-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
372 lines (327 loc) · 17.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
from __future__ import division
from __future__ import print_function
import time
import tensorflow as tf
import tensorflow.compat.v1 as tf1
import numpy as np
from scipy import sparse
from gcn.utils import (
construct_feed_dict, preprocess_adj,
load_data, sparse_to_tuple, LP, symmetric_normalize)
from gcn.smooth import smooth
from gcn.models import GCN_MLP
from config import configuration, args
from cvr import cvr, inter_intra_variance, QM
from tabulate import tabulate
def train(model_config, sess):
# Print model_config
very_begining = time.time()
print('',
'name : {}'.format(model_config['name']),
'logdir : {}'.format(model_config['logdir']),
'dataset : {}'.format(model_config['dataset']),
'train_size : {}'.format(model_config['train_size']),
'learning_rate : {}'.format(model_config['learning_rate']),
'logging : {}'.format(model_config['logging']),
sep='\n')
# Load data
adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask, F = \
load_data(model_config['dataset'],train_size=model_config['train_size'],
validation_size=model_config['validation_size'],
model_config=model_config, shuffle=model_config['shuffle'])
def sample_graph_convolution(features, k):
# fetch = train_mask+val_mask+test_mask
# new_features = np.zeros(features.shape, dtype=features.dtype)
new_features, smoothing_time = smooth(features, adj, 'taubin',
{
'taubin_lambda': 1,
'taubin_mu': 0,
'taubin_repeat': k,
'cache' : False,
})
return new_features, smoothing_time
def sample_graph_convolution_lp(features, alpha):
fetch = train_mask+val_mask+test_mask
new_features = np.zeros(features.shape, dtype=features.dtype)
new_features[fetch], smoothing_time = smooth(features, adj, 'ap_appro',
{
'smooth_alpha': alpha,
'cache' : False,
},fetch=fetch)
return new_features, smoothing_time
smoothing_time = 0
# if model_config['F']:
# Y = y_train + y_val + y_test
# _, MX, _, _, _ = QM(features.toarray(), Y)
# inter_intra_variance(features.toarray(), Y, display=True)
# _, MXF, _, _, _ = QM(features.dot(F).toarray(), Y)
# inter_intra_variance(features.dot(F).toarray(), Y, display=True)
#
# diff = ((MX-MXF)**2).sum(1)
# MX = (MX**2).sum(1)
# MXF = (MXF**2).sum(1)
# percent = diff/MX
# print(np.mean(MX), np.mean(MXF), np.mean(diff), np.mean(percent), np.mean(diff)/np.mean(MX))
# attribute graph convolution
if F is not None:
t = time.time()
try:
import cupy as cp
features = cp.sparse.csc_matrix(features)
F = cp.sparse.csr_matrix(F)
features = features.dot(F).todense().get()
except ImportError:
features = features.dot(F)
if sparse.issparse(features):
features = features.todense()
smoothing_time += time.time()-t
if model_config['connection'][0] == 'c': # time optimization for gcn
features, _ = sample_graph_convolution(features, 1)
model_config['connection'][0] = 'f'
features = features.astype(np.float32)
# sample affinity graph convolution
if model_config['G']:
if type(model_config['G']) == int:
features, t = sample_graph_convolution(features, model_config['G'])
elif model_config['G'] == 'LP':
features, t = sample_graph_convolution_lp(features, 0.2)
else:
features, t = sample_graph_convolution(features, 2)
else:
t = 0
smoothing_time += t
# if model_config['F']:
# Y = y_train + y_val + y_test
# _, MGX, _, _, _ = QM(features, Y)
# inter_intra_variance(features, Y, display=True)
# _, MGXF, _, _, _ = QM(F.T.dot(features.T).T, Y)
# inter_intra_variance(F.T.dot(features.T).T, Y, display=True)
#
# diff = ((MGX-MGXF)**2).sum(1)
# MGX = (MGX**2).sum(1)
# MGXF = (MGXF**2).sum(1)
# percent = diff/MGX
# print(np.mean(MGX), np.mean(MGXF), np.mean(diff), np.mean(percent), np.mean(diff)/np.mean(MGX))
# features = normalize(features, norm='l1', axis=1)
# features = symmetric_normalize(features)
if model_config['inter-intra-var']:
variance = inter_intra_variance(features.toarray() if sparse.issparse(features) else np.array(features),
(y_train + y_val + y_test).astype(np.bool).astype(np.float), display=False)
else:
variance = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
if model_config['cvr'] is not None:
if sparse.issparse(features):
features = features.toarray()
Y = (y_train + y_val + y_test)
features = cvr(features, Y, lam=model_config['cvr'])[0].astype(features.dtype)
# features = cvr(features, y_train, lam=model_config['cvr'])[0].astype(features.dtype)
if model_config['Model'] == 'LP':
train_time = time.time()
test_acc, test_acc_of_class, _ = LP(adj, model_config['alpha'], y_train, y_test)
train_time = time.time() - train_time
print("Test set results: accuracy= {:.5f}".format(test_acc))
print("accuracy of each class=", test_acc_of_class)
print("Total time={}s".format(time.time()-very_begining))
return test_acc, 0, train_time, train_time, variance
support = [preprocess_adj(adj)]
num_supports = 1
# Speed up for MLP
if model_config['connection'] == ['f' for _ in range(len(model_config['connection']))]:
train_features = features[train_mask]
y_train = y_train[train_mask].astype(np.int32)
y_val = y_val[val_mask].astype(np.int32)
y_test = y_test[test_mask].astype(np.int32)
val_features = features[val_mask]
test_features = features[test_mask]
labels_mask = np.ones(train_mask.sum(), dtype=np.int32)
else:
train_features = features
val_features = features
test_features = features
labels_mask = train_mask.astype(np.int32)
y_train = y_train.astype(np.int32)
input_dim=features.shape[1]
if sparse.issparse(features):
train_features = sparse_to_tuple(train_features)
val_features = sparse_to_tuple(val_features)
test_features = sparse_to_tuple(test_features)
features = sparse_to_tuple(features)
# Define placeholders
placeholders = {
'support': [tf1.sparse_placeholder(tf.float32, name='support' + str(i)) for i in range(num_supports)],
'features': tf1.sparse_placeholder(tf.float32, name='features') if isinstance(features, tf1.SparseTensorValue) else tf1.placeholder_with_default(train_features, shape=[None, features.shape[1]], name='features'),
# 'features': tf1.placeholder(shape=[None, features.shape[1]], dtype=tf.float32, name='features'),
'labels': tf1.placeholder_with_default(y_train, name='labels', shape=(None, y_train.shape[1])),
'labels_mask': tf1.placeholder_with_default(labels_mask, shape=(None), name='labels_mask'),
'dropout': tf1.placeholder_with_default(0., name='dropout', shape=()),
'num_features_nonzero': tf1.placeholder_with_default(train_features[1].shape if isinstance(train_features, tf1.SparseTensorValue) else [0],
shape=(1), name='num_features_nonzero'),
'adj_nnz': tf1.placeholder_with_default(support[0].values.shape, shape=(1), name='adj_nnz'),
'triplet': tf1.placeholder_with_default([[]], name='triplet', shape=(None, None)),
'noise_sigma': tf1.placeholder_with_default(0., name='noise_sigma', shape=()),
'training': tf1.placeholder_with_default(False, name='training', shape=())
}
# Create model
model = GCN_MLP(model_config, placeholders, input_dim=input_dim)
# Random initialize
sess.run(tf.global_variables_initializer())
# Construct feed dictionary
if model_config['connection'] == ['f' for _ in range(len(model_config['connection']))]:
if isinstance(features, tf1.SparseTensorValue):
train_feed_dict = {
placeholders['features'] : train_features,
placeholders['dropout'] : model_config['dropout'],
placeholders['training'] : True,
}
else:
train_feed_dict = {
placeholders['dropout'] : model_config['dropout'],
placeholders['training'] : True
}
valid_feed_dict = construct_feed_dict(
val_features, support, y_val,
np.ones(val_mask.sum(), dtype=np.bool), 0, placeholders)
test_feed_dict = construct_feed_dict(
test_features, support, y_test,
np.ones(test_mask.sum(), dtype=np.bool), 0, placeholders)
else:
train_feed_dict = construct_feed_dict(train_features, support, y_train, train_mask, model_config['dropout'], placeholders)
valid_feed_dict = construct_feed_dict(val_features, support, y_val, val_mask, 0, placeholders)
test_feed_dict = construct_feed_dict(test_features, support, y_test, test_mask, 0, placeholders)
# Some support variables
acc_list = []
max_valid_acc = 0
max_train_acc = 0
min_train_loss = 1000000
t_test = time.time()
test_cost, test_acc = 0, 0
valid_loss, valid_acc = 0, 0
test_duration = time.time() - t_test
train_time = 0
step = 1
def batch_wise_train(features, y, batch_size=1000, training=False):
loss_acc = []
rvals = [model.cross_entropy_loss, model.accuracy]
if training: rvals.append(model.opt_op)
labels_mask = np.ones(batch_size, dtype=np.int32)
for i in range(0, features.shape[0], batch_size):
size = min(batch_size, features.shape[0] - i)
if labels_mask.shape[0] != size:
labels_mask = np.ones(size, dtype=np.int32)
train_loss, train_acc = sess.run(rvals, {
placeholders['dropout']: model_config['dropout'] if training else 0.,
placeholders['training']: training,
placeholders['features']: features[i:i + size],
placeholders['labels']: y[i:i + size],
placeholders['labels_mask']: labels_mask,
})[:2]
loss_acc.append([train_loss*size, train_acc*size])
train_loss, train_acc = np.sum(loss_acc, axis=0)/features.shape[0]
return train_loss, train_acc
# print(time.time() - very_begining)
if model_config['train']:
# test_cost, test_acc = sess.run(
# [model.cross_entropy_loss, model.accuracy],
# feed_dict=test_feed_dict)
# valid_loss, valid_acc, valid_summary = sess.run([model.cross_entropy_loss, model.accuracy, model.summary],
# feed_dict=valid_feed_dict)
# Train model
print('training...')
for step in range(model_config['epochs']):
# Training step
t = time.time()
# train_loss, train_acc = batch_wise_train(train_features, y_train, training=True)
sess.run(model.opt_op, feed_dict=train_feed_dict)
t = time.time()-t
train_time += t
# If it's best performence so far, evalue on test set
# evaluate per 20 steps, or when train almost ends
if step > model_config['epochs']*0.1 and (step > model_config['epochs']*0.9 or step%20 == 0):
train_loss, train_acc, train_summary = sess.run([model.cross_entropy_loss, model.accuracy, model.summary],
feed_dict=train_feed_dict)
if args.verbose:
print(f"Epoch: {step:04d} train_loss= {train_loss:.3f}",
f"train_acc= {train_acc:.3f} time= {t:.5f}", end=' ')
if model_config['validate']:
t = time.time()
# valid_loss, valid_acc = batch_wise_train(val_features, y_val)
valid_loss, valid_acc = sess.run([model.cross_entropy_loss, model.accuracy], feed_dict=valid_feed_dict)
t = time.time()-t
acc_list.append(valid_acc)
if args.verbose:
print(f"val_loss= {valid_loss:.3f} val_acc= {valid_acc:.3f} time= {t:.5f}", end=' ')
if valid_acc >= max_valid_acc:
max_valid_acc = valid_acc
t = time.time()
# test_cost, test_acc = batch_wise_train(test_features, y_test)
test_cost, test_acc = sess.run([model.cross_entropy_loss, model.accuracy], feed_dict=test_feed_dict)
t = time.time()-t
if args.verbose:
print(f"test_loss= {test_cost:.3f} test_acc= {test_acc:.3f} time= {t:.5f}", end=' ')
if args.verbose: print()
else:
acc_list.append(train_acc)
if train_loss < min_train_loss:
min_train_loss = train_loss
t_test = time.time()
test_cost, test_acc = sess.run(
[model.cross_entropy_loss, model.accuracy],
feed_dict=test_feed_dict)
test_duration = time.time() - t_test
if args.verbose:
print(f"test_loss= {test_cost:.3f} test_acc= {test_acc:.3f}")
else:
print("Optimization Finished!")
print(f"Test set results: cost= {test_cost:.5f} accuracy= {test_acc:.5f} time= {test_duration:.5f}")
print(f"Total time={time.time()-very_begining}s")
return test_acc, train_time/step*1000, smoothing_time, train_time+smoothing_time, variance
if __name__ == '__main__':
acc = [[] for i in configuration['model_list']]
duration = [[] for i in configuration['model_list']]
smoothing_times = [[] for i in configuration['model_list']]
total_train_times = [[] for i in configuration['model_list']]
for r in range(configuration['repeating']):
variances = []
for model_config, i in zip(configuration['model_list'], range(len(configuration['model_list']))):
# Set random seed
seed = model_config['random_seed']
np.random.seed(seed)
model_config['random_seed'] = np.random.random_integers(1073741824)
# Initialize session
with tf.Graph().as_default():
tf1.set_random_seed(seed)
gpu_options = tf1.GPUOptions(allow_growth = True)
with tf1.Session(config=tf1.ConfigProto(
# intra_op_parallelism_threads=model_config['threads'],
gpu_options=gpu_options)) as sess:
test_acc, t, smoothing_time, \
total_train_time, variance = train(model_config, sess)
acc[i].append(test_acc)
duration[i].append(t)
smoothing_times[i].append(smoothing_time)
total_train_times[i].append(total_train_time)
variances.append([model_config['name']]+variance)
print('repeated ', r, 'rounds')
variance_head = ["NAME", "TotalVar", "IntraVar", "InterVar",
"Intra/Total", "Inter/Total", "Intra/Inter", "Inter/Intra",
"TotalSTD", "IntraSTD", "InterSTD",
"IntraSTD/InterSTD", "InterSTD/IntraSTD"]
if model_config['inter-intra-var']:
print('\nVARIANCE')
print(tabulate(variances, headers=variance_head, numalign="left"))
acc_means = np.mean(acc, axis=1)
acc_stds = np.std(acc, axis=1)/np.sqrt(configuration['repeating'])
duration_mean = np.mean(duration, axis=1)
smoothing_times_mean = np.mean(smoothing_times, axis=1)
total_train_times_mean = np.mean(total_train_times, axis=1)
print()
for line, model_config in zip(acc, configuration['model_list']):
print(' '.join(f'{j:.6f}' for j in line), model_config['name'])
print("UTIL REPEAT\t{}".format(r+1))
print("{:<8}\t{:<8}\t{:<8}\t{:<8}\t{:<8}\t{:<8}\t{:<8}\t{:<8}".format('DATASET', 'train_size', 'RESULTS', 'STD', 'STEP(ms)', 'SMOOTHING(s)', 'TOTAL_TIME(s)', 'NAME'))
for model_config, acc_mean, acc_std, t, smoothing_time, total_train_time in zip(configuration['model_list'], acc_means, acc_stds, duration_mean, smoothing_times_mean, total_train_times_mean):
print(f"{model_config['dataset']:<8}", f"{model_config['train_size']:<8}",
f"{acc_mean:<8.6f}", f"{acc_std:<8.6f}",
f"{t:<8.2f}", f"{smoothing_time:<8.3f}", f"{total_train_time:<8.3f}",
f"{model_config['name']:<8}",
sep='\t')