-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
192 lines (147 loc) · 5.04 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import argparse
from random import randrange
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import (
Dataset,
DataLoader,
RandomSampler,
SequentialSampler,
random_split,
)
from torch import nn
from scipy.io import mmread
import numpy as np
import pandas as pd
dtype = torch.float32
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_default_tensor_type(
"torch.cuda.FloatTensor" if torch.cuda.is_available() else "torch.FloatTensor"
)
class EdgeDataset(Dataset):
def __init__(self, edges, labels):
self.edges = edges
self.labels = labels
def __len__(self):
return len(self.edges)
def __getitem__(self, i):
return torch.Tensor(self.edges[i]), self.labels[i]
class ToyModel(nn.Module):
def __init__(self, num_features, num_classes):
super().__init__()
self.input = nn.Linear(num_features, 15126)
self.output = nn.Linear(15126, num_classes)
def forward(self, x):
x = self.input(x)
x = self.output(x)
return x
def train(
model: ToyModel, train_dataloader, val_dataloader, epochs, batch_size=64, lr=0.01
):
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr, betas=(0.9, 0.98), eps=1e-9)
for epoch_i in range(0, epochs):
print(f"Beginning epoch {epoch_i + 1} of {epochs}")
train_epoch_loss = 0
model.train()
for x_train_batch, y_train_batch in train_dataloader:
b_nodes = x_train_batch.to(device)
b_labels = y_train_batch.to(device)
optimizer.zero_grad()
y_train_pred = model(b_nodes)
train_loss = criterion(y_train_pred, b_labels)
train_loss.backward()
optimizer.step()
train_epoch_loss += train_loss.item() * x_train_batch.size(0)
print(
f"Epoch {epoch_i + 1}: | Train Loss: {train_epoch_loss/len(train_dataloader.sampler):.5f} "
)
eval(model, val_dataloader)
torch.save(model.state_dict(), "./model.pt")
def load_model(path):
model = ToyModel(2, 2)
model.load_state_dict(torch.load(path))
return model
def eval(model: ToyModel, val_dataloader):
model.eval()
val_acc = 0
for X_val_batch, y_val_batch in val_dataloader:
y_val_pred = model(X_val_batch)
y_pred_softmax = torch.log_softmax(y_val_pred, dim=1)
_, y_pred_tags = torch.max(y_pred_softmax, dim=1)
correct_pred = (y_pred_tags == y_val_batch).float()
acc = correct_pred.sum() / len(correct_pred)
acc = torch.round(acc * 100)
val_acc += acc
print("Model accuracy: {:.3f}%".format((val_acc / len(val_dataloader)).item()))
# TODO: deprecate?
def read_data(path):
a = mmread(path).toarray()
# adj = np.zeros((max_id, max_id), dtype=int)
data = []
print(len(a))
for i in range(len(a)):
for j in range(len(a[i])):
if a[i][j] == 1:
data.append([i, j, 1])
if len(data) > 1000:
break
if len(data) > 1000:
break
print("edges: ", len(data))
ones = len(data)
while len(data) < 130 * ones:
i = randrange(len(a))
j = randrange(len(a))
while a[i][j] == 1 or [i, j, 0] in data:
i = randrange(len(a))
j = randrange(len(a))
data.append([i, j, 0])
if len(data) % 10000 == 0:
print(len(data))
df = pd.DataFrame(data, columns=["id_1", "id_2", "label"])
return df
def get_data(path):
df = pd.read_csv(path)
labels = df["label"]
edges = df[["id_1", "id_2"]].to_numpy()
dataset = EdgeDataset(edges, labels)
return dataset
def train_and_eval(
dataset, train_model: bool = False, evaluate_model: bool = False
):
bs = 64
model = ToyModel(2, 2).to(device)
print("Creating data loaders...")
train_dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset), # Sampling for training is random
batch_size=bs,
)
evaluation_dataloader = DataLoader(
dataset,
sampler=SequentialSampler(
dataset
), # Sampling for validation is sequential as the order doesn't matter.
batch_size=bs,
)
if train_model:
print("Starting training...")
train(model, train_dataloader, evaluation_dataloader, 1000)
if evaluate_model:
model = load_model("./model.pt")
print("Starting evaluation...")
eval(model, evaluation_dataloader)
return
if __name__ == "__main__":
parser = argparse.ArgumentParser(
"trains or runs edge detection classification model"
)
parser.add_argument("--train-model", action="store_true")
parser.add_argument("--evaluate-model", action="store_true")
parser.add_argument("--path", type=str)
args = parser.parse_args()
dataset = get_data(args.path)
train_and_eval(dataset, args.train_model, args.evaluate_model)
# main(args.train_model, args.evaluate_model, args.get_data)