forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
374 lines (328 loc) · 14.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import json
from typing import List, Optional
import numpy as np
from paddlenlp.utils.ie_utils import map_offset, pad_image_data
from paddlenlp.utils.log import logger
def reader(data_path, max_seq_len=512):
"""
read json
"""
with open(data_path, "r", encoding="utf-8") as f:
for line in f:
json_line = json.loads(line)
content = json_line["content"].strip()
prompt = json_line["prompt"]
boxes = json_line.get("bbox", None)
image = json_line.get("image", None)
# Model Input is aslike: [CLS] prompt [SEP] [SEP] text [SEP] for UIE-X
if boxes is not None and image is not None:
summary_token_num = 4
else:
summary_token_num = 3
if max_seq_len <= len(prompt) + summary_token_num:
raise ValueError("The value of max_seq_len is too small, please set a larger value")
max_content_len = max_seq_len - len(prompt) - summary_token_num
if len(content) <= max_content_len:
yield json_line
else:
result_list = json_line["result_list"]
json_lines = []
accumulate = 0
while True:
cur_result_list = []
for result in result_list:
if result["end"] - result["start"] > max_content_len:
logger.warning(
"result['end'] - result ['start'] exceeds max_content_len, which will result in no valid instance being returned"
)
if (
result["start"] + 1 <= max_content_len < result["end"]
and result["end"] - result["start"] <= max_content_len
):
max_content_len = result["start"]
break
cur_content = content[:max_content_len]
res_content = content[max_content_len:]
if boxes is not None and image is not None:
cur_boxes = boxes[:max_content_len]
res_boxes = boxes[max_content_len:]
while True:
if len(result_list) == 0:
break
elif result_list[0]["end"] <= max_content_len:
if result_list[0]["end"] > 0:
cur_result = result_list.pop(0)
cur_result_list.append(cur_result)
else:
cur_result_list = [result for result in result_list]
break
else:
break
if boxes is not None and image is not None:
json_line = {
"content": cur_content,
"result_list": cur_result_list,
"prompt": prompt,
"bbox": cur_boxes,
"image": image,
}
else:
json_line = {
"content": cur_content,
"result_list": cur_result_list,
"prompt": prompt,
}
json_lines.append(json_line)
for result in result_list:
if result["end"] <= 0:
break
result["start"] -= max_content_len
result["end"] -= max_content_len
accumulate += max_content_len
max_content_len = max_seq_len - len(prompt) - summary_token_num
if len(res_content) == 0:
break
elif len(res_content) < max_content_len:
if boxes is not None and image is not None:
json_line = {
"content": res_content,
"result_list": result_list,
"prompt": prompt,
"bbox": res_boxes,
"image": image,
}
else:
json_line = {"content": res_content, "result_list": result_list, "prompt": prompt}
json_lines.append(json_line)
break
else:
content = res_content
boxes = res_boxes
for json_line in json_lines:
yield json_line
def get_dynamic_max_len(examples, default_max_len: int, dynamic_max_length: List[int]) -> int:
"""get max_length by examples which you can change it by examples in batch"""
cur_length = len(examples[0]["input_ids"])
max_length = default_max_len
for max_length_option in sorted(dynamic_max_length):
if cur_length <= max_length_option:
max_length = max_length_option
break
return max_length
def convert_example(
example,
tokenizer,
max_seq_len,
pad_id=1,
c_sep_id=2,
summary_token_num=4,
dynamic_max_length: Optional[List[int]] = None,
):
content = example["content"]
prompt = example["prompt"]
bbox_lines = example.get("bbox", None)
image_buff_string = example.get("image", None)
# Text
if bbox_lines is None or image_buff_string is None:
if dynamic_max_length is not None:
temp_encoded_inputs = tokenizer(
text=[example["prompt"]],
text_pair=[example["content"]],
truncation=True,
max_seq_len=max_seq_len,
return_attention_mask=True,
return_position_ids=True,
return_dict=False,
return_offsets_mapping=True,
)
max_length = get_dynamic_max_len(
examples=temp_encoded_inputs, default_max_len=max_seq_len, dynamic_max_length=dynamic_max_length
)
# always pad to max_length
encoded_inputs = tokenizer(
text=[example["prompt"]],
text_pair=[example["content"]],
truncation=True,
max_seq_len=max_length,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_position_ids=True,
return_dict=False,
return_offsets_mapping=True,
)
max_seq_len = max_length
else:
encoded_inputs = tokenizer(
text=[example["prompt"]],
text_pair=[example["content"]],
truncation=True,
max_seq_len=max_seq_len,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_position_ids=True,
return_offsets_mapping=True,
return_dict=False,
)
encoded_inputs = encoded_inputs[0]
inputs_ids = encoded_inputs["input_ids"]
position_ids = encoded_inputs["position_ids"]
attention_mask = encoded_inputs["attention_mask"]
q_sep_index = inputs_ids.index(2, 1)
c_sep_index = attention_mask.index(0)
offset_mapping = [list(x) for x in encoded_inputs["offset_mapping"]]
bias = 0
for index in range(len(offset_mapping)):
if index == 0:
continue
mapping = offset_mapping[index]
if mapping[0] == 0 and mapping[1] == 0 and bias == 0:
# bias = index
bias = offset_mapping[index - 1][-1] + 1
if mapping[0] == 0 and mapping[1] == 0:
continue
offset_mapping[index][0] += bias
offset_mapping[index][1] += bias
offset_bias = bias
bbox_list = [[0, 0, 0, 0] for x in range(len(inputs_ids))]
token_type_ids = [
1 if token_index <= q_sep_index or token_index > c_sep_index else 0 for token_index in range(max_seq_len)
]
padded_image = np.zeros([3, 224, 224])
# Doc
else:
inputs_ids = []
prev_bbox = [-1, -1, -1, -1]
this_text_line = ""
q_sep_index = -1
offset_mapping = []
last_offset = 0
for char_index, (char, bbox) in enumerate(zip(content, bbox_lines)):
if char_index == 0:
prev_bbox = bbox
this_text_line = char
continue
if all([bbox[x] == prev_bbox[x] for x in range(4)]):
this_text_line += char
else:
offset_mapping, last_offset, q_sep_index, inputs_ids = _encode_doc(
tokenizer,
offset_mapping,
last_offset,
prompt,
this_text_line,
inputs_ids,
q_sep_index,
max_seq_len,
)
this_text_line = char
prev_bbox = bbox
if len(this_text_line) > 0:
offset_mapping, last_offset, q_sep_index, inputs_ids = _encode_doc(
tokenizer, offset_mapping, last_offset, prompt, this_text_line, inputs_ids, q_sep_index, max_seq_len
)
if len(inputs_ids) > max_seq_len:
inputs_ids = inputs_ids[: (max_seq_len - 1)] + [c_sep_id]
offset_mapping = offset_mapping[: (max_seq_len - 1)] + [[0, 0]]
else:
inputs_ids += [c_sep_id]
offset_mapping += [[0, 0]]
offset_bias = offset_mapping[q_sep_index - 1][-1] + 1
seq_len = len(inputs_ids)
inputs_ids += [pad_id] * (max_seq_len - seq_len)
token_type_ids = [1] * (q_sep_index + 1) + [0] * (seq_len - q_sep_index - 1)
token_type_ids += [pad_id] * (max_seq_len - seq_len)
bbox_list = _process_bbox(inputs_ids, bbox_lines, offset_mapping, offset_bias)
offset_mapping += [[0, 0]] * (max_seq_len - seq_len)
position_ids = list(range(seq_len))
position_ids = position_ids + [0] * (max_seq_len - seq_len)
attention_mask = [1] * seq_len + [0] * (max_seq_len - seq_len)
image_data = base64.b64decode(image_buff_string.encode("utf8"))
padded_image = pad_image_data(image_data)
start_ids = np.array([0.0 for x in range(max_seq_len)], dtype="int64")
end_ids = np.array([0.0 for x in range(max_seq_len)], dtype="int64")
for item in example["result_list"]:
start = map_offset(item["start"] + offset_bias, offset_mapping)
end = map_offset(item["end"] - 1 + offset_bias, offset_mapping)
start_ids[start] = 1.0
end_ids[end] = 1.0
assert len(inputs_ids) == max_seq_len
assert len(token_type_ids) == max_seq_len
assert len(position_ids) == max_seq_len
assert len(attention_mask) == max_seq_len
assert len(bbox_list) == max_seq_len
tokenized_output = {
"input_ids": inputs_ids,
"token_type_ids": token_type_ids,
"position_ids": position_ids,
"attention_mask": attention_mask,
"bbox": bbox_list,
"image": padded_image,
"start_positions": start_ids,
"end_positions": end_ids,
}
return tokenized_output
def _process_bbox(tokens, bbox_lines, offset_mapping, offset_bias):
bbox_list = [[0, 0, 0, 0] for x in range(len(tokens))]
for index, bbox in enumerate(bbox_lines):
index_token = map_offset(index + offset_bias, offset_mapping)
if 0 <= index_token < len(bbox_list):
bbox_list[index_token] = bbox
return bbox_list
def _encode_doc(tokenizer, offset_mapping, last_offset, prompt, this_text_line, inputs_ids, q_sep_index, max_seq_len):
if len(offset_mapping) == 0:
content_encoded_inputs = tokenizer(
text=[prompt],
text_pair=[this_text_line],
max_seq_len=max_seq_len,
return_dict=False,
return_offsets_mapping=True,
)
content_encoded_inputs = content_encoded_inputs[0]
inputs_ids = content_encoded_inputs["input_ids"][:-1]
sub_offset_mapping = [list(x) for x in content_encoded_inputs["offset_mapping"]]
q_sep_index = content_encoded_inputs["input_ids"].index(2, 1)
bias = 0
for i in range(len(sub_offset_mapping)):
if i == 0:
continue
mapping = sub_offset_mapping[i]
if mapping[0] == 0 and mapping[1] == 0 and bias == 0:
bias = sub_offset_mapping[i - 1][-1] + 1
if mapping[0] == 0 and mapping[1] == 0:
continue
if mapping == sub_offset_mapping[i - 1]:
continue
sub_offset_mapping[i][0] += bias
sub_offset_mapping[i][1] += bias
offset_mapping = sub_offset_mapping[:-1]
last_offset = offset_mapping[-1][-1]
else:
content_encoded_inputs = tokenizer(
text=this_text_line, max_seq_len=max_seq_len, return_dict=False, return_offsets_mapping=True
)
inputs_ids += content_encoded_inputs["input_ids"][1:-1]
sub_offset_mapping = [list(x) for x in content_encoded_inputs["offset_mapping"]]
for i, sub_list in enumerate(sub_offset_mapping[1:-1]):
if i == 0:
org_offset = sub_list[1]
else:
if sub_list[0] != org_offset and sub_offset_mapping[1:-1][i - 1] != sub_list:
last_offset += 1
org_offset = sub_list[1]
offset_mapping += [[last_offset, sub_list[1] - sub_list[0] + last_offset]]
last_offset = offset_mapping[-1][-1]
return offset_mapping, last_offset, q_sep_index, inputs_ids