-
Notifications
You must be signed in to change notification settings - Fork 4
/
myssim.py
270 lines (240 loc) · 9.36 KB
/
myssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from __future__ import division, absolute_import, print_function
import numpy as np
from numpy.lib.arraypad import _validate_lengths
from scipy.ndimage import uniform_filter, gaussian_filter
dtype_range = {np.bool_: (False, True),
np.bool8: (False, True),
np.uint8: (0, 255),
np.uint16: (0, 65535),
np.uint32: (0, 2**32 - 1),
np.uint64: (0, 2**64 - 1),
np.int8: (-128, 127),
np.int16: (-32768, 32767),
np.int32: (-2**31, 2**31 - 1),
np.int64: (-2**63, 2**63 - 1),
np.float16: (-1, 1),
np.float32: (-1, 1),
np.float64: (-1, 1)}
def crop(ar, crop_width, copy=False, order='K'):
"""Crop array `ar` by `crop_width` along each dimension.
Parameters
----------
ar : array-like of rank N
Input array.
crop_width : {sequence, int}
Number of values to remove from the edges of each axis.
``((before_1, after_1),`` ... ``(before_N, after_N))`` specifies
unique crop widths at the start and end of each axis.
``((before, after),)`` specifies a fixed start and end crop
for every axis.
``(n,)`` or ``n`` for integer ``n`` is a shortcut for
before = after = ``n`` for all axes.
copy : bool, optional
If `True`, ensure the returned array is a contiguous copy. Normally,
a crop operation will return a discontiguous view of the underlying
input array.
order : {'C', 'F', 'A', 'K'}, optional
If ``copy==True``, control the memory layout of the copy. See
``np.copy``.
Returns
-------
cropped : array
The cropped array. If ``copy=False`` (default), this is a sliced
view of the input array.
"""
ar = np.array(ar, copy=False)
crops = _validate_lengths(ar, crop_width)
slices = [slice(a, ar.shape[i] - b) for i, (a, b) in enumerate(crops)]
if copy:
cropped = np.array(ar[slices], order=order, copy=True)
else:
cropped = ar[slices]
return cropped
def compare_ssim(X, Y, win_size=None, gradient=False,
data_range=None, multichannel=False, gaussian_weights=False,
full=False, dynamic_range=None, **kwargs):
"""Compute the mean structural similarity index between two images.
Parameters
----------
X, Y : ndarray
Image. Any dimensionality.
win_size : int or None
The side-length of the sliding window used in comparison. Must be an
odd value. If `gaussian_weights` is True, this is ignored and the
window size will depend on `sigma`.
gradient : bool, optional
If True, also return the gradient.
data_range : int, optional
The data range of the input image (distance between minimum and
maximum possible values). By default, this is estimated from the image
data-type.
multichannel : bool, optional
If True, treat the last dimension of the array as channels. Similarity
calculations are done independently for each channel then averaged.
gaussian_weights : bool, optional
If True, each patch has its mean and variance spatially weighted by a
normalized Gaussian kernel of width sigma=1.5.
full : bool, optional
If True, return the full structural similarity image instead of the
mean value.
Other Parameters
----------------
use_sample_covariance : bool
if True, normalize covariances by N-1 rather than, N where N is the
number of pixels within the sliding window.
K1 : float
algorithm parameter, K1 (small constant, see [1]_)
K2 : float
algorithm parameter, K2 (small constant, see [1]_)
sigma : float
sigma for the Gaussian when `gaussian_weights` is True.
Returns
-------
mssim : float
The mean structural similarity over the image.
grad : ndarray
The gradient of the structural similarity index between X and Y [2]_.
This is only returned if `gradient` is set to True.
S : ndarray
The full SSIM image. This is only returned if `full` is set to True.
Notes
-----
To match the implementation of Wang et. al. [1]_, set `gaussian_weights`
to True, `sigma` to 1.5, and `use_sample_covariance` to False.
References
----------
.. [1] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P.
(2004). Image quality assessment: From error visibility to
structural similarity. IEEE Transactions on Image Processing,
13, 600-612.
https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf,
DOI:10.1.1.11.2477
.. [2] Avanaki, A. N. (2009). Exact global histogram specification
optimized for structural similarity. Optical Review, 16, 613-621.
http://arxiv.org/abs/0901.0065,
DOI:10.1007/s10043-009-0119-z
"""
if not X.dtype == Y.dtype:
raise ValueError('Input images must have the same dtype.')
if not X.shape == Y.shape:
raise ValueError('Input images must have the same dimensions.')
if dynamic_range is not None:
#warn('`dynamic_range` has been deprecated in favor of '
# '`data_range`. The `dynamic_range` keyword argument '
# 'will be removed in v0.14', skimage_deprecation)
data_range = dynamic_range
if multichannel:
# loop over channels
args = dict(win_size=win_size,
gradient=gradient,
data_range=data_range,
multichannel=False,
gaussian_weights=gaussian_weights,
full=full)
args.update(kwargs)
nch = X.shape[-1]
mssim = np.empty(nch)
if gradient:
G = np.empty(X.shape)
if full:
S = np.empty(X.shape)
for ch in range(nch):
ch_result = compare_ssim(X[..., ch], Y[..., ch], **args)
if gradient and full:
mssim[..., ch], G[..., ch], S[..., ch] = ch_result
elif gradient:
mssim[..., ch], G[..., ch] = ch_result
elif full:
mssim[..., ch], S[..., ch] = ch_result
else:
mssim[..., ch] = ch_result
mssim = mssim.mean()
if gradient and full:
return mssim, G, S
elif gradient:
return mssim, G
elif full:
return mssim, S
else:
return mssim
K1 = kwargs.pop('K1', 0.01)
K2 = kwargs.pop('K2', 0.03)
sigma = kwargs.pop('sigma', 1.5)
if K1 < 0:
raise ValueError("K1 must be positive")
if K2 < 0:
raise ValueError("K2 must be positive")
if sigma < 0:
raise ValueError("sigma must be positive")
use_sample_covariance = kwargs.pop('use_sample_covariance', True)
if win_size is None:
if gaussian_weights:
win_size = 11 # 11 to match Wang et. al. 2004
else:
win_size = 7 # backwards compatibility
if np.any((np.asarray(X.shape) - win_size) < 0):
raise ValueError(
"win_size exceeds image extent. If the input is a multichannel "
"(color) image, set multichannel=True.")
if not (win_size % 2 == 1):
raise ValueError('Window size must be odd.')
if data_range is None:
dmin, dmax = dtype_range[X.dtype.type]
data_range = dmax - dmin
ndim = X.ndim
if gaussian_weights:
# sigma = 1.5 to approximately match filter in Wang et. al. 2004
# this ends up giving a 13-tap rather than 11-tap Gaussian
filter_func = gaussian_filter
filter_args = {'sigma': sigma}
else:
filter_func = uniform_filter
filter_args = {'size': win_size}
# ndimage filters need floating point data
X = X.astype(np.float64)
Y = Y.astype(np.float64)
NP = win_size ** ndim
# filter has already normalized by NP
if use_sample_covariance:
cov_norm = NP / (NP - 1) # sample covariance
else:
cov_norm = 1.0 # population covariance to match Wang et. al. 2004
# compute (weighted) means
ux = filter_func(X, **filter_args)
uy = filter_func(Y, **filter_args)
# compute (weighted) variances and covariances
uxx = filter_func(X * X, **filter_args)
uyy = filter_func(Y * Y, **filter_args)
uxy = filter_func(X * Y, **filter_args)
vx = cov_norm * (uxx - ux * ux)
vy = cov_norm * (uyy - uy * uy)
vxy = cov_norm * (uxy - ux * uy)
R = data_range
C1 = (K1 * R) ** 2
C2 = (K2 * R) ** 2
A1, A2, B1, B2 = ((2 * ux * uy + C1,
2 * vxy + C2,
ux ** 2 + uy ** 2 + C1,
vx + vy + C2))
D = B1 * B2
S = (A1 * A2) / D
# to avoid edge effects will ignore filter radius strip around edges
pad = (win_size - 1) // 2
# compute (weighted) mean of ssim
mssim = crop(S, pad).mean()
if gradient:
# The following is Eqs. 7-8 of Avanaki 2009.
grad = filter_func(A1 / D, **filter_args) * X
grad += filter_func(-S / B2, **filter_args) * Y
grad += filter_func((ux * (A2 - A1) - uy * (B2 - B1) * S) / D,
**filter_args)
grad *= (2 / X.size)
if full:
return mssim, grad, S
else:
return mssim, grad
else:
if full:
return mssim, S
else:
return mssim