diff --git a/docs/notebooks/0_introduction.ipynb b/docs/notebooks/0_introduction.ipynb index 3c2bf8d..10c2a55 100644 --- a/docs/notebooks/0_introduction.ipynb +++ b/docs/notebooks/0_introduction.ipynb @@ -4,8 +4,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - " \n", - " \n", + " \n", + " \n", "\n", "# Photo-z Server\n", "## Tutorial Notebook 0 - Introduction\n", @@ -18,7 +18,7 @@ "source": [ "Contact author: [Julia Gschwend](mailto:julia@linea.org.br)\n", "\n", - "Last verified run: **2024-Jul-04**" + "Last verified run: **2024-Jul-09**" ] }, { @@ -97,7 +97,7 @@ "metadata": {}, "source": [ "
Product Type | +product_type | +Description | +
---|---|---|
Spec-z Catalog | +specz_catalog | +Catalog of spectroscopic redshifts and positions (usually equatorial coordinates). | +
Training Set | +training_set | +Training set for photo-z algorithms (tabular data). It usually contains magnitudes, errors, and true redshifts. | +
Validation Results | +validation_results | +Results of a photo-z validation procedure (free format). Usually contains photo-z estimates (single estimates and/or pdf) of a validation set and photo-z validation metrics. | +
Photo-z Table | +photoz_table | +Results of a photo-z estimation procedure. If the data is larger than the file upload limit (200MB), the product entry stores only the metadata (instructions on accessing the data should be provided in the description field. | +
GitHub Username | +Name | +
---|---|
andreiadourado | +Dourado | +
Biancasilva9 | +Silva | +
bruno-moraes | +Moraes | +
crisingulani | +Singulani | +
deborajanini | +Janini | +
drewoldag | +Drew Oldag | +
fpcardoso | +Cardoso | +
glaubervila | +Glauber Costa Vila-Verde | +
GloriaFA | +Gloria Fonseca Alvarez | +
gschwend | +Gschwend | +
gverde | ++ |
hdante | +Henrique | +
HeloisaMengisztki | +HeloisaMengisztki | +
jandsonrj | +Vitorino | +
leandrops19 | ++ |
luigilcsilva | +Silva | +
luiz-nicolaci | ++ |
MelissaGraham | +Melissa Graham | +
saraviz | +Aviz | +
singulani | ++ |
Release | +Description | +
---|---|
LSST DP0 | +LSST Data Preview 0 | +
id | +internal_name | +product_name | +product_type | +release | +uploaded_by | +official_product | +pz_code | +description | +created_at | +
---|---|---|---|---|---|---|---|---|---|
81 | +81_singo999 | +singo999 | +Training Set | +None | +crisingulani | +False | +None | +None | +2024-07-04T16:08:23.116849Z | +
80 | +80_example_upload_via_lib | +example upload via lib | +Spec-z Catalog | +None | +gschwend | +False | +None | +None | +2024-07-04T15:58:58.075926Z | +
79 | +79_example_upload_via_lib | +example upload via lib | +Spec-z Catalog | +None | +gschwend | +False | +None | +None | +2024-07-04T15:57:17.809438Z | +
78 | +78_example_upload_via_lib | +example upload via lib | +Spec-z Catalog | +None | +gschwend | +False | +None | +None | +2024-07-04T15:40:29.732156Z | +
77 | +77_upload_example_1 | +upload example 1 | +Spec-z Catalog | +None | +gschwend | +False | +None | +None | +2024-07-04T15:37:29.099822Z | +
76 | +76_upload_example_1 | +upload example 1 | +Spec-z Catalog | +None | +gschwend | +False | +None | +None | +2024-07-04T15:18:43.371144Z | +
75 | +75_upload_example_1 | +upload example 1 | +Spec-z Catalog | +None | +gschwend | +False | +None | +None | +2024-06-17T19:36:50.416031Z | +
73 | +73_tpz_results | +TPZ Results | +Validation Results | +None | +andreiadourado | +False | ++ | Results of photoz validation using TPZ lite on simulated training set from DC2 TruthSummary table. Files: 03_run_tpz. html -> jupyter notebook (HTML version) with algorithm train; 04_metrics.html -> jupyter notebook (HTML version) with results analysis; model.pkl -> model generated in the "inform method"; output.hdf5 -> "estimate stage" results (PDFs). | +2024-06-06T23:20:04.439030Z | +
72 | +72_pzcompute_results_for_qa_validation | +PZ-Compute Results for QA Validation | +Validation Results | +LSST DP0 | +HeloisaMengisztki | +False | ++ | This zip contains two files: validation_set.hdf5 with the data input to run estimate, contains the redshift values so that it can be used as the truth file. And the validation_set_output.hdf5 is the output after running estimate, with the computed photoz for fzboost algorithm. | +2024-06-05T18:57:27.428106Z | +
64 | +64_training_set_lsst_dp02 | +Training set LSST DP0.2 | +Training Set | +None | +andreiadourado | +False | ++ | Simulated training set from DC2 TruthSummary table. Random data (random_data.hdf5): table with the true magnitudes used to create the simulated set. | +2024-05-21T14:42:47.340619Z | +
63 | +63_specz_sample | +Spec-z sample LSST DP0.2 | +Spec-z Catalog | +None | +andreiadourado | +False | ++ | Spec-z sample created from a random fraction of object Ids from Object Table. | +2024-05-21T13:36:19.884481Z | +
52 | +52_2dflens_public_specz | +2dFLenS Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the 2dFLenS spec-z data contained in the original file Public spec-z compilation | +2024-04-08T14:21:46.577298Z | +
51 | +51_zcosmos_public_specz | +zCOSMOS Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the zCOSMOS spec-z data contained in the original file Public spec-z compilation | +2024-04-07T23:06:40.185605Z | +
50 | +50_vipers_public_specz | +VIPERS Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the VIPERS spec-z data contained in the original file Public spec-z compilation | +2024-04-07T23:05:10.825559Z | +
49 | +49_sdss_dr16_public_specz | +SDSS (DR16) Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the SDSS spec-z data contained in the original file Public spec-z compilation | +2024-04-07T20:14:23.831347Z | +
48 | +48_saga_public_specz | +SAGA Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the SAGA spec-z data contained in the original file Public spec-z compilation | +2024-04-07T19:39:01.003263Z | +
47 | +47_glass_public_specz | +GLASS Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the GLASS spec-z data contained in the original file Public spec-z compilation. | +2024-04-07T19:20:41.913016Z | +
45 | +45_gama_public_specz | +GAMA Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the GAMA spec-z data contained in the original file Public spec-z compilation | +2024-04-03T10:19:00.379907Z | +
44 | +44_deep2_public_specz | +DEEP2 Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the DEEP2 spec-z data contained in the original file Public spec-z compilation | +2024-03-31T22:10:01.314578Z | +
42 | +42_3dhst_public_specz | +3DHST Public spec-z | +Spec-z Catalog | +LSST DP0 | +HeloisaMengisztki | +False | ++ | Sample containing the 3DHST spec-z data contained in the original file Public spec-z compilation. | +2024-03-27T23:20:29.545013Z | +
41 | +41_deimos_10k_public_specz | +DEIMOS 10K Public spec-z | +Spec-z Catalog | +None | +luigilcsilva | +False | ++ | Sample containing the DEIMOS 10K spec-z data contained in the original file Public spec-z compilation. | +2024-03-27T19:29:59.552926Z | +
33 | +33_simple_pz_training_set | +Simple pz training set | +Training Set | +LSST DP0 | +GloriaFA | +False | ++ | Simple training set produced by https://github.com/rubin-dp0/delegate-contributions-dp02/blob/main/photoz/Training_Set_Creation/simple_pz_training_set.ipynb, developed by Melissa Graham. | +2024-02-28T07:00:41.119818Z | +
28 | +28_dc2_tiny_true_z_sample | +DC2 Tiny true z sample | +Spec-z Catalog | +None | +gschwend | +False | ++ | A small sample with 16917 redshifts retrieved from RSP cloud. | +2023-11-29T20:30:26.900286Z | +
27 | +27_public_training_set_des_dr2 | +Public Training Set DES DR2 | +Training Set | +None | +gschwend | +False | ++ | Result of cross-matching the public spec-z compilation with DES DR2 coadd objects catalog. | +2023-10-17T21:32:21.727199Z | +
26 | +26_public_specz_compilation | +Public spec-z compilation | +Spec-z Catalog | +None | +gschwend | +False | ++ | A compilation of public spec-z catalogs collected over the years of operation of the Dark Energy Survey (DES) and systematically grouped by a DES Science Portal tool to form the basis of a training set for photo-z algorithms based on machine learning. | +2023-10-17T21:29:08.341090Z | +
14 | +14_gama_specz_subsample | +GAMA spec-z subsample | +Spec-z Catalog | +None | +gschwend | +False | ++ | A small subsample of the GAMA DR3 spec-z catalog (Baldry et al. 2018) as an example of a typical spec-z catalog from the literature. | +2023-03-29T20:02:45.223568Z | +
13 | +13_vvds_specz_subsample | +VVDS spec-z subsample | +Spec-z Catalog | +None | +gschwend | +False | ++ | A small subsample of the VVDS spec-z catalog (Le Fèvre et al. 2004, Garilli et al. 2008) as an example of a typical spec-z catalog from the literature. | +2023-03-29T19:50:27.593735Z | +
12 | +12_goldenspike_knn | +Goldenspike KNN | +Validation Results | +None | +gschwend | +False | +KNN | +Results of photoz validation using KNN on a mock test set from the example notebook goldenspike.ipynb available in RAIL's repository. | +2023-03-29T19:49:35.652295Z | +
11 | +11_goldenspike_flexzboost | +Goldenspike FlexZBoost | +Validation Results | +None | +gschwend | +False | +FlexZBoost | +Results of photoz validation using FlexZBoost on a mock test set from the example notebook goldenspike.ipynb available in RAIL's repository. | +2023-03-29T19:48:34.864629Z | +
10 | +10_goldenspike_bpz | +Goldenspike BPZ | +Validation Results | +LSST DP0 | +gschwend | +False | +BPZ | +Results of photoz validation using BPZ on a mock test set from the example notebook goldenspike.ipynb available in RAIL's repository. | +2023-03-29T19:42:04.424990Z | +
9 | +9_goldenspike_train_data_hdf5 | +Goldenspike train data hdf5 | +Training Set | +None | +gschwend | +False | ++ | A mock training set created using the example notebook goldenspike.ipynb available in RAIL's repository. + Test upload of files in hdf5 format. | +2023-03-29T19:12:59.746096Z | +
8 | +8_goldenspike_train_data_fits | +Goldenspike train data fits | +Training Set | +None | +gschwend | +False | ++ | A mock training set created using the example notebook goldenspike.ipynb available in RAIL's repository. + Test upload of files in fits format. | +2023-03-29T19:09:12.958883Z | +
7 | +7_goldenspike_train_data_parquet | +Goldenspike train data parquet | +Training Set | +None | +gschwend | +False | ++ | A mock training set created using the example notebook goldenspike.ipynb available in RAIL's repository. Test upload of files in parquet format. | +2023-03-29T19:06:58.473920Z | +
6 | +6_simple_training_set | +Simple training set | +Training Set | +LSST DP0 | +gschwend | +False | ++ | A simple example training set created based on the Jupyter notebook simple_pz_training_set.ipynb created by Melissa Graham, available in the repository delegate-contributions-dp02. The file contains coordinates, redshifts, magnitudes, and errors, as an illustration of a typical training set for photo-z algorithms. | +2023-03-23T19:46:48.807872Z | +
1 | +1_simple_true_z_catalog | +Simple true z catalog | +Spec-z Catalog | +None | +gschwend | +False | ++ | A simple example of a spectroscopic (true) redshifts catalog created based on the Jupyter notebook simple_pz_training_set.ipynb created by Melissa Graham, available in the repository delegate-contributions-dp02. The file contains only coordinates and redshifts, as an illustration of a typical spec-z catalog. | +2023-03-23T13:19:32.050795Z | +
id | +internal_name | +product_name | +product_type | +release | +uploaded_by | +official_product | +pz_code | +description | +created_at | +
---|---|---|---|---|---|---|---|---|---|
33 | +33_simple_pz_training_set | +Simple pz training set | +Training Set | +LSST DP0 | +GloriaFA | +False | ++ | Simple training set produced by https://github.com/rubin-dp0/delegate-contributions-dp02/blob/main/photoz/Training_Set_Creation/simple_pz_training_set.ipynb, developed by Melissa Graham. | +2024-02-28T07:00:41.119818Z | +
6 | +6_simple_training_set | +Simple training set | +Training Set | +LSST DP0 | +gschwend | +False | ++ | A simple example training set created based on the Jupyter notebook simple_pz_training_set.ipynb created by Melissa Graham, available in the repository delegate-contributions-dp02. The file contains coordinates, redshifts, magnitudes, and errors, as an illustration of a typical training set for photo-z algorithms. | +2023-03-23T19:46:48.807872Z | +
id | +internal_name | +product_name | +product_type | +release | +uploaded_by | +official_product | +pz_code | +description | +created_at | +
---|---|---|---|---|---|---|---|---|---|
72 | +72_pzcompute_results_for_qa_validation | +PZ-Compute Results for QA Validation | +Validation Results | +LSST DP0 | +HeloisaMengisztki | +False | ++ | This zip contains two files: validation_set.hdf5 with the data input to run estimate, contains the redshift values so that it can be used as the truth file. And the validation_set_output.hdf5 is the output after running estimate, with the computed photoz for fzboost algorithm. | +2024-06-05T18:57:27.428106Z | +
42 | +42_3dhst_public_specz | +3DHST Public spec-z | +Spec-z Catalog | +LSST DP0 | +HeloisaMengisztki | +False | ++ | Sample containing the 3DHST spec-z data contained in the original file Public spec-z compilation. | +2024-03-27T23:20:29.545013Z | +
33 | +33_simple_pz_training_set | +Simple pz training set | +Training Set | +LSST DP0 | +GloriaFA | +False | ++ | Simple training set produced by https://github.com/rubin-dp0/delegate-contributions-dp02/blob/main/photoz/Training_Set_Creation/simple_pz_training_set.ipynb, developed by Melissa Graham. | +2024-02-28T07:00:41.119818Z | +
10 | +10_goldenspike_bpz | +Goldenspike BPZ | +Validation Results | +LSST DP0 | +gschwend | +False | +BPZ | +Results of photoz validation using BPZ on a mock test set from the example notebook goldenspike.ipynb available in RAIL's repository. | +2023-03-29T19:42:04.424990Z | +
6 | +6_simple_training_set | +Simple training set | +Training Set | +LSST DP0 | +gschwend | +False | ++ | A simple example training set created based on the Jupyter notebook simple_pz_training_set.ipynb created by Melissa Graham, available in the repository delegate-contributions-dp02. The file contains coordinates, redshifts, magnitudes, and errors, as an illustration of a typical training set for photo-z algorithms. | +2023-03-23T19:46:48.807872Z | +
id | +internal_name | +product_name | +product_type | +release | +uploaded_by | +official_product | +pz_code | +description | +created_at | +
---|---|---|---|---|---|---|---|---|---|
81 | +81_singo999 | +singo999 | +Training Set | +None | +crisingulani | +False | +None | +None | +2024-07-04T16:08:23.116849Z | +
80 | +80_example_upload_via_lib | +example upload via lib | +Spec-z Catalog | +None | +gschwend | +False | +None | +None | +2024-07-04T15:58:58.075926Z | +
79 | +79_example_upload_via_lib | +example upload via lib | +Spec-z Catalog | +None | +gschwend | +False | +None | +None | +2024-07-04T15:57:17.809438Z | +
78 | +78_example_upload_via_lib | +example upload via lib | +Spec-z Catalog | +None | +gschwend | +False | +None | +None | +2024-07-04T15:40:29.732156Z | +
77 | +77_upload_example_1 | +upload example 1 | +Spec-z Catalog | +None | +gschwend | +False | +None | +None | +2024-07-04T15:37:29.099822Z | +
76 | +76_upload_example_1 | +upload example 1 | +Spec-z Catalog | +None | +gschwend | +False | +None | +None | +2024-07-04T15:18:43.371144Z | +
75 | +75_upload_example_1 | +upload example 1 | +Spec-z Catalog | +None | +gschwend | +False | +None | +None | +2024-06-17T19:36:50.416031Z | +
64 | +64_training_set_lsst_dp02 | +Training set LSST DP0.2 | +Training Set | +None | +andreiadourado | +False | ++ | Simulated training set from DC2 TruthSummary table. Random data (random_data.hdf5): table with the true magnitudes used to create the simulated set. | +2024-05-21T14:42:47.340619Z | +
63 | +63_specz_sample | +Spec-z sample LSST DP0.2 | +Spec-z Catalog | +None | +andreiadourado | +False | ++ | Spec-z sample created from a random fraction of object Ids from Object Table. | +2024-05-21T13:36:19.884481Z | +
52 | +52_2dflens_public_specz | +2dFLenS Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the 2dFLenS spec-z data contained in the original file Public spec-z compilation | +2024-04-08T14:21:46.577298Z | +
51 | +51_zcosmos_public_specz | +zCOSMOS Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the zCOSMOS spec-z data contained in the original file Public spec-z compilation | +2024-04-07T23:06:40.185605Z | +
50 | +50_vipers_public_specz | +VIPERS Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the VIPERS spec-z data contained in the original file Public spec-z compilation | +2024-04-07T23:05:10.825559Z | +
49 | +49_sdss_dr16_public_specz | +SDSS (DR16) Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the SDSS spec-z data contained in the original file Public spec-z compilation | +2024-04-07T20:14:23.831347Z | +
48 | +48_saga_public_specz | +SAGA Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the SAGA spec-z data contained in the original file Public spec-z compilation | +2024-04-07T19:39:01.003263Z | +
47 | +47_glass_public_specz | +GLASS Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the GLASS spec-z data contained in the original file Public spec-z compilation. | +2024-04-07T19:20:41.913016Z | +
45 | +45_gama_public_specz | +GAMA Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the GAMA spec-z data contained in the original file Public spec-z compilation | +2024-04-03T10:19:00.379907Z | +
44 | +44_deep2_public_specz | +DEEP2 Public spec-z | +Spec-z Catalog | +None | +saraviz | +False | ++ | Sample containing the DEEP2 spec-z data contained in the original file Public spec-z compilation | +2024-03-31T22:10:01.314578Z | +
42 | +42_3dhst_public_specz | +3DHST Public spec-z | +Spec-z Catalog | +LSST DP0 | +HeloisaMengisztki | +False | ++ | Sample containing the 3DHST spec-z data contained in the original file Public spec-z compilation. | +2024-03-27T23:20:29.545013Z | +
41 | +41_deimos_10k_public_specz | +DEIMOS 10K Public spec-z | +Spec-z Catalog | +None | +luigilcsilva | +False | ++ | Sample containing the DEIMOS 10K spec-z data contained in the original file Public spec-z compilation. | +2024-03-27T19:29:59.552926Z | +
33 | +33_simple_pz_training_set | +Simple pz training set | +Training Set | +LSST DP0 | +GloriaFA | +False | ++ | Simple training set produced by https://github.com/rubin-dp0/delegate-contributions-dp02/blob/main/photoz/Training_Set_Creation/simple_pz_training_set.ipynb, developed by Melissa Graham. | +2024-02-28T07:00:41.119818Z | +
28 | +28_dc2_tiny_true_z_sample | +DC2 Tiny true z sample | +Spec-z Catalog | +None | +gschwend | +False | ++ | A small sample with 16917 redshifts retrieved from RSP cloud. | +2023-11-29T20:30:26.900286Z | +
27 | +27_public_training_set_des_dr2 | +Public Training Set DES DR2 | +Training Set | +None | +gschwend | +False | ++ | Result of cross-matching the public spec-z compilation with DES DR2 coadd objects catalog. | +2023-10-17T21:32:21.727199Z | +
26 | +26_public_specz_compilation | +Public spec-z compilation | +Spec-z Catalog | +None | +gschwend | +False | ++ | A compilation of public spec-z catalogs collected over the years of operation of the Dark Energy Survey (DES) and systematically grouped by a DES Science Portal tool to form the basis of a training set for photo-z algorithms based on machine learning. | +2023-10-17T21:29:08.341090Z | +
14 | +14_gama_specz_subsample | +GAMA spec-z subsample | +Spec-z Catalog | +None | +gschwend | +False | ++ | A small subsample of the GAMA DR3 spec-z catalog (Baldry et al. 2018) as an example of a typical spec-z catalog from the literature. | +2023-03-29T20:02:45.223568Z | +
13 | +13_vvds_specz_subsample | +VVDS spec-z subsample | +Spec-z Catalog | +None | +gschwend | +False | ++ | A small subsample of the VVDS spec-z catalog (Le Fèvre et al. 2004, Garilli et al. 2008) as an example of a typical spec-z catalog from the literature. | +2023-03-29T19:50:27.593735Z | +
9 | +9_goldenspike_train_data_hdf5 | +Goldenspike train data hdf5 | +Training Set | +None | +gschwend | +False | ++ | A mock training set created using the example notebook goldenspike.ipynb available in RAIL's repository. + Test upload of files in hdf5 format. | +2023-03-29T19:12:59.746096Z | +
8 | +8_goldenspike_train_data_fits | +Goldenspike train data fits | +Training Set | +None | +gschwend | +False | ++ | A mock training set created using the example notebook goldenspike.ipynb available in RAIL's repository. + Test upload of files in fits format. | +2023-03-29T19:09:12.958883Z | +
7 | +7_goldenspike_train_data_parquet | +Goldenspike train data parquet | +Training Set | +None | +gschwend | +False | ++ | A mock training set created using the example notebook goldenspike.ipynb available in RAIL's repository. Test upload of files in parquet format. | +2023-03-29T19:06:58.473920Z | +
6 | +6_simple_training_set | +Simple training set | +Training Set | +LSST DP0 | +gschwend | +False | ++ | A simple example training set created based on the Jupyter notebook simple_pz_training_set.ipynb created by Melissa Graham, available in the repository delegate-contributions-dp02. The file contains coordinates, redshifts, magnitudes, and errors, as an illustration of a typical training set for photo-z algorithms. | +2023-03-23T19:46:48.807872Z | +
1 | +1_simple_true_z_catalog | +Simple true z catalog | +Spec-z Catalog | +None | +gschwend | +False | ++ | A simple example of a spectroscopic (true) redshifts catalog created based on the Jupyter notebook simple_pz_training_set.ipynb created by Melissa Graham, available in the repository delegate-contributions-dp02. The file contains only coordinates and redshifts, as an illustration of a typical spec-z catalog. | +2023-03-23T13:19:32.050795Z | +
key | +value | +
---|---|
id | +6 | +
release | +LSST DP0 | +
product_type | +Training Set | +
uploaded_by | +gschwend | +
internal_name | +6_simple_training_set | +
product_name | +Simple training set | +
official_product | +False | +
pz_code | ++ |
description | +A simple example training set created based on the Jupyter notebook simple_pz_training_set.ipynb created by Melissa Graham, available in the repository delegate-contributions-dp02. The file contains coordinates, redshifts, magnitudes, and errors, as an illustration of a typical training set for photo-z algorithms. | +
created_at | +2023-03-23T19:46:48.807872Z | +
main_file | +simple_pz_training_set.csv | +
key | +value | +
---|---|
id | +8 | +
release | +None | +
product_type | +Training Set | +
uploaded_by | +gschwend | +
internal_name | +8_goldenspike_train_data_fits | +
product_name | +Goldenspike train data fits | +
official_product | +False | +
pz_code | ++ |
description | +A mock training set created using the example notebook goldenspike.ipynb available in RAIL's repository. + Test upload of files in fits format. | +
created_at | +2023-03-29T19:09:12.958883Z | +
main_file | +goldenspike_train_data.fits | +
+ | redshift | +mag_u_lsst | +mag_err_u_lsst | +mag_g_lsst | +mag_err_g_lsst | +mag_r_lsst | +mag_err_r_lsst | +mag_i_lsst | +mag_err_i_lsst | +mag_z_lsst | +mag_err_z_lsst | +mag_y_lsst | +mag_err_y_lsst | +
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | +0.769521 | +26.496852 | +0.288986 | +25.863170 | +0.056997 | +24.729555 | +0.020702 | +23.610683 | +0.012011 | +23.143518 | +0.013714 | +22.915156 | +0.024561 | +
1 | +1.088857 | +26.258727 | +0.237964 | +25.509524 | +0.041668 | +24.469344 | +0.016648 | +23.532860 | +0.011344 | +22.546680 | +0.008992 | +22.070255 | +0.012282 | +
2 | +1.333098 | +25.373855 | +0.112257 | +24.943293 | +0.025359 | +24.524998 | +0.017431 | +24.013649 | +0.016486 | +23.733274 | +0.022315 | +23.102123 | +0.028906 | +
... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +
59 | +0.986374 | +26.050653 | +0.200164 | +25.641624 | +0.046837 | +25.161078 | +0.030090 | +24.460152 | +0.024047 | +23.977239 | +0.027567 | +23.831974 | +0.055121 | +
60 | +0.474281 | +27.048056 | +0.444683 | +26.428211 | +0.093854 | +24.839984 | +0.022755 | +24.209226 | +0.019403 | +23.855082 | +0.024787 | +23.507456 | +0.041329 | +
61 | +0.561923 | +24.680480 | +0.061182 | +23.958609 | +0.011430 | +22.900135 | +0.006346 | +22.143581 | +0.005820 | +21.867563 | +0.006465 | +21.612692 | +0.008967 | +
62 rows × 13 columns
++ | redshift | +mag_u_lsst | +mag_err_u_lsst | +mag_g_lsst | +mag_err_g_lsst | +mag_r_lsst | +mag_err_r_lsst | +mag_i_lsst | +mag_err_i_lsst | +mag_z_lsst | +mag_err_z_lsst | +mag_y_lsst | +mag_err_y_lsst | +
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | +62.000000 | +61.000000 | +61.000000 | +62.000000 | +62.000000 | +62.000000 | +62.000000 | +62.000000 | +62.000000 | +62.000000 | +62.000000 | +61.000000 | +61.000000 | +
mean | +0.780298 | +25.446008 | +0.188050 | +24.820000 | +0.038182 | +24.003970 | +0.018770 | +23.384804 | +0.016165 | +23.074481 | +0.021478 | +22.932354 | +0.054682 | +
std | +0.355365 | +1.269277 | +0.193747 | +1.314112 | +0.036398 | +1.387358 | +0.013750 | +1.381587 | +0.010069 | +1.400673 | +0.014961 | +1.540284 | +0.115875 | +
... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +
50% | +0.764600 | +25.577029 | +0.133815 | +25.069970 | +0.028309 | +24.470215 | +0.016660 | +23.748506 | +0.013390 | +23.514185 | +0.018540 | +23.293384 | +0.034199 | +
75% | +0.948494 | +26.263284 | +0.238859 | +25.705486 | +0.049576 | +24.985225 | +0.025802 | +24.488654 | +0.024650 | +24.165944 | +0.032557 | +23.993010 | +0.063585 | +
max | +1.755764 | +28.482391 | +1.154073 | +27.296152 | +0.198195 | +26.036958 | +0.065360 | +24.949645 | +0.036932 | +24.693132 | +0.051883 | +27.342151 | +0.909230 | +
8 rows × 13 columns
++ | redshift | +mag_u_lsst | +mag_err_u_lsst | +mag_g_lsst | +mag_err_g_lsst | +mag_r_lsst | +mag_err_r_lsst | +mag_i_lsst | +mag_err_i_lsst | +mag_z_lsst | +mag_err_z_lsst | +mag_y_lsst | +mag_err_y_lsst | +
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | +0.769521 | +26.496852 | +0.288986 | +25.863170 | +0.056997 | +24.729555 | +0.020702 | +23.610683 | +0.012011 | +23.143518 | +0.013714 | +22.915156 | +0.024561 | +
1 | +1.088857 | +26.258727 | +0.237964 | +25.509524 | +0.041668 | +24.469344 | +0.016648 | +23.532860 | +0.011344 | +22.546680 | +0.008992 | +22.070255 | +0.012282 | +
2 | +1.333098 | +25.373855 | +0.112257 | +24.943293 | +0.025359 | +24.524998 | +0.017431 | +24.013649 | +0.016486 | +23.733274 | +0.022315 | +23.102123 | +0.028906 | +
... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +
59 | +0.986374 | +26.050653 | +0.200164 | +25.641624 | +0.046837 | +25.161078 | +0.030090 | +24.460152 | +0.024047 | +23.977239 | +0.027567 | +23.831974 | +0.055121 | +
60 | +0.474281 | +27.048056 | +0.444683 | +26.428211 | +0.093854 | +24.839984 | +0.022755 | +24.209226 | +0.019403 | +23.855082 | +0.024787 | +23.507456 | +0.041329 | +
61 | +0.561923 | +24.680480 | +0.061182 | +23.958609 | +0.011430 | +22.900135 | +0.006346 | +22.143581 | +0.005820 | +21.867563 | +0.006465 | +21.612692 | +0.008967 | +
62 rows × 13 columns
+redshift | mag_u_lsst | mag_err_u_lsst | mag_g_lsst | mag_err_g_lsst | mag_r_lsst | mag_err_r_lsst | mag_i_lsst | mag_err_i_lsst | mag_z_lsst | mag_err_z_lsst | mag_y_lsst | mag_err_y_lsst |
---|---|---|---|---|---|---|---|---|---|---|---|---|
float64 | float64 | float64 | float64 | float64 | float64 | float64 | float64 | float64 | float64 | float64 | float64 | float64 |
0.7695210576057434 | 26.49685173335998 | 0.28898640164514966 | 25.863170180148593 | 0.0569968492513252 | 24.72955523266535 | 0.020702469899475762 | 23.610683261247523 | 0.012011391457007867 | 23.14351797933142 | 0.013714272888189844 | 22.915156068508104 | 0.02456124411372624 |
1.0888570547103882 | 26.25872690364715 | 0.23796354746659837 | 25.50952422860369 | 0.041667922409552444 | 24.46934448716597 | 0.016647621314186963 | 23.532859983884297 | 0.011343729522451391 | 22.546679503178662 | 0.008992167497723039 | 22.070255473243666 | 0.01228199507795122 |
1.3330978155136108 | 25.373855139450704 | 0.11225669597772256 | 24.94329329099596 | 0.025358932801191274 | 24.52499778455543 | 0.01743053515568277 | 24.01364895511997 | 0.016486310070442982 | 23.73327434921557 | 0.022315314171620415 | 23.102123362449476 | 0.028905678864388565 |
0.721265435218811 | 25.99409631118909 | 0.1908826681547846 | 25.61777238197774 | 0.045858038831305514 | 25.005785747799642 | 0.026268063533916104 | 24.371285501987305 | 0.022273920520691406 | 24.221670678108204 | 0.034167014800438315 | 24.065810802830256 | 0.06782119456710035 |
0.5086992383003235 | 23.45564492849768 | 0.021183649676627364 | 22.154983461483162 | 0.005456197651685896 | 20.854221072900675 | 0.005054305345075906 | 20.25151778574991 | 0.005043240089602512 | 19.987932992458255 | 0.005076700720766547 | 19.7531794486966 | 0.00522219293990742 |
1.654597520828247 | 25.577029312797993 | 0.1338145411656938 | 25.357190234659992 | 0.036422068466217185 | 24.985364097317376 | 0.025805305576530817 | 24.619865947930514 | 0.027629428515503464 | 24.31542705984716 | 0.03711719103644559 | 23.99301047249068 | 0.06358486650868432 |
0.6302117109298706 | 26.29456973098354 | 0.24508980808616634 | 25.661960742379378 | 0.04768867750224801 | 24.970350788516424 | 0.025470686194542756 | 24.44359540978862 | 0.023705065840900583 | 24.38252568961461 | 0.03938805593592655 | 24.27431455145406 | 0.08154556925795062 |
0.9446004629135132 | 23.04439144957979 | 0.01520055564490648 | 22.859827028976415 | 0.006358416100559978 | 22.392031080275324 | 0.005598497145960838 | 21.763171712833255 | 0.005443871002437149 | 21.315606488304542 | 0.005611256900621502 | 21.078853697855322 | 0.006819135385098381 |
0.785059928894043 | 26.10350506888941 | 0.20920946155191722 | 25.640570562466237 | 0.046793502527176206 | 25.224572910770192 | 0.031816876817820854 | 24.570714814956105 | 0.026469463529125777 | 24.44276676325899 | 0.041547464844769 | 24.36359719897942 | 0.08821825914170406 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1.3468643426895142 | 25.799056669111714 | 0.16183582800185503 | 25.172747798870194 | 0.030969628744991953 | 24.73176896763009 | 0.020741528746953675 | 24.24588972463209 | 0.020013745398497446 | 23.87326184529821 | 0.025181136250533236 | 23.301751883351493 | 0.034452507469982616 |
0.9497920870780945 | 23.69882557052796 | 0.026003860754992805 | 23.42078468199699 | 0.008110795059243107 | 22.710885142422338 | 0.005998309477644766 | 21.896858815109162 | 0.005550891391829063 | 21.27308173264384 | 0.005570915565717193 | 21.040724684461797 | 0.006716225485067447 |
0.7403952479362488 | 25.443020428241766 | 0.11919338915656763 | 24.960899785834137 | 0.025748364844749856 | 24.37755640900205 | 0.015447104969121968 | 23.64996369229125 | 0.012370124053356303 | 23.551387592243383 | 0.01911789566400906 | 23.447021025450375 | 0.03917395554632945 |
0.9094947576522827 | 23.47539996365302 | 0.021535240070639578 | 23.342457978167225 | 0.0077817484631403306 | 22.761771226542443 | 0.0060823223178512 | 21.944599210682128 | 0.0055950363419199995 | 21.445133373289764 | 0.005752266599951927 | 21.230035191915672 | 0.007284651334311665 |
0.9731865525245667 | 24.915322792667247 | 0.07520573265330482 | 24.460645127806607 | 0.016865228377118156 | 23.660006166694796 | 0.009149925971566488 | 22.893359188501577 | 0.00761678230670769 | 22.41079286888505 | 0.00829697412050601 | 27.34215088878518 | 0.9092302567884765 |
0.6099322438240051 | 24.6012726318867 | 0.05706459847822567 | 23.09359402404072 | 0.006932587215462636 | 21.69608131308399 | 0.005195645207561415 | 20.69557037495898 | 0.005082744472086711 | 20.38720846897639 | 0.005140138024108047 | 20.12785634011939 | 0.00540364900110484 |
0.9768770933151245 | -- | -- | 26.84622073667464 | 0.13506185165217507 | 25.7092891194238 | 0.04886766832783457 | 24.866576205074942 | 0.03431791453068037 | 24.048870122903367 | 0.029349601464304948 | 23.78405588758275 | 0.052825335046252773 |
0.9863744974136353 | 26.050653283784623 | 0.20016426980075472 | 25.641624009646335 | 0.04683719015216041 | 25.161078181218834 | 0.030089536757067062 | 24.460152414129137 | 0.024046729003518723 | 23.977239003621 | 0.027566781051099783 | 23.831973618634528 | 0.05512066706093889 |
0.4742807149887085 | 27.048056087407986 | 0.4446825063577354 | 26.428211280519175 | 0.09385433945963481 | 24.83998360318214 | 0.02275493531289512 | 24.2092260174936 | 0.01940261275081239 | 23.855082243159934 | 0.02478730171099941 | 23.507455929574288 | 0.041328512368478044 |
0.5619226694107056 | 24.680479530543163 | 0.061181531929665633 | 23.958608997973702 | 0.01142956636817526 | 22.900134967933102 | 0.006345869773581998 | 22.143580633270624 | 0.005819630970810428 | 21.867562849329406 | 0.006465480863342269 | 21.61269159453626 | 0.008966510628950788 |
Product Type | +product_type | +Description | +
---|---|---|
Spec-z Catalog | +specz_catalog | +Catalog of spectroscopic redshifts and positions (usually equatorial coordinates). | +
Training Set | +training_set | +Training set for photo-z algorithms (tabular data). It usually contains magnitudes, errors, and true redshifts. | +
Validation Results | +validation_results | +Results of a photo-z validation procedure (free format). Usually contains photo-z estimates (single estimates and/or pdf) of a validation set and photo-z validation metrics. | +
Photo-z Table | +photoz_table | +Results of a photo-z estimation procedure. If the data is larger than the file upload limit (200MB), the product entry stores only the metadata (instructions on accessing the data should be provided in the description field. | +
key | +value | +
---|---|
id | +14 | +
release | +None | +
product_type | +Spec-z Catalog | +
uploaded_by | +gschwend | +
internal_name | +14_gama_specz_subsample | +
product_name | +GAMA spec-z subsample | +
official_product | +False | +
pz_code | ++ |
description | +A small subsample of the GAMA DR3 spec-z catalog (Baldry et al. 2018) as an example of a typical spec-z catalog from the literature. | +
created_at | +2023-03-29T20:02:45.223568Z | +
main_file | +specz_subsample_gama_example.csv | +
+ | ID | +RA | +DEC | +Z | +ERR_Z | +FLAG_DES | +
---|---|---|---|---|---|---|
count | +2.576000e+03 | +2576.000000 | +2576.000000 | +2576.000000 | +2576.0 | +2576.000000 | +
mean | +1.105526e+06 | +154.526343 | +-1.101865 | +0.224811 | +99.0 | +3.949534 | +
std | +4.006668e+04 | +70.783868 | +2.995036 | +0.102571 | +0.0 | +0.218947 | +
... | +... | +... | +... | +... | +... | +... | +
50% | +1.103558e+06 | +180.140145 | +-0.480830 | +0.217804 | +99.0 | +4.000000 | +
75% | +1.140619e+06 | +215.836583 | +1.170363 | +0.291810 | +99.0 | +4.000000 | +
max | +1.176440e+06 | +223.497080 | +2.998180 | +0.728717 | +99.0 | +4.000000 | +
8 rows × 6 columns
+Product Type | +product_type | +Description | +
---|---|---|
Spec-z Catalog | +specz_catalog | +Catalog of spectroscopic redshifts and positions (usually equatorial coordinates). | +
Training Set | +training_set | +Training set for photo-z algorithms (tabular data). It usually contains magnitudes, errors, and true redshifts. | +
Validation Results | +validation_results | +Results of a photo-z validation procedure (free format). Usually contains photo-z estimates (single estimates and/or pdf) of a validation set and photo-z validation metrics. | +
Photo-z Table | +photoz_table | +Results of a photo-z estimation procedure. If the data is larger than the file upload limit (200MB), the product entry stores only the metadata (instructions on accessing the data should be provided in the description field. | +
key | +value | +
---|---|
id | +9 | +
release | +None | +
product_type | +Training Set | +
uploaded_by | +gschwend | +
internal_name | +9_goldenspike_train_data_hdf5 | +
product_name | +Goldenspike train data hdf5 | +
official_product | +False | +
pz_code | ++ |
description | +A mock training set created using the example notebook goldenspike.ipynb available in RAIL's repository. + Test upload of files in hdf5 format. | +
created_at | +2023-03-29T19:12:59.746096Z | +
main_file | +goldenspike_train_data.hdf5 | +
+ | mag_err_g_lsst | +mag_err_i_lsst | +mag_err_r_lsst | +mag_err_u_lsst | +mag_err_y_lsst | +mag_err_z_lsst | +mag_g_lsst | +mag_i_lsst | +mag_r_lsst | +mag_u_lsst | +mag_y_lsst | +mag_z_lsst | +redshift | +
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | +62.000000 | +62.000000 | +62.000000 | +61.000000 | +61.000000 | +62.000000 | +62.000000 | +62.000000 | +62.000000 | +61.000000 | +61.000000 | +62.000000 | +62.000000 | +
mean | +0.038182 | +0.016165 | +0.018770 | +0.188050 | +0.054682 | +0.021478 | +24.820000 | +23.384804 | +24.003970 | +25.446008 | +22.932354 | +23.074481 | +0.780298 | +
std | +0.036398 | +0.010069 | +0.013750 | +0.193747 | +0.115875 | +0.014961 | +1.314112 | +1.381587 | +1.387358 | +1.269277 | +1.540284 | +1.400673 | +0.355365 | +
... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +... | +
50% | +0.028309 | +0.013390 | +0.016660 | +0.133815 | +0.034199 | +0.018540 | +25.069970 | +23.748506 | +24.470215 | +25.577029 | +23.293384 | +23.514185 | +0.764600 | +
75% | +0.049576 | +0.024650 | +0.025802 | +0.238859 | +0.063585 | +0.032557 | +25.705486 | +24.488654 | +24.985225 | +26.263284 | +23.993010 | +24.165944 | +0.948494 | +
max | +0.198195 | +0.036932 | +0.065360 | +1.154073 | +0.909230 | +0.051883 | +27.296152 | +24.949645 | +26.036958 | +28.482391 | +27.342151 | +24.693132 | +1.755764 | +
8 rows × 13 columns
+