-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmain_experiment2.py
250 lines (215 loc) · 11.1 KB
/
main_experiment2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Author: Linjian Zhang
Email: [email protected]
Creat Time: 2017-12-27 16:20:53
Program:
Description:
"""
import torch
from torch.utils.data import DataLoader
from time import time
from tqdm import tqdm
from net.cnn import *
from dataset.kitti import KITTIDataSet
from utils.post_process import cal_absolute_from_relative, plot_from_pose
from utils.misc import to_var, adjust_learning_rate, pre_create_file_train, pre_create_file_test
import numpy as np
import math
import argparse
from tensorboardX import SummaryWriter
import re
import os
parser = argparse.ArgumentParser()
parser.add_argument('--server', default=None, type=int, help='server')
parser.add_argument('--phase', default=None, help='Train or Test')
parser.add_argument('--resume', default=None, help='Resume or scratch')
# resume training or test
parser.add_argument('--net_restore', default=None, help='Restore net name')
parser.add_argument('--dir_restore', default=None, help='Restore file name')
parser.add_argument('--model_restore', default=None, help='Restore model-id')
parser.add_argument('--net_name', default=None, help='different net with different name')
parser.add_argument('--dir0', default=None, help='change it every time when you run the code')
parser.add_argument('--batch_size', default=32, type=int, help='batch size')
parser.add_argument('--epoch_max', default=200, type=int, help='max epoch numbers')
parser.add_argument('--epoch_test', default=5, type=int, help='test a complete sequence')
parser.add_argument('--epoch_save', default=5, type=int, help='max epoch numbers')
parser.add_argument('--lr_base', default=1e-4, type=float, help='base learning rate')
parser.add_argument('--lr_decay_rate', default=0.5, type=float, help='decay rate')
parser.add_argument('--epoch_lr_decay', default=40, type=int, help='every # epoch, lr decay 0.5')
parser.add_argument('--beta', default=50, type=int, help='loss = loss_t + beta * loss_r')
parser.add_argument("--gpu", default='0', help='GPU id list')
parser.add_argument("--workers", default=4, type=int, help='workers numbers')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
gpu_list = re.split('[, ]', args.gpu)
args.gpu = range(len(list(filter(None, gpu_list))))
args.workers = int(args.workers)
args.batch_size = int(args.batch_size)
if args.server == 6099:
dir_data = '/media/csc105/Data/dataset-jiange/data_odometry_color/sequences'
dir_label = 'dataset'
elif args.server == 6199:
dir_data = '/media/Data/dataset_jiange/data_odometry_color/sequences'
dir_label = 'dataset'
elif args.server == 6499:
dir_data = '/media/jiange/095df4a3-d72c-43d9-bfbd-e78651afba19/dataset-jiange/data_odometry_color/sequences'
dir_label = 'dataset'
else:
raise Exception('Must give the right server id!')
def run_batch(sample, model, loss_func, optimizer=None, phase=None):
if phase == 'Train':
model.train()
else:
model.eval()
img = to_var(sample['img']) # [bs, 6, H, W]
label_pre = model(img)
if phase == 'Train' or phase == 'Valid':
label = to_var(sample['label']) # [bs, 6]
loss1 = loss_func(label_pre[:, :3], label[:, :3])
loss2 = loss_func(label_pre[:, 3:], label[:, 3:])
loss = loss1 + args.beta * loss2
loss_x = loss_func(label_pre[:, 0], label[:, 0])
loss_y = loss_func(label_pre[:, 1], label[:, 1])
loss_z = loss_func(label_pre[:, 2], label[:, 2])
loss_tx = loss_func(label_pre[:, 3], label[:, 3])
loss_ty = loss_func(label_pre[:, 4], label[:, 4])
loss_tz = loss_func(label_pre[:, 5], label[:, 5])
if phase == 'Train':
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # bp, compute gradients
optimizer.step() # apply gradients
return loss.data[0], loss1.data[0], loss2.data[0], label_pre.data, \
loss_x.data[0], loss_y.data[0], loss_z.data[0], loss_tx.data[0], loss_ty.data[0], loss_tz.data[0]
else:
return label_pre.data
def run_val(model, loss_func, loader):
"""
evaluate multi-batches
:param model: model
:param loss_func: MSELoss
:param loader: loader_v
:return: mean loss
"""
loss_ret = []
loss1_ret = []
loss2_ret = []
loss_x_ret = []
loss_y_ret = []
loss_z_ret = []
loss_tx_ret = []
loss_ty_ret = []
loss_tz_ret = []
for _, sample_v in enumerate(loader):
loss_v, loss1_v, loss2_v, _, loss_x_v, loss_y_v, loss_z_v, loss_tx_v, loss_ty_v, loss_tz_v = \
run_batch(sample=sample_v, model=model, loss_func=loss_func, phase='Valid')
loss_ret.append(loss_v)
loss1_ret.append(loss1_v)
loss2_ret.append(loss2_v)
loss_x_ret.append(loss_x_v)
loss_y_ret.append(loss_y_v)
loss_z_ret.append(loss_z_v)
loss_tx_ret.append(loss_tx_v)
loss_ty_ret.append(loss_ty_v)
loss_tz_ret.append(loss_tz_v)
loss_mean = np.mean(loss_ret)
loss1_mean = np.mean(loss1_ret)
loss2_mean = np.mean(loss2_ret)
loss_x_mean = np.mean(loss_x_ret)
loss_y_mean = np.mean(loss_y_ret)
loss_z_mean = np.mean(loss_z_ret)
loss_tx_mean = np.mean(loss_tx_ret)
loss_ty_mean = np.mean(loss_ty_ret)
loss_tz_mean = np.mean(loss_tz_ret)
return loss_mean, loss1_mean, loss2_mean, loss_x_mean, loss_y_mean, loss_z_mean, \
loss_tx_mean, loss_ty_mean, loss_tz_mean
def run_test(model, loss_func, seq, dir_model=None, epoch=None, dir_time=None, is_testing=True):
print('\nTest sequence {:02d} >>>'.format(seq))
data_set = KITTIDataSet(dir_data=dir_data, dir_label=dir_label, phase='Test', seq=seq)
loader = DataLoader(data_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
pose_ret = []
for _, sample_batch in enumerate(tqdm(loader)):
pose_pre = run_batch(sample=sample_batch, model=model, loss_func=loss_func, phase='Test')
pose_ret.extend(pose_pre.cpu().numpy())
if is_testing:
print('Save pose in {:s}'.format(dir_time))
np.savetxt(dir_time+'/pose_{:d}.txt'.format(seq), pose_ret)
cal_absolute_from_relative(seq, dir_test=dir_time, is_testing=is_testing)
else:
print('Calculate absolute pose')
pose_abs = cal_absolute_from_relative(seq, xyz_euler=pose_ret, is_testing=is_testing)
print('Plot trajectory')
plot_from_pose(seq=seq, dir_save=dir_model, pose_abs=pose_abs, epoch=epoch)
del data_set
def main():
torch.set_default_tensor_type('torch.FloatTensor')
model = CNN()
if torch.cuda.is_available():
model = nn.DataParallel(model.cuda(), device_ids=args.gpu)
if (args.phase == 'Train' and args.resume == 'Yes') or args.phase == 'Test':
dir_restore = 'model/' + args.net_restore + '/' + args.dir_restore + '/' + args.model_restore + '.pkl'
print('\nRestore from {:s}'.format(dir_restore))
model.load_state_dict(torch.load(dir_restore))
if args.phase == 'Train':
if args.resume == 'No':
print('\nInitialize from scratch')
dir_model, dir_log = pre_create_file_train(args)
data_set_t = KITTIDataSet(dir_data=dir_data, dir_label=dir_label, phase='Train')
loader_t = DataLoader(data_set_t, batch_size=args.batch_size, shuffle=True, num_workers=args.workers)
# data_set_v = KITTIDataSet(dir_data=dir_data, dir_label=dir_label, phase='Val')
# loader_v = DataLoader(data_set_v, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
loss_func = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr_base)
step_per_epoch = int(math.floor(len(data_set_t)/loader_t.batch_size))
# step_val = int(math.floor(step_per_epoch / 3))
writer = SummaryWriter(dir_log)
for epoch in np.arange(args.epoch_max):
adjust_learning_rate(optimizer, epoch, args.lr_base,
gamma=args.lr_decay_rate,
epoch_lr_decay=args.epoch_lr_decay)
# plot trajectory
# if epoch % args.epoch_test == 0:
# run_test(model, loss_func, seq=9, dir_model=dir_model, epoch=epoch, is_testing=False)
# run_test(model, loss_func, seq=5, dir_model=dir_model, epoch=epoch, is_testing=False)
for step, sample_t in enumerate(loader_t):
step_global = epoch * step_per_epoch + step
tic = time()
loss, loss1, loss2, _, loss_x, loss_y, loss_z, loss_tx, loss_ty, loss_tz = \
run_batch(sample=sample_t, model=model, loss_func=loss_func, optimizer=optimizer, phase='Train')
hour_per_epoch = step_per_epoch * ((time() - tic) / 3600)
# display and add to tensor board
if (step+1) % 10 == 0:
print('\n{:.3f} [{:03d}/{:03d}] [{:03d}/{:03d}] lr {:.6f} L {:.4f}={:.4f}+{:d}*{:.4f} '
'[{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}]'.
format(hour_per_epoch, epoch+1, args.epoch_max, step+1, step_per_epoch,
optimizer.param_groups[0]['lr'], loss, loss1, args.beta, loss2,
loss_x, loss_y, loss_z, loss_tx, loss_ty, loss_tz))
writer.add_scalars('./train',
{'loss_t': loss, 'loss1_t': loss1, 'loss2_t': loss2, 'loss_x_t': loss_x,
'loss_y_t': loss_y, 'loss_z_t': loss_z, 'loss_tx_t': loss_tx,
'loss_ty_t': loss_ty, 'loss_tz_t': loss_tz},
step_global)
# if (step+1) % step_val == 0:
# batch_v = int(math.ceil(len(data_set_v)/loader_v.batch_size))
# loss_v, loss1_v, loss2_v, loss_x_v, loss_y_v, loss_z_v, loss_tx_v, loss_ty_v, loss_tz_v = \
# run_val(model, loss_func, loader_v)
# print('\n{:d} batches: L {:.4f}={:.4f}+{:d}*{:.4f} [{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}]'.
# format(batch_v, loss_v, loss1_v, args.beta, loss2_v, loss_x_v, loss_y_v, loss_z_v, loss_tx_v,
# loss_ty_v, loss_tz_v))
# writer.add_scalars('./train-val',
# {'loss_v': loss_v, 'loss1_v': loss1_v, 'loss2_v': loss2_v, 'loss_x_v': loss_x_v,
# 'loss_y_v': loss_y_v, 'loss_z_v': loss_z_v, 'loss_tx_v': loss_tx_v,
# 'loss_ty_v': loss_ty_v, 'loss_tz_v': loss_tz_v},
# step_global)
# save
if (epoch+1) % args.epoch_save == 0:
print('\nSaving model: {:s}/model-{:d}.pkl'.format(dir_model, epoch+1))
torch.save(model.state_dict(), (dir_model + '/model-{:d}.pkl'.format(epoch+1)))
if args.phase == 'Test':
dir_time = pre_create_file_test(args)
loss_func = nn.MSELoss()
for seq in range(11):
run_test(model, loss_func, seq=seq, dir_time=dir_time, is_testing=True)
if __name__ == '__main__':
main()