-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathplayer_util.py
executable file
·85 lines (79 loc) · 3.11 KB
/
player_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from __future__ import division
import torch
import torch.nn.functional as F
from torch.autograd import Variable
class Agent(object):
def __init__(self, model, env, args, state):
self.model = model
self.env = env
self.current_life = 0
self.state = state
self.hx = None
self.cx = None
self.eps_len = 0
self.args = args
self.values = []
self.log_probs = []
self.rewards = []
self.entropies = []
self.done = True
self.flag = False
self.info = None
self.starter = False or args.env[:8] == 'Breakout'
def player_act(player, train):
if train:
value, logit, (player.hx, player.cx) = player.model(
(Variable(player.state.unsqueeze(0)), (player.hx, player.cx)))
else:
value, logit, (player.hx, player.cx) = player.model((Variable(
player.state.unsqueeze(0), volatile=True), (player.hx, player.cx)))
prob = F.softmax(logit)
action = prob.max(1)[1].data.numpy()
state, reward, player.done, player.info = player.env.step(action[0])
player.state = torch.from_numpy(state).float()
player.eps_len += 1
player.done = player.done or player.eps_len >= player.args.max_episode_length
return player, reward
prob = F.softmax(logit)
log_prob = F.log_softmax(logit)
entropy = -(log_prob * prob).sum(1)
player.entropies.append(entropy)
action = prob.multinomial().data
log_prob = log_prob.gather(1, Variable(action))
state, reward, player.done, player.info = player.env.step(action.numpy())
player.state = torch.from_numpy(state).float()
player.eps_len += 1
player.done = player.done or player.eps_len >= player.args.max_episode_length
reward = max(min(reward, 1), -1)
player.values.append(value)
player.log_probs.append(log_prob)
player.rewards.append(reward)
return player
def player_start(player, train):
for i in range(3):
player.flag = False
if train:
value, logit, (player.hx, player.cx) = player.model(
(Variable(player.state.unsqueeze(0)), (player.hx, player.cx)))
else:
value, logit, (player.hx, player.cx) = player.model((Variable(
player.state.unsqueeze(0), volatile=True), (player.hx,
player.cx)))
prob = F.softmax(logit)
log_prob = F.log_softmax(logit)
entropy = -(log_prob * prob).sum(1)
player.entropies.append(entropy)
action = prob.multinomial().data
log_prob = log_prob.gather(1, Variable(action))
state, reward, player.done, player.info = player.env.step(1)
player.state = torch.from_numpy(state).float()
player.eps_len += 1
player.done = player.done or player.eps_len >= player.args.max_episode_length
if train:
reward = max(min(reward, 1), -1)
player.values.append(value)
player.log_probs.append(log_prob)
player.rewards.append(reward)
if player.done:
return player
return player