-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmain.py
426 lines (366 loc) · 19.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Author: Linjian Zhang
Email: [email protected]
Create Time: 2017-12-08 10:42:02
Program:
Description:
"""
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import re
import os
import math
import argparse
import numpy as np
from time import time
from tqdm import tqdm
from glob import glob
from tensorboardX import SummaryWriter
from utils.post_process import cal_absolute_from_relative, plot_from_pose
from utils.misc import to_var, adjust_learning_rate, pre_create_file_train, pre_create_file_test, \
display_loss_tb, display_loss_tb_val
parser = argparse.ArgumentParser()
parser.add_argument('--server', default=None, type=int, help='[6099 / 6199 / 6499]')
parser.add_argument('--net_architecture', default=None, help='[cnn / cnn-tb / cnn-iks / cnn-lstm]')
parser.add_argument("--samples", default='i0', help='samples for train')
parser.add_argument('--phase', default=None, help='[Train / Test]')
parser.add_argument('--resume', default=None, help='[Yes / No] for cnn, [cnn / lstm / No] for cnn-lstm')
# 模型载入的参数
parser.add_argument('--net_restore', default='cnn-vo', help='Restore net name')
parser.add_argument('--dir_restore', default='20180101', help='Restore file name')
parser.add_argument('--model_restore', default='model-200', help='Restore model-id')
parser.add_argument('--net_name', default=None, help='[cnn-vo / cnn-vo-cons / cnn-lstm-vo / cnn-lstm-vo-cons]')
parser.add_argument('--dir0', default=None, help='Name it with date, such as 20180102')
parser.add_argument('--batch_size', default=32, type=int, help='Batch size')
parser.add_argument('--epoch_max', default=100, type=int, help='Max epoch')
parser.add_argument('--epoch_test', default=10, type=int, help='Test epoch during train process')
parser.add_argument('--epoch_save', default=10, type=int, help='Max epoch number')
parser.add_argument('--lr_base', default=1e-4, type=float, help='Base learning rate')
parser.add_argument('--lr_decay_rate', default=0.316, type=float, help='Decay rate of lr')
parser.add_argument('--epoch_lr_decay', default=30, type=int, help='Every # epoch, lr decay lr_decay_rate')
parser.add_argument('--beta', default=10, type=int, help='loss = loss_t + beta * loss_r')
# lstm 参数
parser.add_argument('--img_pairs', default=10, type=int, help='Image pairs')
parser.add_argument('--si', default=3, type=int, help='Start interval')
parser.add_argument('--num_layer', default=2, type=int, help='Lstm layer number')
parser.add_argument('--hidden_size', default=1024, type=int, help='Lstm hidden units')
parser.add_argument("--gpu", default='0', help='GPU id list')
parser.add_argument("--workers", default=4, type=int, help='Workers number')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu # 设置可见的gpu的列表,例如:'2,3,4'
gpu_list = re.split('[, ]', args.gpu) # 提取出列表中gpu的id
args.gpu = range(len(list(filter(None, gpu_list)))) # 传给PyTorch中多gpu并行的列表
if args.server == 6099:
dir_data = '/media/csc105/Data/dataset-jiange/data_odometry_color/sequences'
dir_label = '/home/jiange/dl/project/pytorch-deepvo/dataset'
model_dir = 'model'
log_dir = '/home/jiange/dl/project/pytorch-deepvo/log'
elif args.server == 6199:
dir_data = '/media/Data/dataset_jiange/data_odometry_color/sequences'
dir_label = '/home/jiange/dl/project/pytorch-deepvo/dataset'
model_dir = 'model'
log_dir = '/home/jiange/dl/project/pytorch-deepvo/log'
elif args.server == 6499:
dir_data = '/media/jiange/095df4a3-d72c-43d9-bfbd-e78651afba19/dataset-jiange/data_odometry_color/sequences'
dir_label = '/home/jiange/mydocument/mycode/pytorch-deepvo/dataset'
model_dir = '/media/jiange/095df4a3-d72c-43d9-bfbd-e78651afba19/model-jiange/pytorch-deepvo'
log_dir = '/home/jiange/mydocument/mycode/pytorch-deepvo/log'
else:
raise Exception('Must give the right server id!')
dir_restore = model_dir + '/' + args.net_restore + '/' + args.dir_restore + '/' + args.model_restore + '.pkl'
if args.net_architecture == 'cnn':
from net.cnn import Net
from dataset.kitti import KITTIDataSet
elif args.net_architecture == 'cnn-sc':
from net.cnn_seperate_conv import Net
from dataset.kitti import KITTIDataSet
elif args.net_architecture == 'cnn-sc1':
from net.cnn_seperate_conv_1 import Net
from dataset.kitti import KITTIDataSet
elif args.net_architecture == 'cnn-tb':
from net.cnn_tb import Net
from dataset.kitti import KITTIDataSet
elif args.net_architecture == 'cnn-iks':
from net.cnn_increase_kernal_size import Net
from dataset.kitti import KITTIDataSet
elif args.net_architecture == 'cnn-lstm':
from net.cnn_lstm import Net
from dataset.kitti_lstm import KITTIDataSet, read_image
else:
raise Exception('Must give the right cnn architecture')
def run_batch(sample, model, loss_func=None, optimizer=None, phase=None):
"""
训练、验证:
run_batch(sample, model, loss_func, optimizer, phase='Train')
run_batch(sample, model, loss_func, phase='Valid')
返回估计位姿以及loss
测试:
run_batch(sample, model, phase='Test')
返回估计位姿
"""
if phase == 'Train':
model.train()
else:
model.eval() # 启用测试模式,关闭dropout
img1 = to_var(sample['img1']) # as for cnn: [bs, 6, H, W], as for cnn-lstm: [N, T, 6, H, W]
img2 = to_var(sample['img2'])
label_pre = model(img1, img2) # [32, 6]
# conv_out = x_conv.data.cpu().numpy()
# lstm_out = x_lstm.data.cpu().numpy()
# print('Conv >>> min: {:.5f}, max: {:.5f}'.format(np.min(conv_out), np.max(conv_out)))
# print('LSTM >>> min: {:.5f}, max: {:.5f}'.format(np.min(lstm_out), np.max(lstm_out)))
if phase == 'Train' or phase == 'Valid':
label = to_var(sample['label']) # [bs, 6]
label = label.view(-1, 6)
loss1 = loss_func(label_pre[:, :3], label[:, :3])
loss2 = loss_func(label_pre[:, 3:], label[:, 3:])
loss = loss1 + args.beta * loss2
# loss_x = loss_func(label_pre[:, 0], label[:, 0])
# loss_y = loss_func(label_pre[:, 1], label[:, 1])
# loss_z = loss_func(label_pre[:, 2], label[:, 2])
# loss_tx = loss_func(label_pre[:, 3], label[:, 3])
# loss_ty = loss_func(label_pre[:, 4], label[:, 4])
# loss_tz = loss_func(label_pre[:, 5], label[:, 5])
if phase == 'Train':
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # bp, compute gradients
optimizer.step() # apply gradients
return loss.data[0], loss1.data[0], loss2.data[0], label_pre.data
# return loss.data[0], loss1.data[0], loss2.data[0], label_pre.data, \
# loss_x.data[0], loss_y.data[0], loss_z.data[0], loss_tx.data[0], loss_ty.data[0], loss_tz.data[0]
else:
return label_pre.data
def run_batch_2(sample, model, loss_func=None, optimizer=None):
"""
cnn-lstm 不同time_step一起训练
"""
model.train()
loss_mean = []
loss1_mean = []
loss2_mean = []
for sample_batch in sample:
img1 = to_var(sample_batch['img1']) # as for cnn: [bs, 6, H, W], as for cnn-lstm: [N, T, 6, H, W]
img2 = to_var(sample_batch['img2'])
label_pre = model(img1, img2) # [32, 6]
label = to_var(sample_batch['label']) # [bs, 6]
label = label.view(-1, 6)
loss1 = loss_func(label_pre[:, :3], label[:, :3])
loss2 = loss_func(label_pre[:, 3:], label[:, 3:])
loss = loss1 + args.beta * loss2
loss1_mean.append(loss1.data[0])
loss2_mean.append(loss2.data[0])
loss_mean.append(loss.data[0])
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # bp, compute gradients
optimizer.step() # apply gradients
loss1_mean = np.mean(loss1_mean)
loss2_mean = np.mean(loss2_mean)
loss_mean = np.mean(loss_mean)
return loss1_mean.data[0], loss2_mean.data[0], loss_mean.data[0]
def run_val(model, loss_func, loader):
"""
验证多个batch,并返回平均误差
"""
loss_ret = []
loss1_ret = []
loss2_ret = []
for _, sample_v in enumerate(loader):
loss_v, loss1_v, loss2_v, _ = run_batch(sample=sample_v, model=model, loss_func=loss_func, phase='Valid')
loss_ret.append(loss_v)
loss1_ret.append(loss1_v)
loss2_ret.append(loss2_v)
loss_mean = np.mean(loss_ret)
loss1_mean = np.mean(loss1_ret)
loss2_mean = np.mean(loss2_ret)
return loss_mean, loss1_mean, loss2_mean
def run_test(model, seq, dir_model=None, epoch=None, dir_time=None):
"""
训练阶段对一段完整的轨迹进行测试,或者测试阶段直接用于测试
训练过程中测试:
1. 计算一段完整场景中所有相对姿态的预测值
cnn-lstm:
手动写读图的代码,从而可以处理场景末尾图片序列长度不足一个batch的情况
cnn:
采用DataLoader读取,较为方便
2. 计算绝对姿态,并画出轨迹
训练阶段保存轨迹图
测试阶保存轨迹图、相对位姿、绝对位姿
"""
print('\nTest sequence {:02d} >>>'.format(seq))
if args.net_architecture == 'cnn-lstm':
model.eval()
img_list = glob(dir_data + '/{:02d}/image_2/*.png'.format(seq))
img_list.sort()
ip = args.img_pairs
iter_1 = int(math.floor((len(img_list) - 1) / ip))
iter_2 = int(math.ceil((len(img_list) - 1) / ip))
pose_ret = []
for i in tqdm(np.arange(iter_1)):
img_seq = []
for img_path in img_list[i * ip: (i + 1) * ip + 1]:
img = read_image(img_path)
img_seq.append(img)
x1 = np.stack(img_seq[:-1], 0)
x1 = np.transpose(x1, [0, 3, 1, 2]) # [10, C, H, W]
x1 = x1[np.newaxis, :, :, :, :] # [1, 10, C, H, W]
x1 = to_var(torch.from_numpy(x1))
x2 = np.stack(img_seq[1:], 0)
x2 = np.transpose(x2, [0, 3, 1, 2]) # [10, C, H, W]
x2 = x2[np.newaxis, :, :, :, :] # [1, 10, C, H, W]
x2 = to_var(torch.from_numpy(x2))
pose_out = model(x1, x2)
pose_ret.extend(pose_out.data.cpu().numpy())
ns = iter_1 * ip
if iter_1 != iter_2:
print('Process for the last {:d} images...'.format(len(img_list) - ns))
img_seq = []
for img_path in img_list[ns:]:
img = read_image(img_path)
img_seq.append(img)
x1 = np.stack(img_seq[:-1], 0)
x1 = np.transpose(x1, [0, 3, 1, 2]) # [10, C, H, W]
x1 = x1[np.newaxis, :, :, :, :] # [1, 10, C, H, W]
x1 = to_var(torch.from_numpy(x1))
x2 = np.stack(img_seq[1:], 0)
x2 = np.transpose(x2, [0, 3, 1, 2]) # [10, C, H, W]
x2 = x2[np.newaxis, :, :, :, :] # [1, 10, C, H, W]
x2 = to_var(torch.from_numpy(x2))
pose_out = model(x1, x2)
pose_ret.extend(pose_out.data.cpu().numpy())
else:
data_set = KITTIDataSet(dir_data=dir_data, dir_label=dir_label, phase='Test', seq=seq)
loader = DataLoader(data_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
pose_ret = []
for _, sample_batch in enumerate(tqdm(loader)):
pose_pre = run_batch(sample=sample_batch, model=model, phase='Test')
pose_ret.extend(pose_pre.cpu().numpy())
pose_abs = cal_absolute_from_relative(pose_ret)
if args.phase == 'Test':
np.savetxt(dir_time+'/pose_{:d}.txt'.format(seq), pose_ret)
np.savetxt((dir_time + '/{:02d}.txt'.format(seq)), pose_abs)
plot_from_pose(seq=seq, dir_save=dir_time, pose_abs=pose_abs, args=args)
print('Save pose and trajectory in {:s}'.format(dir_time))
else:
plot_from_pose(seq=seq, dir_save=dir_model, pose_abs=pose_abs, epoch=epoch, args=args)
print('Save trajectory in {:s}'.format(dir_model))
def main():
torch.set_default_tensor_type('torch.FloatTensor')
model = Net()
if torch.cuda.is_available():
model = nn.DataParallel(model.cuda(), device_ids=args.gpu)
# Set weights
print('\n========================================')
print('Phase: {:s}\nNet architecture: {:s}'.format(args.phase, args.net_architecture))
if args.net_architecture == 'cnn-lstm':
if args.resume == 'cnn':
print('Restore from CNN: {:s}'.format(dir_restore))
pre_trained_dict = torch.load(dir_restore)
model_dict = model.state_dict()
pre_trained_dict = {k: v for k, v in pre_trained_dict.items() if k in model_dict} # tick the useless dict
model_dict.update(pre_trained_dict) # update the dict
model.load_state_dict(model_dict) # load updated dict into the model
elif args.resume == 'lstm' or args.phase == 'Test':
print('Restore from CNN-LSTM: {:s}'.format(dir_restore))
model.load_state_dict(torch.load(dir_restore))
else:
print('Initialize from scratch')
else:
if args.resume == 'Yes' or args.phase == 'Test':
print('Restore from CNN: {:s}'.format(dir_restore))
model.load_state_dict(torch.load(dir_restore))
else:
print('Initialize from scratch')
print('========================================')
# Start training
if args.phase == 'Train':
dir_model, dir_log = pre_create_file_train(model_dir, log_dir, args)
writer = SummaryWriter(dir_log)
loss_func = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr_base)
if args.net_architecture == 'cnn-lstm':
data_set_t_1 = KITTIDataSet(dir_data, dir_label, img_pairs=2, start_interval=1, phase='Train')
data_set_t_2 = KITTIDataSet(dir_data, dir_label, img_pairs=4, start_interval=2, phase='Train')
data_set_t_3 = KITTIDataSet(dir_data, dir_label, img_pairs=8, start_interval=4, phase='Train')
data_set_v = KITTIDataSet(dir_data, dir_label, img_pairs=4, start_interval=40, phase='Valid')
loader_t_1 = DataLoader(data_set_t_1, batch_size=16, shuffle=True, num_workers=args.workers)
loader_t_2 = DataLoader(data_set_t_2, batch_size=8, shuffle=True, num_workers=args.workers)
loader_t_3 = DataLoader(data_set_t_3, batch_size=4, shuffle=True, num_workers=args.workers)
loader_v = DataLoader(data_set_v, batch_size=4, shuffle=False, num_workers=args.workers)
step_per_epoch = int(math.ceil(len(data_set_t_1) / loader_t_1.batch_size))
step_val = int(math.floor(step_per_epoch / 3)) # 每个epoch验证3次
for epoch in np.arange(args.epoch_max):
adjust_learning_rate(optimizer, epoch, args.lr_base, args.lr_decay_rate, args.epoch_lr_decay)
# test a complete sequence and plot trajectory
if epoch != 0 and epoch % args.epoch_test == 0:
run_test(model, seq=9, dir_model=dir_model, epoch=epoch)
run_test(model, seq=5, dir_model=dir_model, epoch=epoch)
loss_list = [] # 记录每个epoch的loss
loss1_list = []
loss2_list = []
for step, (sample_t_1, sample_t_2, sample_t_3) in enumerate(zip(loader_t_1, loader_t_2, loader_t_3)):
tic = time()
step_global = epoch * step_per_epoch + step
loss1, loss2, loss = run_batch_2(sample=[sample_t_1, sample_t_2, sample_t_3], model=model,
loss_func=loss_func, optimizer=optimizer)
hour_per_epoch = step_per_epoch * ((time() - tic) / 3600)
loss_list.append(loss)
loss1_list.append(loss1)
loss2_list.append(loss2)
# display and add to tensor board
if (step + 1) % 5 == 0:
display_loss_tb(hour_per_epoch, epoch, args, step, step_per_epoch, optimizer, loss, loss1,
loss2, loss_list, loss1_list, loss2_list, writer, step_global)
if (step + 1) % step_val == 0:
batch_v = int(math.ceil(len(data_set_v) / loader_v.batch_size))
loss_v, loss1_v, loss2_v = run_val(model, loss_func, loader_v)
display_loss_tb_val(batch_v, loss_v, loss1_v, loss2_v, args, writer, step_global)
# save
if (epoch + 1) % args.epoch_save == 0:
print('\nSaving model: {:s}/model-{:d}.pkl'.format(dir_model, epoch + 1))
torch.save(model.state_dict(), (dir_model + '/model-{:d}.pkl'.format(epoch + 1)))
else:
data_set_t = KITTIDataSet(dir_data=dir_data, dir_label=dir_label, samples=args.samples, phase='Train')
data_set_v = KITTIDataSet(dir_data=dir_data, dir_label=dir_label, phase='Valid')
loader_t = DataLoader(data_set_t, batch_size=args.batch_size, shuffle=True, num_workers=args.workers)
loader_v = DataLoader(data_set_v, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
step_per_epoch = int(math.floor(len(data_set_t) / loader_t.batch_size))
step_val = int(math.floor(step_per_epoch / 3)) # 每个epoch验证3次
for epoch in np.arange(args.epoch_max):
adjust_learning_rate(optimizer, epoch, args.lr_base, args.lr_decay_rate, args.epoch_lr_decay)
# test a complete sequence and plot trajectory
if epoch != 0 and epoch % args.epoch_test == 0:
run_test(model, seq=9, dir_model=dir_model, epoch=epoch)
run_test(model, seq=5, dir_model=dir_model, epoch=epoch)
loss_list = [] # 记录每个epoch的loss
loss1_list = []
loss2_list = []
for step, sample_t in enumerate(loader_t):
step_global = epoch * step_per_epoch + step
tic = time()
loss, loss1, loss2, _ = \
run_batch(sample=sample_t, model=model, loss_func=loss_func, optimizer=optimizer, phase='Train')
hour_per_epoch = step_per_epoch * ((time() - tic) / 3600)
loss_list.append(loss)
loss1_list.append(loss1)
loss2_list.append(loss2)
# display and add to tensor board
if (step+1) % 10 == 0:
display_loss_tb(hour_per_epoch, epoch, args, step, step_per_epoch, optimizer, loss, loss1,
loss2, loss_list, loss1_list, loss2_list, writer, step_global)
if (step+1) % step_val == 0:
batch_v = int(math.ceil(len(data_set_v)/loader_v.batch_size))
loss_v, loss1_v, loss2_v = run_val(model, loss_func, loader_v)
display_loss_tb_val(batch_v, loss_v, loss1_v, loss2_v, args, writer, step_global)
# save
if (epoch+1) % args.epoch_save == 0:
print('\nSaving model: {:s}/model-{:d}.pkl'.format(dir_model, epoch+1))
torch.save(model.state_dict(), (dir_model + '/model-{:d}.pkl'.format(epoch+1)))
else:
dir_time = pre_create_file_test(args)
for seq in range(11):
run_test(model, seq=seq, dir_time=dir_time)
if __name__ == '__main__':
main()