization; +using System.Linq; +using System.Runtime.CompilerServices; +using System.Text; +using System.Threading.Tasks; + +namespace Lindexi.Src.Core.Text; + +/// Provides a handler used by the language compiler to process interpolated strings into instances. +public class ArrayPoolStringBuilder +{ + // Implementation note: + // As this type lives in CompilerServices and is only intended to be targeted by the compiler, + // public APIs eschew argument validation logic in a variety of places, e.g. allowing a null input + // when one isn't expected to produce a NullReferenceException rather than an ArgumentNullException. + + /// Expected average length of formatted data used for an individual interpolation expression result. + /// + /// This is inherited from string.Format, and could be changed based on further data. + /// string.Format actually uses `format.Length + args.Length * 8`, but format.Length + /// includes the format items themselves, e.g. "{0}", and since it's rare to have double-digit + /// numbers of items, we bump the 8 up to 11 to account for the three extra characters in "{d}", + /// since the compiler-provided base length won't include the equivalent character count. + /// + private const int GuessedLengthPerHole = 11; + /// Minimum size array to rent from the pool. + /// Same as stack-allocation size used today by string.Format. + private const int MinimumArrayPoolLength = 256; + + /// Optional provider to pass to IFormattable.ToString or ISpanFormattable.TryFormat calls. + private readonly IFormatProvider? _provider; + /// Array rented from the array pool and used to back . + private char[]? _arrayToReturnToPool; + + /// The span to write into. + private Span _chars => _arrayToReturnToPool; + /// Position at which to write the next character. + private int _pos; + /// Whether provides an ICustomFormatter. + /// + /// Custom formatters are very rare. We want to support them, but it's ok if we make them more expensive + /// in order to make them as pay-for-play as possible. So, we avoid adding another reference type field + /// to reduce the size of the handler and to reduce required zero'ing, by only storing whether the provider + /// provides a formatter, rather than actually storing the formatter. This in turn means, if there is a + /// formatter, we pay for the extra interface call on each AppendFormatted that needs it. + /// + private readonly bool _hasCustomFormatter; + + /// Creates a handler used to translate an interpolated string into a . + /// The number of constant characters outside of interpolation expressions in the interpolated string. + /// The number of interpolation expressions in the interpolated string. + /// This is intended to be called only by compiler-generated code. Arguments are not validated as they'd otherwise be for members intended to be used directly. + public ArrayPoolStringBuilder(int literalLength, int formattedCount) + { + _provider = null; + _arrayToReturnToPool = ArrayPool.Shared.Rent(GetDefaultLength(literalLength, formattedCount)); + _pos = 0; + _hasCustomFormatter = false; + } + + /// Creates a handler used to translate an interpolated string into a . + /// The number of constant characters outside of interpolation expressions in the interpolated string. + /// The number of interpolation expressions in the interpolated string. + /// An object that supplies culture-specific formatting information. + /// This is intended to be called only by compiler-generated code. Arguments are not validated as they'd otherwise be for members intended to be used directly. + public ArrayPoolStringBuilder(int literalLength, int formattedCount, IFormatProvider? provider) + { + _provider = provider; + _arrayToReturnToPool = ArrayPool.Shared.Rent(GetDefaultLength(literalLength, formattedCount)); + _pos = 0; + _hasCustomFormatter = provider is not null && HasCustomFormatter(provider); + } + + ///// Creates a handler used to translate an interpolated string into a . + ///// The number of constant characters outside of interpolation expressions in the interpolated string. + ///// The number of interpolation expressions in the interpolated string. + ///// An object that supplies culture-specific formatting information. + ///// A buffer temporarily transferred to the handler for use as part of its formatting. Contents may be overwritten. + ///// This is intended to be called only by compiler-generated code. Arguments are not validated as they'd otherwise be for members intended to be used directly. + //public ArrayPoolStringBuilder(int literalLength, int formattedCount, IFormatProvider? provider, Span initialBuffer) + //{ + // _provider = provider; + // _chars = initialBuffer; + // _arrayToReturnToPool = null; + // _pos = 0; + // _hasCustomFormatter = provider is not null && HasCustomFormatter(provider); + //} + + /// Derives a default length with which to seed the handler. + /// The number of constant characters outside of interpolation expressions in the interpolated string. + /// The number of interpolation expressions in the interpolated string. + [MethodImpl(MethodImplOptions.AggressiveInlining)] // becomes a constant when inputs are constant + internal static int GetDefaultLength(int literalLength, int formattedCount) => + Math.Max(MinimumArrayPoolLength, literalLength + (formattedCount * GuessedLengthPerHole)); + + /// Gets the built . + /// The built string. + public override string ToString() => new string(Text); + + /// Gets the built and clears the handler. + /// The built string. + /// + /// This releases any resources used by the handler. The method should be invoked only + /// once and as the last thing performed on the handler. Subsequent use is erroneous, ill-defined, + /// and may destabilize the process, as may using any other copies of the handler after ToStringAndClear + /// is called on any one of them. + /// + public string ToStringAndClear() + { + string result = new string(Text); + Clear(); + return result; + } + + /// Clears the handler, returning any rented array to the pool. + [MethodImpl(MethodImplOptions.AggressiveInlining)] // used only on a few hot paths + internal void Clear() + { + char[]? toReturn = _arrayToReturnToPool; + if (toReturn is not null) + { + ArrayPool.Shared.Return(toReturn); + } + } + + /// Gets a span of the written characters thus far. + internal ReadOnlySpan Text => _chars.Slice(0, _pos); + + /// Writes the specified string to the handler. + /// The string to write. + [MethodImpl(MethodImplOptions.AggressiveInlining)] + public void AppendLiteral(string value) + { + if (value.TryCopyTo(_chars.Slice(_pos))) + { + _pos += value.Length; + } + else + { + GrowThenCopyString(value); + } + } + + #region AppendFormatted + // Design note: + // The compiler requires a AppendFormatted overload for anything that might be within an interpolation expression; + // if it can't find an appropriate overload, for handlers in general it'll simply fail to compile. + // (For target-typing to string where it uses DefaultInterpolatedStringHandler implicitly, it'll instead fall back to + // its other mechanisms, e.g. using string.Format. This fallback has the benefit that if we miss a case, + // interpolated strings will still work, but it has the downside that a developer generally won't know + // if the fallback is happening and they're paying more.) + // + // At a minimum, then, we would need an overload that accepts: + // (object value, int alignment = 0, string? format = null) + // Such an overload would provide the same expressiveness as string.Format. However, this has several + // shortcomings: + // - Every value type in an interpolation expression would be boxed. + // - ReadOnlySpan could not be used in interpolation expressions. + // - Every AppendFormatted call would have three arguments at the call site, bloating the IL further. + // - Every invocation would be more expensive, due to lack of specialization, every call needing to account + // for alignment and format, etc. + // + // To address that, we could just have overloads for T and ReadOnlySpan: + // (T) + // (T, int alignment) + // (T, string? format) + // (T, int alignment, string? format) + // (ReadOnlySpan) + // (ReadOnlySpan, int alignment) + // (ReadOnlySpan, string? format) + // (ReadOnlySpan, int alignment, string? format) + // but this also has shortcomings: + // - Some expressions that would have worked with an object overload will now force a fallback to string.Format + // (or fail to compile if the handler is used in places where the fallback isn't provided), because the compiler + // can't always target type to T, e.g. `b switch { true => 1, false => null }` where `b` is a bool can successfully + // be passed as an argument of type `object` but not of type `T`. + // - Reference types get no benefit from going through the generic code paths, and actually incur some overheads + // from doing so. + // - Nullable value types also pay a heavy price, in particular around interface checks that would generally evaporate + // at compile time for value types but don't (currently) if the Nullable goes through the same code paths + // (see https://github.com/dotnet/runtime/issues/50915). + // + // We could try to take a more elaborate approach for DefaultInterpolatedStringHandler, since it is the most common handler + // and we want to minimize overheads both at runtime and in IL size, e.g. have a complete set of overloads for each of: + // (T, ...) where T : struct + // (T?, ...) where T : struct + // (object, ...) + // (ReadOnlySpan, ...) + // (string, ...) + // but this also has shortcomings, most importantly: + // - If you have an unconstrained T that happens to be a value type, it'll now end up getting boxed to use the object overload. + // This also necessitates the T? overload, since nullable value types don't meet a T : struct constraint, so without those + // they'd all map to the object overloads as well. + // - Any reference type with an implicit cast to ROS will fail to compile due to ambiguities between the overloads. string + // is one such type, hence needing dedicated overloads for it that can be bound to more tightly. + // + // A middle ground we've settled on, which is likely to be the right approach for most other handlers as well, would be the set: + // (T, ...) with no constraint + // (ReadOnlySpan) and (ReadOnlySpan, int) + // (object, int alignment = 0, string? format = null) + // (string) and (string, int) + // This would address most of the concerns, at the expense of: + // - Most reference types going through the generic code paths and so being a bit more expensive. + // - Nullable types being more expensive until https://github.com/dotnet/runtime/issues/50915 is addressed. + // We could choose to add a T? where T : struct set of overloads if necessary. + // Strings don't require their own overloads here, but as they're expected to be very common and as we can + // optimize them in several ways (can copy the contents directly, don't need to do any interface checks, don't + // need to pay the shared generic overheads, etc.) we can add overloads specifically to optimize for them. + // + // Hole values are formatted according to the following policy: + // 1. If an IFormatProvider was supplied and it provides an ICustomFormatter, use ICustomFormatter.Format (even if the value is null). + // 2. If the type implements ISpanFormattable, use ISpanFormattable.TryFormat. + // 3. If the type implements IFormattable, use IFormattable.ToString. + // 4. Otherwise, use object.ToString. + // This matches the behavior of string.Format, StringBuilder.AppendFormat, etc. The only overloads for which this doesn't + // apply is ReadOnlySpan, which isn't supported by either string.Format nor StringBuilder.AppendFormat, but more + // importantly which can't be boxed to be passed to ICustomFormatter.Format. + + #region AppendFormatted T + /// Writes the specified value to the handler. + /// The value to write. + /// The type of the value to write. + public void AppendFormatted(T value) + { + // This method could delegate to AppendFormatted with a null format, but explicitly passing + // default as the format to TryFormat helps to improve code quality in some cases when TryFormat is inlined, + // e.g. for Int32 it enables the JIT to eliminate code in the inlined method based on a length check on the format. + + // If there's a custom formatter, always use it. + if (_hasCustomFormatter) + { + AppendCustomFormatter(value, format: null); + return; + } + + // Check first for IFormattable, even though we'll prefer to use ISpanFormattable, as the latter + // requires the former. For value types, it won't matter as the type checks devolve into + // JIT-time constants. For reference types, they're more likely to implement IFormattable + // than they are to implement ISpanFormattable: if they don't implement either, we save an + // interface check over first checking for ISpanFormattable and then for IFormattable, and + // if it only implements IFormattable, we come out even: only if it implements both do we + // end up paying for an extra interface check. + string? s; + if (value is IFormattable) + { + // If the value can format itself directly into our buffer, do so. + + //if (typeof(T).IsEnum) + //{ + // int charsWritten; + // while (!Enum.TryFormatUnconstrained(value, _chars.Slice(_pos), out charsWritten)) + // { + // Grow(); + // } + + // _pos += charsWritten; + // return; + //} + + if (value is ISpanFormattable) + { + int charsWritten; + while (!((ISpanFormattable) value).TryFormat(_chars.Slice(_pos), out charsWritten, default, _provider)) // constrained call avoiding boxing for value types + { + Grow(); + } + + _pos += charsWritten; + return; + } + + s = ((IFormattable) value).ToString(format: null, _provider); // constrained call avoiding boxing for value types + } + else + { + s = value?.ToString(); + } + + if (s is not null) + { + AppendLiteral(s); + } + } + + /// Writes the specified value to the handler. + /// The value to write. + /// The format string. + /// The type of the value to write. + public void AppendFormatted(T value, string? format) + { + // If there's a custom formatter, always use it. + if (_hasCustomFormatter) + { + AppendCustomFormatter(value, format); + return; + } + + // Check first for IFormattable, even though we'll prefer to use ISpanFormattable, as the latter + // requires the former. For value types, it won't matter as the type checks devolve into + // JIT-time constants. For reference types, they're more likely to implement IFormattable + // than they are to implement ISpanFormattable: if they don't implement either, we save an + // interface check over first checking for ISpanFormattable and then for IFormattable, and + // if it only implements IFormattable, we come out even: only if it implements both do we + // end up paying for an extra interface check. + string? s; + if (value is IFormattable) + { + // If the value can format itself directly into our buffer, do so. + + //if (typeof(T).IsEnum) + //{ + // int charsWritten; + // while (!Enum.TryFormatUnconstrained(value, _chars.Slice(_pos), out charsWritten, format)) + // { + // Grow(); + // } + + // _pos += charsWritten; + // return; + //} + + if (value is ISpanFormattable) + { + int charsWritten; + while (!((ISpanFormattable) value).TryFormat(_chars.Slice(_pos), out charsWritten, format, _provider)) // constrained call avoiding boxing for value types + { + Grow(); + } + + _pos += charsWritten; + return; + } + + s = ((IFormattable) value).ToString(format, _provider); // constrained call avoiding boxing for value types + } + else + { + s = value?.ToString(); + } + + if (s is not null) + { + AppendLiteral(s); + } + } + + /// Writes the specified value to the handler. + /// The value to write. + /// Minimum number of characters that should be written for this value. If the value is negative, it indicates left-aligned and the required minimum is the absolute value. + /// The type of the value to write. + public void AppendFormatted(T value, int alignment) + { + int startingPos = _pos; + AppendFormatted(value); + if (alignment != 0) + { + AppendOrInsertAlignmentIfNeeded(startingPos, alignment); + } + } + + /// Writes the specified value to the handler. + /// The value to write. + /// The format string. + /// Minimum number of characters that should be written for this value. If the value is negative, it indicates left-aligned and the required minimum is the absolute value. + /// The type of the value to write. + public void AppendFormatted(T value, int alignment, string? format) + { + int startingPos = _pos; + AppendFormatted(value, format); + if (alignment != 0) + { + AppendOrInsertAlignmentIfNeeded(startingPos, alignment); + } + } + #endregion + + #region AppendFormatted ReadOnlySpan + /// Writes the specified character span to the handler. + /// The span to write. + public void AppendFormatted(scoped ReadOnlySpan value) + { + // Fast path for when the value fits in the current buffer + if (value.TryCopyTo(_chars.Slice(_pos))) + { + _pos += value.Length; + } + else + { + GrowThenCopySpan(value); + } + } + + /// Writes the specified string of chars to the handler. + /// The span to write. + /// Minimum number of characters that should be written for this value. If the value is negative, it indicates left-aligned and the required minimum is the absolute value. + /// The format string. + public void AppendFormatted(scoped ReadOnlySpan value, int alignment = 0, string? format = null) + { + bool leftAlign = false; + if (alignment < 0) + { + leftAlign = true; + alignment = -alignment; + } + + int paddingRequired = alignment - value.Length; + if (paddingRequired <= 0) + { + // The value is as large or larger than the required amount of padding, + // so just write the value. + AppendFormatted(value); + return; + } + + // Write the value along with the appropriate padding. + EnsureCapacityForAdditionalChars(value.Length + paddingRequired); + if (leftAlign) + { + value.CopyTo(_chars.Slice(_pos)); + _pos += value.Length; + _chars.Slice(_pos, paddingRequired).Fill(' '); + _pos += paddingRequired; + } + else + { + _chars.Slice(_pos, paddingRequired).Fill(' '); + _pos += paddingRequired; + value.CopyTo(_chars.Slice(_pos)); + _pos += value.Length; + } + } + #endregion + + #region AppendFormatted string + /// Writes the specified value to the handler. + /// The value to write. + public void AppendFormatted(string? value) + { + // Fast-path for no custom formatter and a non-null string that fits in the current destination buffer. + if (!_hasCustomFormatter && + value is not null && + value.TryCopyTo(_chars.Slice(_pos))) + { + _pos += value.Length; + } + else + { + AppendFormattedSlow(value); + } + } + + /// Writes the specified value to the handler. + /// The value to write. + /// + /// Slow path to handle a custom formatter, potentially null value, + /// or a string that doesn't fit in the current buffer. + /// + [MethodImpl(MethodImplOptions.NoInlining)] + private void AppendFormattedSlow(string? value) + { + if (_hasCustomFormatter) + { + AppendCustomFormatter(value, format: null); + } + else if (value is not null) + { + EnsureCapacityForAdditionalChars(value.Length); + value.CopyTo(_chars.Slice(_pos)); + _pos += value.Length; + } + } + + /// Writes the specified value to the handler. + /// The value to write. + /// Minimum number of characters that should be written for this value. If the value is negative, it indicates left-aligned and the required minimum is the absolute value. + /// The format string. + public void AppendFormatted(string? value, int alignment = 0, string? format = null) => + // Format is meaningless for strings and doesn't make sense for someone to specify. We have the overload + // simply to disambiguate between ROS and object, just in case someone does specify a format, as + // string is implicitly convertible to both. Just delegate to the T-based implementation. + AppendFormatted(value, alignment, format); + #endregion + + #region AppendFormatted object + /// Writes the specified value to the handler. + /// The value to write. + /// Minimum number of characters that should be written for this value. If the value is negative, it indicates left-aligned and the required minimum is the absolute value. + /// The format string. + public void AppendFormatted(object? value, int alignment = 0, string? format = null) => + // This overload is expected to be used rarely, only if either a) something strongly typed as object is + // formatted with both an alignment and a format, or b) the compiler is unable to target type to T. It + // exists purely to help make cases from (b) compile. Just delegate to the T-based implementation. + AppendFormatted(value, alignment, format); + #endregion + #endregion + + /// Gets whether the provider provides a custom formatter. + [MethodImpl(MethodImplOptions.AggressiveInlining)] // only used in a few hot path call sites + internal static bool HasCustomFormatter(IFormatProvider provider) + { + Debug.Assert(provider is not null); + Debug.Assert(provider is not CultureInfo || provider.GetFormat(typeof(ICustomFormatter)) is null, "Expected CultureInfo to not provide a custom formatter"); + return + provider.GetType() != typeof(CultureInfo) && // optimization to avoid GetFormat in the majority case + provider.GetFormat(typeof(ICustomFormatter)) != null; + } + + /// Formats the value using the custom formatter from the provider. + /// The value to write. + /// The format string. + /// The type of the value to write. + [MethodImpl(MethodImplOptions.NoInlining)] + private void AppendCustomFormatter(T value, string? format) + { + // This case is very rare, but we need to handle it prior to the other checks in case + // a provider was used that supplied an ICustomFormatter which wanted to intercept the particular value. + // We do the cast here rather than in the ctor, even though this could be executed multiple times per + // formatting, to make the cast pay for play. + Debug.Assert(_hasCustomFormatter); + Debug.Assert(_provider != null); + + ICustomFormatter? formatter = (ICustomFormatter?) _provider.GetFormat(typeof(ICustomFormatter)); + Debug.Assert(formatter != null, "An incorrectly written provider said it implemented ICustomFormatter, and then didn't"); + + if (formatter is not null && formatter.Format(format, value, _provider) is string customFormatted) + { + AppendLiteral(customFormatted); + } + } + + /// Handles adding any padding required for aligning a formatted value in an interpolation expression. + /// The position at which the written value started. + /// Non-zero minimum number of characters that should be written for this value. If the value is negative, it indicates left-aligned and the required minimum is the absolute value. + private void AppendOrInsertAlignmentIfNeeded(int startingPos, int alignment) + { + Debug.Assert(startingPos >= 0 && startingPos <= _pos); + Debug.Assert(alignment != 0); + + int charsWritten = _pos - startingPos; + + bool leftAlign = false; + if (alignment < 0) + { + leftAlign = true; + alignment = -alignment; + } + + int paddingNeeded = alignment - charsWritten; + if (paddingNeeded > 0) + { + EnsureCapacityForAdditionalChars(paddingNeeded); + + if (leftAlign) + { + _chars.Slice(_pos, paddingNeeded).Fill(' '); + } + else + { + _chars.Slice(startingPos, charsWritten).CopyTo(_chars.Slice(startingPos + paddingNeeded)); + _chars.Slice(startingPos, paddingNeeded).Fill(' '); + } + + _pos += paddingNeeded; + } + } + + /// Ensures has the capacity to store beyond . + [MethodImpl(MethodImplOptions.AggressiveInlining)] + private void EnsureCapacityForAdditionalChars(int additionalChars) + { + if (_chars.Length - _pos < additionalChars) + { + Grow(additionalChars); + } + } + + /// Fallback for fast path in when there's not enough space in the destination. + /// The string to write. + [MethodImpl(MethodImplOptions.NoInlining)] + private void GrowThenCopyString(string value) + { + Grow(value.Length); + value.CopyTo(_chars.Slice(_pos)); + _pos += value.Length; + } + + /// Fallback for for when not enough space exists in the current buffer. + /// The span to write. + [MethodImpl(MethodImplOptions.NoInlining)] + private void GrowThenCopySpan(scoped ReadOnlySpan value) + { + Grow(value.Length); + value.CopyTo(_chars.Slice(_pos)); + _pos += value.Length; + } + + /// Grows to have the capacity to store at least beyond . + [MethodImpl(MethodImplOptions.NoInlining)] // keep consumers as streamlined as possible + private void Grow(int additionalChars) + { + // This method is called when the remaining space (_chars.Length - _pos) is + // insufficient to store a specific number of additional characters. Thus, we + // need to grow to at least that new total. GrowCore will handle growing by more + // than that if possible. + Debug.Assert(additionalChars > _chars.Length - _pos); + GrowCore((uint) _pos + (uint) additionalChars); + } + + /// Grows the size of . + [MethodImpl(MethodImplOptions.NoInlining)] // keep consumers as streamlined as possible + private void Grow() + { + // This method is called when the remaining space in _chars isn't sufficient to continue + // the operation. Thus, we need at least one character beyond _chars.Length. GrowCore + // will handle growing by more than that if possible. + GrowCore((uint) _chars.Length + 1); + } + + /// Grow the size of to at least the specified . + [MethodImpl(MethodImplOptions.AggressiveInlining)] // but reuse this grow logic directly in both of the above grow routines + private void GrowCore(uint requiredMinCapacity) + { + // We want the max of how much space we actually required and doubling our capacity (without going beyond the max allowed length). We + // also want to avoid asking for small arrays, to reduce the number of times we need to grow, and since we're working with unsigned + // ints that could technically overflow if someone tried to, for example, append a huge string to a huge string, we also clamp to int.MaxValue. + // Even if the array creation fails in such a case, we may later fail in ToStringAndClear. + + uint newCapacity = Math.Max(requiredMinCapacity, Math.Min((uint) _chars.Length * 2, int.MaxValue)); + int arraySize = (int) Math.Clamp(newCapacity, MinimumArrayPoolLength, int.MaxValue); + + char[] newArray = ArrayPool.Shared.Rent(arraySize); + _chars.Slice(0, _pos).CopyTo(newArray); + + char[]? toReturn = _arrayToReturnToPool; + _arrayToReturnToPool = newArray; + + if (toReturn is not null) + { + ArrayPool.Shared.Return(toReturn); + } + } +} diff --git a/src/Common/WpfHelp/App.xaml b/src/Common/WpfHelp/App.xaml new file mode 100644 index 0000000..401572d --- /dev/null +++ b/src/Common/WpfHelp/App.xaml @@ -0,0 +1,9 @@ + + + + + diff --git a/src/Common/WpfHelp/App.xaml.cs b/src/Common/WpfHelp/App.xaml.cs new file mode 100644 index 0000000..343aad3 --- /dev/null +++ b/src/Common/WpfHelp/App.xaml.cs @@ -0,0 +1,13 @@ +using System.Configuration; +using System.Data; +using System.Windows; + +namespace WpfHelp; + +/// +/// Interaction logic for App.xaml +/// +public partial class App : Application +{ +} + diff --git a/src/Common/WpfHelp/AssemblyInfo.cs b/src/Common/WpfHelp/AssemblyInfo.cs new file mode 100644 index 0000000..cc29e7f --- /dev/null +++ b/src/Common/WpfHelp/AssemblyInfo.cs @@ -0,0 +1,10 @@ +using System.Windows; + +[assembly:ThemeInfo( + ResourceDictionaryLocation.None, //where theme specific resource dictionaries are located + //(used if a resource is not found in the page, + // or application resource dictionaries) + ResourceDictionaryLocation.SourceAssembly //where the generic resource dictionary is located + //(used if a resource is not found in the page, + // app, or any theme specific resource dictionaries) +)] diff --git a/src/Common/WpfHelp/MainWindow.xaml b/src/Common/WpfHelp/MainWindow.xaml new file mode 100644 index 0000000..c0dc907 --- /dev/null +++ b/src/Common/WpfHelp/MainWindow.xaml @@ -0,0 +1,12 @@ + + + + + diff --git a/src/Common/WpfHelp/MainWindow.xaml.cs b/src/Common/WpfHelp/MainWindow.xaml.cs new file mode 100644 index 0000000..915c332 --- /dev/null +++ b/src/Common/WpfHelp/MainWindow.xaml.cs @@ -0,0 +1,23 @@ +using System.Text; +using System.Windows; +using System.Windows.Controls; +using System.Windows.Data; +using System.Windows.Documents; +using System.Windows.Input; +using System.Windows.Media; +using System.Windows.Media.Imaging; +using System.Windows.Navigation; +using System.Windows.Shapes; + +namespace WpfHelp; + +/// +/// Interaction logic for MainWindow.xaml +/// +public partial class MainWindow : Window +{ + public MainWindow() + { + InitializeComponent(); + } +} \ No newline at end of file diff --git a/src/Common/WpfHelp/WpfHelp.csproj b/src/Common/WpfHelp/WpfHelp.csproj new file mode 100644 index 0000000..defb4d1 --- /dev/null +++ b/src/Common/WpfHelp/WpfHelp.csproj @@ -0,0 +1,11 @@ + + + + WinExe + net9.0-windows + enable + enable + true + + +