-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
266 lines (228 loc) · 10.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from multiprocessing.sharedctypes import Value
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
import wandb
import clip
import numpy as np
import collections
import random
from omegaconf import OmegaConf
# from models import *
import datasets
import models
from utils import evaluate, read_unknowns, nest_dict, flatten_config
# from wandb_utils import WandbData
from helpers.load_dataset import get_train_transform, get_filtered_dataset, get_val_transform
from datasets.wilds import wilds_eval
parser = argparse.ArgumentParser(description='Dataset Understanding')
parser.add_argument('--config', default='configs/base.yaml', help="config file")
parser.add_argument('overrides', nargs='*', help="Any key=value arguments to override config values "
"(use dots for.nested=overrides)")
flags, unknown = parser.parse_known_args()
overrides = OmegaConf.from_cli(flags.overrides)
cfg = OmegaConf.load(flags.config)
base = OmegaConf.load('configs/base.yaml')
dataset_base = OmegaConf.load(cfg.base_config)
args = OmegaConf.merge(base, dataset_base, cfg, overrides)
if len(unknown) > 0:
print(unknown)
config = nest_dict(read_unknowns(unknown))
to_merge = OmegaConf.create(config)
args = OmegaConf.merge(args, to_merge)
args.yaml = flags.config
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
if args.wandb_silent:
os.environ['WANDB_SILENT']="true"
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
augmentation = 'none' if not args.data.augmentation else args.data.augmentation
augmentation = f'{augmentation}-filtered' if args.data.filter else f'augmentation-unfiltered'
ckpt_name = f'checkpoint/ckpt-{args.name}-{augmentation}-{args.model}-{args.seed}-{args.hps.lr}-{args.hps.weight_decay}'
if args.data.num_extra != 'extra':
ckpt_name += f'-{args.data.num_extra}'
# Data
print('==> Preparing data..')
transform = get_train_transform(args.data.base_dataset, model=args.model, augmentation=args.data.augmentation)
val_transform = get_val_transform(args.data.base_dataset, model=args.model)
# trainset, valset, testset = get_dataset(args.data.base_dataset, transform)
trainset, valset, testset = get_filtered_dataset(args, transform, val_transform)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=args.data.batch, shuffle=True, num_workers=2)
valloader = torch.utils.data.DataLoader(
valset, batch_size=args.data.batch, shuffle=False, num_workers=1)
testloader = torch.utils.data.DataLoader(
testset, batch_size=args.data.batch, shuffle=False, num_workers=1)
# Model
print('==> Building model..')
net = getattr(models, args.model)(num_classes = len(trainset.classes))
if args.finetune:
print("...finetuning")
# freeze all bust last layer
for name, param in net.named_parameters():
if 'fc' not in name:
param.requires_grad = False
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
run = wandb.init(project=args.proj, group=args.name, config=flatten_config(args))
# logger = WandbData(run, testset, args, [s[0] for s in testset.samples], incorrect_only=args.incorrect_only)
wandb.summary['train_size'] = len(trainset)
def load_checkpoint(args, net, optimizer):
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
if args.checkpoint_name:
checkpoint_name = f'./checkpoint/{args.checkpoint_name}'
else:
assert os.path.exists(ckpt_name)
checkpoint_name = os.path.join(ckpt_name, 'best.pth')
checkpoint = torch.load(checkpoint_name)
new_state_dict = collections.OrderedDict()
for k, v in checkpoint['net'].items():
if 'module' not in k:
k = 'module.'+k
else:
k = k.replace('features.module.', 'module.features.')
new_state_dict[k]=v
print(f"Loaded checkpoint at epoch {checkpoint['epoch']} from {checkpoint_name}")
# net.load_state_dict(checkpoint['net'])
net.load_state_dict(new_state_dict)
optimizer.load_state_dict(checkpoint['optim'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
return net, optimizer, best_acc, start_epoch
print("num samples per group:", collections.Counter(trainset.groups))
print("Weights: ", trainset.class_weights)
criterion = nn.CrossEntropyLoss(weight=torch.tensor(trainset.class_weights).to(device))
optimizer = optim.SGD(net.parameters(), lr=args.hps.lr,
momentum=0.9, weight_decay=args.hps.weight_decay)
if args.hps.lr_scheduler == 'cosine':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
elif args.hps.lr_scheduler == 'custom':
scheduler0 = torch.optim.lr_scheduler.LinearLR(optimizer,
start_factor = 0.008, # The number we multiply learning rate in the first epoch
total_iters = 4,) # The number of iterations that multiplicative factor reaches to 1
scheduler1 = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[30, 60, 80], # List of epoch indices
gamma =0.1) # Multiplicative factor of learning rate decay
scheduler = torch.optim.lr_scheduler.ChainedScheduler([scheduler0, scheduler1])
elif args.hps.lr_scheduler == 'finetune':
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[args.epochs//2, 3*args.epochs//4], gamma=0.1)
else:
raise ValueError("Unknown scheduler")
if args.resume or args.eval_only:
net, optimizer, best_acc, start_epoch = load_checkpoint(args, net, optimizer)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets, groups) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
# % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
wandb.log({'train loss': train_loss/(batch_idx+1), 'train acc': 100.*correct/total, "epoch": epoch, "lr": optimizer.param_groups[0]["lr"]})
def test(epoch, loader, phase='val'):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
all_targets, all_predictions, all_groups = np.array([]), np.array([]), np.array([])
with torch.no_grad():
for batch_idx, (inputs, targets, groups) in enumerate(loader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
try:
loss = criterion(outputs, targets)
test_loss += loss.item()
except:
print(targets)
raise ValueError("Loss is nan")
_, predicted = outputs.max(1)
all_targets = np.append(all_targets, targets.cpu().numpy())
all_predictions = np.append(all_predictions, predicted.cpu().numpy())
all_groups = np.append(all_groups, groups.cpu().numpy())
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# get per class and per group accuracies
acc, class_balanced_acc, class_acc, group_acc = evaluate(all_predictions, all_targets, all_groups)
metrics = {"epoch": epoch, f'{phase} acc': 100.*correct/total, f'{phase} accuracy': acc, f"{phase} class accuracy": class_acc, f"{phase} balanced accuracy": class_balanced_acc, **{f"{phase} {loader.dataset.group_names[i]} acc": group_acc[i] for i in range(len(group_acc))}}
if 'iWildCam' in args.data.base_dataset:
wilds_metrics, _ = wilds_eval(torch.tensor(all_predictions), torch.tensor(all_targets))
metrics.update(wilds_metrics)
wandb.log(metrics)
print("group acc", group_acc)
# Save checkpoint.
# this is changed from the paper, I think checkpointing on acc leads to better results
# acc = 100.*correct/total if 'iWildCam' not in args.data.base_dataset else wilds_metrics['F1-macro_all']
acc = 100.*correct/total
if acc > best_acc:
if not args.eval_only or phase == 'val':
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
'optim': optimizer.state_dict(),
}
if not os.path.exists(ckpt_name):
os.makedirs(ckpt_name)
if args.checkpoint_name:
torch.save(state, f'./checkpoint/{args.checkpoint_name}.pth')
wandb.save(f'./checkpoint/{args.checkpoint_name}.pth')
else:
torch.save(state, f'./{ckpt_name}/best.pth')
wandb.save(f'./{ckpt_name}/best.pth')
best_acc = acc
wandb.summary['best epoch'] = epoch
wandb.summary['best val acc'] = best_acc
wandb.summary['best group acc'] = group_acc
wandb.summary['best balanced acc'] = class_balanced_acc
wandb.summary['best class acc'] = class_acc
if not args.eval_only and epoch % 10 == 0:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
'optim': optimizer.state_dict()
}
torch.save(state, f'./{ckpt_name}/epoch-{epoch}.pth')
wandb.save(f'./{ckpt_name}/epoch-{epoch}.pth')
if args.eval_only:
test(start_epoch, trainloader, phase='train_eval')
test(start_epoch, testloader, phase='test')
else:
for epoch in range(start_epoch, args.epochs):
train(epoch)
test(epoch, valloader, phase='val')
scheduler.step()
if epoch % 10 == 0:
test(epoch, testloader, phase='test')
# load the best checkpoint
print('==> Loading best checkpoint..')
net, optimizer, best_acc, start_epoch = load_checkpoint(args, net, optimizer)
test(epoch, testloader, phase='test')