-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
executable file
·165 lines (156 loc) · 4.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from __future__ import print_function, division
import os
os.environ["OMP_NUM_THREADS"] = "1"
import argparse
import torch
from torch.multiprocessing import Process
from environment import atari_env
from utils import read_config
from model import A3Clstm
from train import train
from test import test
from shared_optim import SharedRMSprop, SharedAdam, SharedLrSchedAdam
import time
parser = argparse.ArgumentParser(description='A3C')
parser.add_argument(
'--lr',
type=float,
default=0.0001,
metavar='LR',
help='learning rate (default: 0.0001)')
parser.add_argument(
'--gamma',
type=float,
default=0.99,
metavar='G',
help='discount factor for rewards (default: 0.99)')
parser.add_argument(
'--tau',
type=float,
default=1.00,
metavar='T',
help='parameter for GAE (default: 1.00)')
parser.add_argument(
'--seed',
type=int,
default=1,
metavar='S',
help='random seed (default: 1)')
parser.add_argument(
'--workers',
type=int,
default=32,
metavar='W',
help='how many training processes to use (default: 32)')
parser.add_argument(
'--num-steps',
type=int,
default=20,
metavar='NS',
help='number of forward steps in A3C (default: 20)')
parser.add_argument(
'--max-episode-length',
type=int,
default=10000,
metavar='M',
help='maximum length of an episode (default: 10000)')
parser.add_argument(
'--env',
default='Pong-v0',
metavar='ENV',
help='environment to train on (default: Pong-v0)')
parser.add_argument(
'--env-config',
default='config.json',
metavar='EC',
help='environment to crop and resize info (default: config.json)')
parser.add_argument(
'--shared-optimizer',
default=True,
metavar='SO',
help='use an optimizer without shared statistics.')
parser.add_argument(
'--load',
default=True,
metavar='L',
help='load a trained model')
parser.add_argument(
'--save-score-level',
type=int,
default=20,
metavar='SSL',
help='reward score test evaluation must get higher than to save model')
parser.add_argument(
'--optimizer',
default='Adam',
metavar='OPT',
help='shares optimizer choice of Adam or RMSprop')
parser.add_argument(
'--count-lives',
default=False,
metavar='CL',
help='end of life is end of training episode.')
parser.add_argument(
'--load-model-dir',
default='checkpoints/',
metavar='LMD',
help='folder to load trained models from')
parser.add_argument(
'--save-model-dir',
default='checkpoints/',
metavar='SMD',
help='folder to save trained models')
parser.add_argument(
'--log-dir',
default='logs/',
metavar='LG',
help='folder to save logs')
# Based on
# https://github.com/pytorch/examples/tree/master/mnist_hogwild
# Training settings
# Implemented multiprocessing using locks but was not beneficial. Hogwild
# training was far superior
if __name__ == '__main__':
args = parser.parse_args()
torch.set_default_tensor_type('torch.FloatTensor')
torch.manual_seed(args.seed)
setup_json = read_config(args.env_config)
env_conf = setup_json["Default"]
for i in setup_json.keys():
if i in args.env:
env_conf = setup_json[i]
env = atari_env(args.env, env_conf)
if not os.path.exists(args.load_model_dir):
os.makedirs(args.load_model_dir)
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
saved_state_path = os.path.join(args.load_model_dir, args.env + '.model')
shared_model = A3Clstm(env.observation_space.shape[0], env.action_space)
if os.path.exists(saved_state_path) and args.load:
saved_state = torch.load(saved_state_path, map_location=lambda storage, loc: storage)
print('Loading previous model from: {}'.format(saved_state_path))
shared_model.load_state_dict(saved_state)
shared_model.share_memory()
if args.shared_optimizer:
if args.optimizer == 'RMSprop':
optimizer = SharedRMSprop(shared_model.parameters(), lr=args.lr)
if args.optimizer == 'Adam':
optimizer = SharedAdam(shared_model.parameters(), lr=args.lr)
if args.optimizer == 'LrSchedAdam':
optimizer = SharedLrSchedAdam(shared_model.parameters(), lr=args.lr)
optimizer.share_memory()
else:
optimizer = None
processes = []
p = Process(target=test, args=(args, shared_model, env_conf))
p.start()
processes.append(p)
time.sleep(0.1)
for rank in range(0, args.workers):
p = Process(target=train, args=(rank, args, shared_model, optimizer, env_conf))
p.start()
processes.append(p)
time.sleep(0.1)
for p in processes:
time.sleep(0.1)
p.join()