forked from karpathy/llama2.c
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run.c
669 lines (592 loc) · 24.5 KB
/
run.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
/*
Inference for Llama-2 Transformer model in pure C.
Example compile: (see README for more details)
$ gcc -O3 -o run run.c -lm
Then run with:
$ ./run
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <string.h>
#include <fcntl.h>
#if defined _WIN32
#include "win.h"
#else
#include <unistd.h>
#include <sys/mman.h>
#endif
// ----------------------------------------------------------------------------
// Transformer and RunState structs, and related memory management
typedef struct {
int dim; // transformer dimension
int hidden_dim; // for ffn layers
int n_layers; // number of layers
int n_heads; // number of query heads
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
int vocab_size; // vocabulary size, usually 256 (byte-level)
int seq_len; // max sequence length
} Config;
typedef struct {
// token embedding table
float* token_embedding_table; // (vocab_size, dim)
// weights for rmsnorms
float* rms_att_weight; // (layer, dim) rmsnorm weights
float* rms_ffn_weight; // (layer, dim)
// weights for matmuls
float* wq; // (layer, dim, dim)
float* wk; // (layer, dim, dim)
float* wv; // (layer, dim, dim)
float* wo; // (layer, dim, dim)
// weights for ffn
float* w1; // (layer, hidden_dim, dim)
float* w2; // (layer, dim, hidden_dim)
float* w3; // (layer, hidden_dim, dim)
// final rmsnorm
float* rms_final_weight; // (dim,)
// freq_cis for RoPE relatively positional embeddings
float* freq_cis_real; // (seq_len, head_size/2)
float* freq_cis_imag; // (seq_len, head_size/2)
// (optional) classifier weights for the logits, on the last layer
float* wcls;
} TransformerWeights;
typedef struct {
float prob;
int index;
} ProbIndex; // struct used when sorting probabilities during top-p sampling
typedef struct {
// current wave of activations
float *x; // activation at current time stamp (dim,)
float *xb; // same, but inside a residual branch (dim,)
float *xb2; // an additional buffer just for convenience (dim,)
float *hb; // buffer for hidden dimension in the ffn (hidden_dim,)
float *hb2; // buffer for hidden dimension in the ffn (hidden_dim,)
float *q; // query (dim,)
float *k; // key (dim,)
float *v; // value (dim,)
float *att; // buffer for scores/attention values (n_heads, seq_len)
float *logits; // output logits
ProbIndex *probindex; // buffer used in top-p sampling
// kv cache
float* key_cache; // (layer, seq_len, dim)
float* value_cache; // (layer, seq_len, dim)
} RunState;
void malloc_run_state(RunState* s, Config* p) {
// we calloc instead of malloc to keep valgrind happy
s->x = calloc(p->dim, sizeof(float));
s->xb = calloc(p->dim, sizeof(float));
s->xb2 = calloc(p->dim, sizeof(float));
s->hb = calloc(p->hidden_dim, sizeof(float));
s->hb2 = calloc(p->hidden_dim, sizeof(float));
s->q = calloc(p->dim, sizeof(float));
s->k = calloc(p->dim, sizeof(float));
s->v = calloc(p->dim, sizeof(float));
s->att = calloc(p->n_heads * p->seq_len, sizeof(float));
s->logits = calloc(p->vocab_size, sizeof(float));
s->probindex = calloc(p->vocab_size, sizeof(ProbIndex));
s->key_cache = calloc(p->n_layers * p->seq_len * p->dim, sizeof(float));
s->value_cache = calloc(p->n_layers * p->seq_len * p->dim, sizeof(float));
// ensure all mallocs went fine
if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q
|| !s->k || !s->v || !s->att || !s->logits || !s->key_cache
|| !s->value_cache || !s->probindex) {
fprintf(stderr, "malloc failed!\n");
exit(EXIT_FAILURE);
}
}
void free_run_state(RunState* s) {
free(s->x);
free(s->xb);
free(s->xb2);
free(s->hb);
free(s->hb2);
free(s->q);
free(s->k);
free(s->v);
free(s->att);
free(s->logits);
free(s->probindex);
free(s->key_cache);
free(s->value_cache);
}
// ----------------------------------------------------------------------------
// initialization: read from checkpoint
void checkpoint_init_weights(TransformerWeights *w, Config* p, float* f, int shared_weights) {
float* ptr = f;
w->token_embedding_table = ptr;
ptr += p->vocab_size * p->dim;
w->rms_att_weight = ptr;
ptr += p->n_layers * p->dim;
w->wq = ptr;
ptr += p->n_layers * p->dim * p->dim;
w->wk = ptr;
ptr += p->n_layers * p->dim * p->dim;
w->wv = ptr;
ptr += p->n_layers * p->dim * p->dim;
w->wo = ptr;
ptr += p->n_layers * p->dim * p->dim;
w->rms_ffn_weight = ptr;
ptr += p->n_layers * p->dim;
w->w1 = ptr;
ptr += p->n_layers * p->dim * p->hidden_dim;
w->w2 = ptr;
ptr += p->n_layers * p->hidden_dim * p->dim;
w->w3 = ptr;
ptr += p->n_layers * p->dim * p->hidden_dim;
w->rms_final_weight = ptr;
ptr += p->dim;
w->freq_cis_real = ptr;
int head_size = p->dim / p->n_heads;
ptr += p->seq_len * head_size / 2;
w->freq_cis_imag = ptr;
ptr += p->seq_len * head_size / 2;
w->wcls = shared_weights ? w->token_embedding_table : ptr;
}
// ----------------------------------------------------------------------------
// neural net blocks
void accum(float *a, float *b, int size) {
for (int i = 0; i < size; i++) {
a[i] += b[i];
}
}
void rmsnorm(float* o, float* x, float* weight, int size) {
// calculate sum of squares
float ss = 0.0f;
for (int j = 0; j < size; j++) {
ss += x[j] * x[j];
}
ss /= size;
ss += 1e-5f;
ss = 1.0f / sqrtf(ss);
// normalize and scale
for (int j = 0; j < size; j++) {
o[j] = weight[j] * (ss * x[j]);
}
}
void softmax(float* x, int size) {
// find max value (for numerical stability)
float max_val = x[0];
for (int i = 1; i < size; i++) {
if (x[i] > max_val) {
max_val = x[i];
}
}
// exp and sum
float sum = 0.0f;
for (int i = 0; i < size; i++) {
x[i] = expf(x[i] - max_val);
sum += x[i];
}
// normalize
for (int i = 0; i < size; i++) {
x[i] /= sum;
}
}
void matmul(float* xout, float* x, float* w, int n, int d) {
// W (d,n) @ x (n,) -> xout (d,)
// by far the most amount of time is spent inside this little function
int i;
#pragma omp parallel for private(i)
for (i = 0; i < d; i++) {
float val = 0.0f;
for (int j = 0; j < n; j++) {
val += w[i * n + j] * x[j];
}
xout[i] = val;
}
}
void transformer(int token, int pos, Config* p, RunState* s, TransformerWeights* w) {
// a few convenience variables
float *x = s->x;
int dim = p->dim;
int hidden_dim = p->hidden_dim;
int head_size = dim / p->n_heads;
// copy the token embedding into x
float* content_row = &(w->token_embedding_table[token * dim]);
memcpy(x, content_row, dim*sizeof(*x));
// pluck out the "pos" row of freq_cis_real and freq_cis_imag
float* freq_cis_real_row = w->freq_cis_real + pos * head_size / 2;
float* freq_cis_imag_row = w->freq_cis_imag + pos * head_size / 2;
// forward all the layers
for(int l = 0; l < p->n_layers; l++) {
// attention rmsnorm
rmsnorm(s->xb, x, w->rms_att_weight + l*dim, dim);
// qkv matmuls for this position
matmul(s->q, s->xb, w->wq + l*dim*dim, dim, dim);
matmul(s->k, s->xb, w->wk + l*dim*dim, dim, dim);
matmul(s->v, s->xb, w->wv + l*dim*dim, dim, dim);
// RoPE relative positional encoding: complex-valued rotate q and k by freq_cis in each head
for (int i = 0; i < dim; i+=2) {
float q0 = s->q[i];
float q1 = s->q[i+1];
float k0 = s->k[i];
float k1 = s->k[i+1];
float fcr = freq_cis_real_row[(i % head_size) / 2];
float fci = freq_cis_imag_row[(i % head_size) / 2];
s->q[i] = q0 * fcr - q1 * fci;
s->q[i+1] = q0 * fci + q1 * fcr;
s->k[i] = k0 * fcr - k1 * fci;
s->k[i+1] = k0 * fci + k1 * fcr;
}
// save key,value at this time step (pos) to our kv cache
int loff = l * p->seq_len * dim; // kv cache layer offset for convenience
float* key_cache_row = s->key_cache + loff + pos * dim;
float* value_cache_row = s->value_cache + loff + pos * dim;
memcpy(key_cache_row, s->k, dim*sizeof(*key_cache_row));
memcpy(value_cache_row, s->v, dim*sizeof(*value_cache_row));
// multihead attention. iterate over all heads
int h;
#pragma omp parallel for private(h)
for (h = 0; h < p->n_heads; h++) {
// get the query vector for this head
float* q = s->q + h * head_size;
// attention scores for this head
float* att = s->att + h * p->seq_len;
// iterate over all timesteps, including the current one
for (int t = 0; t <= pos; t++) {
// get the key vector for this head and at this timestep
float* k = s->key_cache + loff + t * dim + h * head_size;
// calculate the attention score as the dot product of q and k
float score = 0.0f;
for (int i = 0; i < head_size; i++) {
score += q[i] * k[i];
}
score /= sqrtf(head_size);
// save the score to the attention buffer
att[t] = score;
}
// softmax the scores to get attention weights, from 0..pos inclusively
softmax(att, pos + 1);
// weighted sum of the values, store back into xb
float* xb = s->xb + h * head_size;
memset(xb, 0, head_size * sizeof(float));
for (int t = 0; t <= pos; t++) {
// get the value vector for this head and at this timestep
float* v = s->value_cache + loff + t * dim + h * head_size;
// get the attention weight for this timestep
float a = att[t];
// accumulate the weighted value into xb
for (int i = 0; i < head_size; i++) {
xb[i] += a * v[i];
}
}
}
// final matmul to get the output of the attention
matmul(s->xb2, s->xb, w->wo + l*dim*dim, dim, dim);
// residual connection back into x
accum(x, s->xb2, dim);
// ffn rmsnorm
rmsnorm(s->xb, x, w->rms_ffn_weight + l*dim, dim);
// Now for FFN in PyTorch we have: self.w2(F.silu(self.w1(x)) * self.w3(x))
// first calculate self.w1(x) and self.w3(x)
matmul(s->hb, s->xb, w->w1 + l*dim*hidden_dim, dim, hidden_dim);
matmul(s->hb2, s->xb, w->w3 + l*dim*hidden_dim, dim, hidden_dim);
// F.silu; silu(x)=x*σ(x),where σ(x) is the logistic sigmoid
for (int i = 0; i < hidden_dim; i++) {
s->hb[i] = s->hb[i] * (1.0f / (1.0f + expf(-s->hb[i])));
}
// elementwise multiply with w3(x)
for (int i = 0; i < hidden_dim; i++) {
s->hb[i] = s->hb[i] * s->hb2[i];
}
// final matmul to get the output of the ffn
matmul(s->xb, s->hb, w->w2 + l*dim*hidden_dim, hidden_dim, dim);
// residual connection
accum(x, s->xb, dim);
}
// final rmsnorm
rmsnorm(x, x, w->rms_final_weight, dim);
// classifier into logits
matmul(s->logits, x, w->wcls, p->dim, p->vocab_size);
}
// ----------------------------------------------------------------------------
// byte pair encoding (BPE) tokenizer, encodes strings into tokens so we can prompt
int str_lookup(char *str, char **vocab, int vocab_size) {
// find the first perfect match for str in vocab, return its index or -1 if not found
for (int i = 0; i < vocab_size; i++) {
if (strcmp(str, vocab[i]) == 0) {
return i;
}
}
return -1;
}
void bpe_encode(char *text, char **vocab, float *vocab_scores, int vocab_size, unsigned int max_token_length, int *tokens, int *n_tokens) {
// a temporary buffer to merge two consecutive tokens
char* str_buffer = malloc((max_token_length*2+1) * sizeof(char)); // *2 for concat, +1 for null terminator
// first encode every individual byte in the input string
*n_tokens = 0; // the number of tokens
for (char *c = text; *c != '\0'; c++) {
sprintf(str_buffer, "%c", *c);
int id = str_lookup(str_buffer, vocab, vocab_size);
if (id == -1) { fprintf(stderr, "not good\n"); exit(EXIT_FAILURE); }
tokens[*n_tokens] = id;
(*n_tokens)++;
}
// merge the best consecutive pair each iteration, according the scores in vocab_scores
while (1) {
float best_score = -1e10;
int best_id = -1;
int best_idx = -1;
for (int i=0; i < (*n_tokens-1); i++) {
// check if we can merge the pair (tokens[i], tokens[i+1])
sprintf(str_buffer, "%s%s", vocab[tokens[i]], vocab[tokens[i+1]]);
int id = str_lookup(str_buffer, vocab, vocab_size);
if (id != -1 && vocab_scores[id] > best_score) {
// this merge pair exists in vocab! record its score and position
best_score = vocab_scores[id];
best_id = id;
best_idx = i;
}
}
if (best_idx == -1) {
break; // we couldn't find any more pairs to merge, so we're done
}
// merge the consecutive pair (best_idx, best_idx+1) into new token best_id
tokens[best_idx] = best_id;
// delete token at position best_idx+1, shift the entire sequence back 1
for (int i = best_idx+1; i < (*n_tokens-1); i++) {
tokens[i] = tokens[i+1];
}
(*n_tokens)--; // token length decreased
}
free(str_buffer);
}
// ----------------------------------------------------------------------------
// utilities: time / rng
long time_in_ms() {
// return time in milliseconds, for benchmarking the model speed
struct timespec time;
clock_gettime(CLOCK_REALTIME, &time);
return time.tv_sec * 1000 + time.tv_nsec / 1000000;
}
unsigned long long rng_seed;
unsigned int random_u32() {
// xorshift rng: https://en.wikipedia.org/wiki/Xorshift#xorshift.2A
rng_seed ^= rng_seed >> 12;
rng_seed ^= rng_seed << 25;
rng_seed ^= rng_seed >> 27;
return (rng_seed * 0x2545F4914F6CDD1Dull) >> 32;
}
float random_f32() { // random float32 in [0,1)
return (random_u32() >> 8) / 16777216.0f;
}
// ----------------------------------------------------------------------------
// sampling can be done in a few ways: greedy argmax, sampling, top-p sampling
int argmax(float* probabilities, int n) {
// return the index that has the highest probability
int max_i = 0;
float max_p = probabilities[0];
for (int i = 1; i < n; i++) {
if (probabilities[i] > max_p) {
max_i = i;
max_p = probabilities[i];
}
}
return max_i;
}
int sample(float* probabilities, int n) {
// sample index from probabilities (they must sum to 1!)
float r = random_f32();
float cdf = 0.0f;
for (int i = 0; i < n; i++) {
cdf += probabilities[i];
if (r < cdf) {
return i;
}
}
return n - 1; // in case of rounding errors
}
int compare(const void* a, const void* b) {
ProbIndex* a_ = (ProbIndex*) a;
ProbIndex* b_ = (ProbIndex*) b;
if (a_->prob > b_->prob) return -1;
if (a_->prob < b_->prob) return 1;
return 0;
}
int sample_topp(float* probabilities, int n, float topp, ProbIndex* probindex) {
// top-p sampling (or "nucleus sampling") samples from the smallest set of
// tokens that exceed probability topp. This way we never sample tokens that
// have very low probabilities and are less likely to go "off the rails".
// quicksort indices in descending order of probabilities
for (int i = 0; i < n; i++) {
probindex[i].index = i;
probindex[i].prob = probabilities[i];
}
qsort(probindex, n, sizeof(ProbIndex), compare);
// truncate the list where cumulative probability exceeds topp
float cumulative_prob = 0.0f;
int last_idx = 0;
for (int i = 0; i < n; i++) {
cumulative_prob += probindex[i].prob;
if (cumulative_prob > topp) {
last_idx = i;
break; // we've exceeded topp by including last_idx
}
}
// sample from the truncated list
float r = random_f32() * cumulative_prob;
float cdf = 0.0f;
for (int i = 0; i <= last_idx; i++) {
cdf += probindex[i].prob;
if (r < cdf) {
return probindex[i].index;
}
}
return probindex[last_idx].index; // in case of rounding errors
}
// ----------------------------------------------------------------------------
// int main
void error_usage() {
fprintf(stderr, "Usage: run <checkpoint> [options]\n");
fprintf(stderr, "Example: run model.bin -n 256 -i \"Once upon a time\"\n");
fprintf(stderr, "Options:\n");
fprintf(stderr, " -t <float> temperature, default 1.0\n");
fprintf(stderr, " -p <float> p value in top-p (nucleus) sampling. default 1.0 (=off)\n");
fprintf(stderr, " -s <int> random seed, default time(NULL)\n");
fprintf(stderr, " -n <int> number of steps to run for, default 256. 0 = max_seq_len\n");
fprintf(stderr, " -i <string> input prompt\n");
fprintf(stderr, " -z <string> optional path to custom tokenizer\n");
exit(EXIT_FAILURE);
}
int main(int argc, char *argv[]) {
// default inits
char *checkpoint = NULL; // e.g. out/model.bin
char *tokenizer = "tokenizer.bin";
float temperature = 1.0f; // 0.0 = greedy deterministic. 1.0 = original. don't set higher
float topp = 1.0f; // top-p in nucleus sampling. 1.0 = off. 0.9 works well, but slower
rng_seed = 0; // seed rng with time by default
int steps = 256; // number of steps to run for
char *prompt = NULL; // prompt string
// poor man's C argparse so we can override the defaults above from the command line
if (argc >= 2) { checkpoint = argv[1]; } else { error_usage(); }
for (int i = 2; i < argc; i+=2) {
// do some basic validation
if (i + 1 >= argc) { error_usage(); } // must have arg after flag
if (argv[i][0] != '-') { error_usage(); } // must start with dash
if (strlen(argv[i]) != 2) { error_usage(); } // must be -x (one dash, one letter)
// read in the args
if (argv[i][1] == 't') { temperature = atof(argv[i + 1]); }
else if (argv[i][1] == 'p') { topp = atof(argv[i + 1]); }
else if (argv[i][1] == 's') { rng_seed = atoi(argv[i + 1]); }
else if (argv[i][1] == 'n') { steps = atoi(argv[i + 1]); }
else if (argv[i][1] == 'i') { prompt = argv[i + 1]; }
else if (argv[i][1] == 'z') { tokenizer = argv[i + 1]; }
else { error_usage(); }
}
if(rng_seed == 0) { rng_seed = (unsigned int)time(NULL);}
// read in the model.bin file
Config config;
TransformerWeights weights;
int fd = 0; // file descriptor for memory mapping
float* data = NULL; // memory mapped data pointer
ssize_t file_size; // size of the checkpoint file in bytes
{
FILE *file = fopen(checkpoint, "rb");
if (!file) { fprintf(stderr, "Couldn't open file %s\n", checkpoint); return 1; }
// read in the config header
if (fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
// negative vocab size is hacky way of signaling unshared weights. bit yikes.
int shared_weights = config.vocab_size > 0 ? 1 : 0;
config.vocab_size = abs(config.vocab_size);
// figure out the file size
fseek(file, 0, SEEK_END); // move file pointer to end of file
file_size = ftell(file); // get the file size, in bytes
fclose(file);
// memory map the Transformer weights into the data pointer
fd = open(checkpoint, O_RDONLY); // open in read only mode
if (fd == -1) { fprintf(stderr, "open failed!\n"); return 1; }
data = mmap(NULL, file_size, PROT_READ, MAP_PRIVATE, fd, 0);
if (data == MAP_FAILED) { fprintf(stderr, "mmap failed!\n"); return 1; }
float* weights_ptr = data + sizeof(Config)/sizeof(float);
checkpoint_init_weights(&weights, &config, weights_ptr, shared_weights);
}
// right now we cannot run for more than config.seq_len steps
if (steps <= 0 || steps > config.seq_len) { steps = config.seq_len; }
// read in the tokenizer .bin file
char** vocab = (char**)malloc(config.vocab_size * sizeof(char*));
float* vocab_scores = (float*)malloc(config.vocab_size * sizeof(float));
unsigned int max_token_length;
{
FILE *file = fopen(tokenizer, "rb");
if (!file) { fprintf(stderr, "couldn't load %s\n", tokenizer); return 1; }
if (fread(&max_token_length, sizeof(int), 1, file) != 1) { fprintf(stderr, "failed read\n"); return 1; }
int len;
for (int i = 0; i < config.vocab_size; i++) {
if (fread(vocab_scores + i, sizeof(float), 1, file) != 1) { fprintf(stderr, "failed read\n"); return 1;}
if (fread(&len, sizeof(int), 1, file) != 1) { fprintf(stderr, "failed read\n"); return 1; }
vocab[i] = (char *)malloc(len + 1);
if (fread(vocab[i], len, 1, file) != 1) { fprintf(stderr, "failed read\n"); return 1; }
vocab[i][len] = '\0'; // add the string terminating token
}
fclose(file);
}
// create and init the application RunState
RunState state;
malloc_run_state(&state, &config);
// process the prompt, if any
int *prompt_tokens = NULL;
int num_prompt_tokens = 0;
if (prompt != NULL) {
prompt_tokens = (int*)malloc(strlen(prompt) * sizeof(int));
bpe_encode(prompt, vocab, vocab_scores, config.vocab_size, max_token_length, prompt_tokens, &num_prompt_tokens);
}
// start the main loop
long start = 0; // used to time our code, only initialized after first iteration
int next; // will store the next token in the sequence
int token = 1; // init with token 1 (=BOS), as done in Llama-2 sentencepiece tokenizer
int pos = 0; // position in the sequence
while (pos < steps) {
// forward the transformer to get logits for the next token
transformer(token, pos, &config, &state, &weights);
// advance the state state machine
if(pos < num_prompt_tokens) {
// if we are still processing the input prompt, force the next prompt token
next = prompt_tokens[pos];
} else {
// sample the next token
if (temperature == 0.0f) {
// greedy argmax sampling: take the token with the highest probability
next = argmax(state.logits, config.vocab_size);
} else {
// apply the temperature to the logits
for (int q=0; q<config.vocab_size; q++) { state.logits[q] /= temperature; }
// apply softmax to the logits to get the probabilities for next token
softmax(state.logits, config.vocab_size);
// we sample from this distribution to get the next token
if (topp <= 0 || topp >= 1) {
// simply sample from the predicted probability distribution
next = sample(state.logits, config.vocab_size);
} else {
// top-p (nucleus) sampling, clamping the least likely tokens to zero
next = sample_topp(state.logits, config.vocab_size, topp, state.probindex);
}
}
}
pos++;
// data-dependent terminating condition: the BOS (1) token delimits sequences
if (next == 1) { break; }
// following BOS (1) token, sentencepiece decoder strips any leading whitespace (see PR #89)
char *token_str = (token == 1 && vocab[next][0] == ' ') ? vocab[next]+1 : vocab[next];
printf("%s", token_str);
fflush(stdout);
token = next;
// init the timer here because the first iteration can be slower
if (start == 0) { start = time_in_ms(); }
}
printf("\n");
// report achieved tok/s (pos-1 because the timer starts after first iteration)
if (pos > 1) {
long end = time_in_ms();
fprintf(stderr, "achieved tok/s: %f\n", (pos-1) / (double)(end-start)*1000);
}
// memory and file handles cleanup
free_run_state(&state);
for (int i = 0; i < config.vocab_size; i++) { free(vocab[i]); }
free(vocab);
free(vocab_scores);
if (prompt_tokens != NULL) free(prompt_tokens);
if (data != MAP_FAILED) munmap(data, file_size);
if (fd != -1) close(fd);
return 0;
}