forked from logpai/logparser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AEL_benchmark.py
164 lines (140 loc) · 5.71 KB
/
AEL_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python
import sys
sys.path.append('../')
from logparser import AEL, evaluator
import os
import pandas as pd
input_dir = '../logs/' # The input directory of log file
output_dir = 'AEL_result/' # The output directory of parsing results
benchmark_settings = {
'HDFS': {
'log_file': 'HDFS/HDFS_2k.log',
'log_format': '<Date> <Time> <Pid> <Level> <Component>: <Content>',
'regex': [r'blk_-?\d+', r'(\d+\.){3}\d+(:\d+)?'],
'minEventCount': 2,
'merge_percent' : 0.5
},
'Hadoop': {
'log_file': 'Hadoop/Hadoop_2k.log',
'log_format': '<Date> <Time> <Level> \[<Process>\] <Component>: <Content>',
'regex': [r'(\d+\.){3}\d+'],
'minEventCount': 2,
'merge_percent' : 0.4
},
'Spark': {
'log_file': 'Spark/Spark_2k.log',
'log_format': '<Date> <Time> <Level> <Component>: <Content>',
'regex': [r'(\d+\.){3}\d+', r'\b[KGTM]?B\b', r'([\w-]+\.){2,}[\w-]+'],
'minEventCount': 2,
'merge_percent' : 0.4
},
'Zookeeper': {
'log_file': 'Zookeeper/Zookeeper_2k.log',
'log_format': '<Date> <Time> - <Level> \[<Node>:<Component>@<Id>\] - <Content>',
'regex': [r'(/|)(\d+\.){3}\d+(:\d+)?'],
'minEventCount': 2,
'merge_percent' : 0.4
},
'BGL': {
'log_file': 'BGL/BGL_2k.log',
'log_format': '<Label> <Timestamp> <Date> <Node> <Time> <NodeRepeat> <Type> <Component> <Level> <Content>',
'regex': [r'core\.\d+'],
'minEventCount': 2,
'merge_percent' : 0.5
},
'HPC': {
'log_file': 'HPC/HPC_2k.log',
'log_format': '<LogId> <Node> <Component> <State> <Time> <Flag> <Content>',
'regex': [r'=\d+'],
'minEventCount': 5,
'merge_percent' : 0.4
},
'Thunderbird': {
'log_file': 'Thunderbird/Thunderbird_2k.log',
'log_format': '<Label> <Timestamp> <Date> <User> <Month> <Day> <Time> <Location> <Component>(\[<PID>\])?: <Content>',
'regex': [r'(\d+\.){3}\d+'],
'minEventCount': 2,
'merge_percent' : 0.4
},
'Windows': {
'log_file': 'Windows/Windows_2k.log',
'log_format': '<Date> <Time>, <Level> <Component> <Content>',
'regex': [r'0x.*?\s'],
'minEventCount': 2,
'merge_percent' : 0.4
},
'Linux': {
'log_file': 'Linux/Linux_2k.log',
'log_format': '<Month> <Date> <Time> <Level> <Component>(\[<PID>\])?: <Content>',
'regex': [r'(\d+\.){3}\d+', r'\d{2}:\d{2}:\d{2}'],
'minEventCount': 2,
'merge_percent' : 0.6
},
'Andriod': {
'log_file': 'Andriod/Andriod_2k.log',
'log_format': '<Date> <Time> <Pid> <Tid> <Level> <Component>: <Content>',
'regex': [r'(/[\w-]+)+', r'([\w-]+\.){2,}[\w-]+', r'\b(\-?\+?\d+)\b|\b0[Xx][a-fA-F\d]+\b|\b[a-fA-F\d]{4,}\b'],
'minEventCount': 2,
'merge_percent' : 0.6
},
'HealthApp': {
'log_file': 'HealthApp/HealthApp_2k.log',
'log_format': '<Time>\|<Component>\|<Pid>\|<Content>',
'regex': [],
'minEventCount': 2,
'merge_percent' : 0.6
},
'Apache': {
'log_file': 'Apache/Apache_2k.log',
'log_format': '\[<Time>\] \[<Level>\] <Content>',
'regex': [r'(\d+\.){3}\d+'],
'minEventCount': 2,
'merge_percent' : 0.4
},
'Proxifier': {
'log_file': 'Proxifier/Proxifier_2k.log',
'log_format': '\[<Time>\] <Program> - <Content>',
'regex': [r'<\d+\s?sec', r'([\w-]+\.)+[\w-]+(:\d+)?', r'\d{2}:\d{2}(:\d{2})*', r'[KGTM]B'],
'minEventCount': 2,
'merge_percent' : 0.4
},
'OpenSSH': {
'log_file': 'OpenSSH/OpenSSH_2k.log',
'log_format': '<Date> <Day> <Time> <Component> sshd\[<Pid>\]: <Content>',
'regex': [r'(\d+\.){3}\d+', r'([\w-]+\.){2,}[\w-]+'],
'minEventCount': 10,
'merge_percent' : 0.7
},
'OpenStack': {
'log_file': 'OpenStack/OpenStack_2k.log',
'log_format': '<Logrecord> <Date> <Time> <Pid> <Level> <Component> \[<ADDR>\] <Content>',
'regex': [r'((\d+\.){3}\d+,?)+', r'/.+?\s', r'\d+'],
'minEventCount': 6,
'merge_percent' : 0.5
},
'Mac': {
'log_file': 'Mac/Mac_2k.log',
'log_format': '<Month> <Date> <Time> <User> <Component>\[<PID>\]( \(<Address>\))?: <Content>',
'regex': [r'([\w-]+\.){2,}[\w-]+'],
'minEventCount': 2,
'merge_percent' : 0.6
}
}
bechmark_result = []
for dataset, setting in benchmark_settings.iteritems():
print('\n=== Evaluation on %s ==='%dataset)
indir = os.path.join(input_dir, os.path.dirname(setting['log_file']))
log_file = os.path.basename(setting['log_file'])
parser = AEL.LogParser(log_format=setting['log_format'], indir=indir, outdir=output_dir,
minEventCount=setting['minEventCount'], merge_percent=setting['merge_percent'], rex=setting['regex'])
parser.parse(log_file)
F1_measure, accuracy = evaluator.evaluate(
groundtruth=os.path.join(indir, log_file + '_structured.csv'),
parsedresult=os.path.join(output_dir, log_file + '_structured.csv')
)
bechmark_result.append([dataset, F1_measure, accuracy])
print('\n=== Overall evaluation results ===')
df_result = pd.DataFrame(bechmark_result, columns=['Dataset', 'F1_measure', 'Accuracy'])
df_result.set_index('Dataset', inplace=True)
print(df_result)
df_result.T.to_csv('AEL_bechmark_result.csv')