forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbatch_predict.py
88 lines (75 loc) · 3.74 KB
/
batch_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
from utils import load_txt, write_json_file
from paddlenlp import Taskflow
from paddlenlp.utils.log import logger
def main(args):
"""
Predict based on Taskflow.
"""
start_time = time.time()
# read file
logger.info("Trying to load dataset: {}".format(args.file_path))
if not os.path.exists(args.file_path):
raise ValueError("something with wrong for your file_path, it may not exist.")
examples = load_txt(args.file_path)
# define Taskflow for sentiment analysis
schema = eval(args.schema)
if args.load_from_dir:
senta = Taskflow(
"sentiment_analysis",
model=args.model,
schema=schema,
aspects=args.aspects,
batch_size=args.batch_size,
max_seq_len=args.max_seq_len,
task_path=args.load_from_dir,
)
else:
senta = Taskflow(
"sentiment_analysis",
model=args.model,
schema=schema,
aspects=args.aspects,
batch_size=args.batch_size,
max_seq_len=args.max_seq_len,
)
# predict with Taskflow
logger.info("Start to perform sentiment analysis for your dataset, this may take some time.")
results = senta(examples)
# save results
save_path = args.save_path
if not save_path:
save_dir = os.path.dirname(args.file_path)
save_path = os.path.join(save_dir, "sentiment_results.json")
write_json_file(results, save_path)
logger.info("The results of sentiment analysis has been saved to: {}".format(save_path))
logger.info("This run take {} seconds.".format(time.time() - start_time))
if __name__ == "__main__":
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--file_path", type=str, default="./data/test_hotel.txt", help="The file path that you want to perform sentiment analysis on.")
parser.add_argument("--save_path", type=str, default="./data/sentiment_analysis.json", help="The saving path for the results of sentiment analysis.")
parser.add_argument("--model", choices=['uie-senta-base', 'uie-senta-medium', 'uie-senta-mini', 'uie-senta-micro', 'uie-senta-nano'], default="uie-senta-base", help="The model name that you wanna use for sentiment analysis.")
parser.add_argument("--load_from_dir", default=None, type=str, help="The directory path for the finetuned model to predict, if set None, it will download model according to model_name.")
parser.add_argument("--schema", default="[{'评价维度': ['观点词', '情感倾向[正向,负向,未提及]']}]", type=str, help="The schema for UIE to extract infomation.")
parser.add_argument("--aspects", default=None, type=str, nargs="+", help="A list of pre-given aspects, that is to say, Pipeline only perform sentiment analysis on these pre-given aspects if you input it.")
parser.add_argument("--batch_size", type=int, default=4, help="Batch size per GPU/CPU for training.")
parser.add_argument("--max_seq_len", type=int, default=512, help="The maximum total input sequence length after tokenization.")
args = parser.parse_args()
# yapf: enable
main(args)