Skip to content

Latest commit

 

History

History
94 lines (67 loc) · 3.67 KB

README.md

File metadata and controls

94 lines (67 loc) · 3.67 KB

Hard_Negative

This repo is for paper in ECCV2020: Hard negative examples are hard, but useful

Arxiv link: https://arxiv.org/pdf/2007.12749.pdf

We provide the experiment result for each dataset(DATA) in folder exp_{DATA}.

DATA = CUB or CAR The _result folder contains tensorboard results with Keys: {DATA}_test_R_1, {DATA}_test_R_2, {DATA}_test_R_4, {DATA}_test_R_8, {DATA}_train_R_1, hn_ratio, loss.

DATA = SOP The _result folder contains tensorboard results with Keys: SOP_test_R_1, SOP_test_R_1, SOP_test_R_100, SOP_test_R_1000, SOP_train_R_1, hn_ratio, loss.

DATA = ICR(Inshop) The _result folder contains tensorboard results with Keys: ICR_test_R_1, ICR_test_R_1, ICR_test_R_100, ICR_test_R_1000, hn_ratio, loss.

Result Table

CUB(ResNet50, embedding size 64)

Method R@1 R@2 R@4 R@8
hn collapse collapse collapse collapse
shn 56.72\pm0.65 68.64\pm0.33 78.60\pm0.24 86.64\pm0.26
sct 57.71\pm0.75 69.80\pm0.41 79.59\pm0.58 87.05\pm0.38

CAR(ResNet50, embedding size 64)

Method R@1 R@2 R@4 R@8
hn collapse collapse collapse collapse
shn 67.92\pm0.49 77.80\pm0.39 85.31\pm0.18 90.69\pm0.14
sct 73.35\pm0.54 81.98\pm0.25 88.02\pm0.18 92.36\pm0.26

SOP(ResNet50, embedding size 512)

Method R@1 R@10 R@100 R@1000
hn not measured not measured not measured not measured
shn 81.06\pm0.06 92.32\pm0.07 96.84\pm0.05 98.90\pm0.01
sct 81.90\pm0.07 92.61\pm0.06 96.77\pm0.04 98.75\pm0.02

Inshop(ResNet50, embedding size 512)

Method R@1 R@10 R@20 R@40
hn not measured not measured not measured not measured
shn 90.55\pm0.15 97.37\pm0.07 98.09\pm0.10 98.45\pm0.08
sct 90.93\pm0.22 97.51\pm0.05 98.16\pm0.03 98.44\pm0.03

Hotel50K-instance(ResNet50, embedding size 256)

Method R@1 R@10 R@100
hn collapse collapse collapse
shn 18.78\pm0.08 32.90\pm0.26 52.19\pm0.19
sct 29.24\pm0.12 44.38\pm0.11 61.53\pm0.08

Hotel50K-chain(ResNet50, embedding size 256)

Method R@1 R@3 R@5
hn collapse collapse collapse
shn 54.17\pm0.05 64.99\pm0.16 69.90\pm0.21
sct 60.78\pm0.13 70.39\pm0.45 74.35\pm0.22

HOTEL50K

unzip "exp_Hotel/input/dataset.zip" for chain retrieval

Citation

@inproceedings{xuan2020hard,
  title={Hard negative examples are hard, but useful},
  author={Xuan, Hong and Stylianou, Abby and Liu, Xiaotong and Pless, Robert},
  booktitle={European Conference on Computer Vision},
  pages={126--142},
  year={2020},
  organization={Springer}
}

Updates:

Feb 14, 2021:

Improve loss function computation stablility

Improve the retrieval performance accross all datasets reported in the paper

Upload the training log information for all results

Add Hotel instance and chain retrieval code in "Hotel_instance_chain_retrieval.ipynb"

Add Hotel instance retrieval code(use in training) in "_code.Evaluation.py"