forked from lawlite19/MachineLearning_Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnomalyDetection.py
107 lines (90 loc) · 3.84 KB
/
AnomalyDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#-*- coding: utf-8 -*-
# Author: Bob
# Date: 2016.12.22
from __future__ import print_function
import numpy as np
from matplotlib import pyplot as plt
from scipy import io as spio
'''异常检测主运行程序'''
def anomalyDetection_example():
'''加载并显示数据'''
data = spio.loadmat('data1.mat')
X = data['X']
plt = display_2d_data(X, 'bx')
plt.title("origin data")
plt.show()
'''多元高斯分布函数,并可视化拟合的边界'''
mu,sigma2 = estimateGaussian(X) # 参数估计(求均值和方差)
#print (mu,sigma2)
p = multivariateGaussian(X,mu,sigma2) # 多元高斯分布函数
#print (p)
visualizeFit(X,mu,sigma2) # 显示图像
'''选择异常点(在交叉验证CV上训练得到最好的epsilon)'''
Xval = data['Xval']
yval = data['yval'] # y=1代表异常
pval = multivariateGaussian(Xval, mu, sigma2) # 计算CV上的概率密度值
epsilon,F1 = selectThreshold(yval,pval) # 选择最优的epsilon临界值
print(u'在CV上得到的最好的epsilon是:%e'%epsilon)
print(u'对应的F1Score值为:%f'%F1)
outliers = np.where(p<epsilon) # 找到小于临界值的异常点,并作图
plt.plot(X[outliers,0],X[outliers,1],'o',markeredgecolor='r',markerfacecolor='w',markersize=10.)
plt = display_2d_data(X, 'bx')
plt.show()
# 显示二维数据
def display_2d_data(X,marker):
plt.plot(X[:,0],X[:,1],marker)
plt.axis('square')
return plt
# 参数估计函数(就是求均值和方差)
def estimateGaussian(X):
m,n = X.shape
mu = np.zeros((n,1))
sigma2 = np.zeros((n,1))
mu = np.mean(X, axis=0) # axis=0表示列,每列的均值
sigma2 = np.var(X,axis=0) # 求每列的方差
return mu,sigma2
# 多元高斯分布函数
def multivariateGaussian(X,mu,Sigma2):
k = len(mu)
if (Sigma2.shape[0]>1):
Sigma2 = np.diag(Sigma2)
'''多元高斯分布函数'''
X = X-mu
argu = (2*np.pi)**(-k/2)*np.linalg.det(Sigma2)**(-0.5)
p = argu*np.exp(-0.5*np.sum(np.dot(X,np.linalg.inv(Sigma2))*X,axis=1)) # axis表示每行
return p
# 可视化边界
def visualizeFit(X,mu,sigma2):
x = np.arange(0, 36, 0.5) # 0-36,步长0.5
y = np.arange(0, 36, 0.5)
X1,X2 = np.meshgrid(x,y) # 要画等高线,所以meshgird
Z = multivariateGaussian(np.hstack((X1.reshape(-1,1),X2.reshape(-1,1))), mu, sigma2) # 计算对应的高斯分布函数
Z = Z.reshape(X1.shape) # 调整形状
plt.plot(X[:,0],X[:,1],'bx')
if np.sum(np.isinf(Z).astype(float)) == 0: # 如果计算的为无穷,就不用画了
#plt.contourf(X1,X2,Z,10.**np.arange(-20, 0, 3),linewidth=.5)
CS = plt.contour(X1,X2,Z,10.**np.arange(-20, 0, 3),color='black',linewidth=.5) # 画等高线,Z的值在10.**np.arange(-20, 0, 3)
#plt.clabel(CS)
plt.show()
# 选择最优的epsilon,即:使F1Score最大
def selectThreshold(yval,pval):
'''初始化所需变量'''
bestEpsilon = 0.
bestF1 = 0.
F1 = 0.
step = (np.max(pval)-np.min(pval))/1000
'''计算'''
for epsilon in np.arange(np.min(pval),np.max(pval),step):
cvPrecision = pval<epsilon
tp = np.sum((cvPrecision == 1) & (yval == 1).ravel()).astype(float) # sum求和是int型的,需要转为float
fp = np.sum((cvPrecision == 1) & (yval == 0).ravel()).astype(float)
fn = np.sum((cvPrecision == 0) & (yval == 1).ravel()).astype(float)
precision = tp/(tp+fp) # 精准度
recision = tp/(tp+fn) # 召回率
F1 = (2*precision*recision)/(precision+recision) # F1Score计算公式
if F1 > bestF1: # 修改最优的F1 Score
bestF1 = F1
bestEpsilon = epsilon
return bestEpsilon,bestF1
if __name__ == '__main__':
anomalyDetection_example()