频率派的角度是从说$$\theta$$是未知的,但是确定的,可以通过频率来近似。那么在实际的应用中常常使用ML(Maximum Likelihood Estimation 最大似然估计)的方法来求解。
频率学派存在一定的局限性,比如说无法评估不可重复实验的事件发生概率,比如说冰川消失的概率,这个事件是无法实验的,也就无法通过独立重复实验的频率来近似得到事件的概率了。
贝叶斯学派则认为参数$$\theta$$是一个随机变量,服从于一个先验分布,所以如何确定这个先验分布是一个难点。在实际实现中常常使用MAP(Maximum a posterior probability最大后验概率)。那么这个也是比较好理解的,贝叶斯首先假定了一个参数的分布,之所以叫做先验,是说我们在未观测数据之前就假定的,根据是人过往的经验来确定的。那么后验概率的意思就是说,当我拿到了新的数据之后,我对之前假定的先验分布进行调整使得这个分布接近于真实的分布,从而得到正确的结果。
公式回顾:
全概率公式:
事件B的所有可能结果为:B1,B2,~Bn,并且两两之间相互独立。
参考内容: