-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
324 lines (280 loc) · 10.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os
import numpy as np
import cv2
import random
from PIL import Image
import torch
from torch.utils.data import Dataset
from torchvision import transforms
import utils
import matplotlib
import time
import scipy.io
class RandomCrop(object):
def __init__(self, image_size, crop_size):
self.ch, self.cw = crop_size
ih, iw = image_size
self.h1 = random.randint(0, ih - self.ch)
self.w1 = random.randint(0, iw - self.cw)
self.h2 = self.h1 + self.ch
self.w2 = self.w1 + self.cw
def __call__(self, img):
if len(img.shape) == 3:
return img[self.h1: self.h2, self.w1: self.w2, :]
else:
return img[self.h1: self.h2, self.w1: self.w2]
class TestDataset(Dataset):
def __init__(self, opt):
self.opt = opt
self.test_root = opt.test_root
fh = open(self.test_root, 'r')
imgs = []
target = []
for line in fh:
line = line.strip('\n')
line = line.rstrip()
words = line.split()
imgs.append((words[0]))
target.append(words[1])
self.imgs = imgs
self.target = target
fh.close()
# generate random number
def random_crop_start(self, h, w, crop_size, min_divide):
rand_h = random.randint(0, h - crop_size)
rand_w = random.randint(0, w - crop_size)
rand_h = (rand_h // min_divide) * min_divide
rand_w = (rand_w // min_divide) * min_divide
return rand_h, rand_w
def img_aug(self, noise, clean):
# random rotate
if self.opt.angle_aug:
# rotate
rotate = random.randint(0, 3)
if rotate != 0:
noise = np.rot90(noise, rotate)
clean = np.rot90(clean, rotate)
# horizontal flip
if np.random.random() >= 0.5:
noise = cv2.flip(noise, flipCode = 1)
clean = cv2.flip(clean, flipCode = 1)
return noise, clean
def NormMinandMax(self, npdarr, min=-1, max=1):
arr = npdarr.flatten()
Ymax = np.max(arr) # 计算最大值
Ymin = np.min(arr) # 计算最小值
k = (max - min) / (Ymax - Ymin)
last = min + k * (npdarr - Ymin)
return last
def img_sharpen(self, img):
#自定义卷积核
kernel_sharpen = np.array([
[-1,-1,-1],
[-1,9,-1],
[-1,-1,-1]])
# kernel_sharpen = np.array([
# [-1,-1,-1,-1,-1],
# [-1,2,2,2,-1],
# [-1,2,8,2,-1],
# [-1,2,2,2,-1],
# [-1,-1,-1,-1,-1]])/8.0
#卷积
output = cv2.filter2D(img,-1,kernel_sharpen)
return output
def __getitem__(self, index):
# Define path
noise_path= self.imgs[index]
clean_path=self.target[index]
# Read images
# input
noise_r = Image.open(noise_path).convert('RGB')
noise_r = np.array(noise_r).astype(np.float32)
h, w = noise_r.shape[:2]
# print(h,w)
rand_h, rand_w = self.random_crop_start(h, w, self.opt.crop_size, 4)
noise_r = noise_r[rand_h:rand_h+self.opt.crop_size, rand_w:rand_w+self.opt.crop_size]
# noise_r = self.NormMinandMax(noise_r, -1, 1)
noise_r = (noise_r - 128) / 128.0
# noise_r = (noise_r) / 255.0
# output
clean = Image.open(clean_path).convert('RGB')
clean = np.array(clean).astype(np.float32)
clean = clean[rand_h:rand_h+self.opt.crop_size, rand_w:rand_w+self.opt.crop_size]
# clean = self.img_sharpen(clean)
# clean = self.NormMinandMax(clean, -1, 1)
clean = (clean - 128) /128.0
noise_r, clean = self.img_aug(noise_r, clean)
noise_s, noise_level_map = noise_generator.Poisson_Gaussian_random(clean)
noise_s = np.array(noise_s).astype(np.float32)
noise_level_map = np.array(noise_level_map).astype(np.float32)
noise_s = np.clip(noise_s, -1, 1)
noise_level_map = np.clip(noise_level_map, -1, 1)
# noise_level_map = self.NormMinandMax(noise_level_map, -1, 1)
noise_r = torch.from_numpy(noise_r.transpose(2, 0, 1).astype(np.float32)).contiguous()
noise_s = torch.from_numpy(noise_s.transpose(2, 0, 1).astype(np.float32)).contiguous()
clean = torch.from_numpy(clean.transpose(2, 0, 1).astype(np.float32)).contiguous()
noise_level_map = torch.from_numpy(noise_level_map.transpose(2, 0, 1).astype(np.float32)).contiguous()
return noise_r, noise_s, clean, noise_level_map
def __len__(self):
return len(self.imgs)
class TrainDataset(Dataset):
def __init__(self, opt):
self.opt = opt
self.in_root = opt.in_root
fh = open(self.in_root, 'r')
imgs = []
for line in fh:
line = line.strip('\n')
line = line.rstrip()
words = line.split()
imgs.append((words[0]))
self.imgs = imgs
fh.close()
def img_aug(self, img):
# random rotate
if self.opt.angle_aug:
# rotate
rotate = random.randint(0, 3)
if rotate != 0:
IMG_EXTENSIONS = np.rot90(img)
# horizontal flip
if np.random.random() >= 0.5:
img = cv2.flip(img, flipCode = 1)
return img
# generate random number
def random_crop_start(self, h, w, crop_size, min_divide):
rand_h = random.randint(0, h - crop_size)
rand_w = random.randint(0, w - crop_size)
rand_h = (rand_h // min_divide) * min_divide
rand_w = (rand_w // min_divide) * min_divide
return rand_h, rand_w
def __getitem__(self, index):
# Define path
path= self.imgs[index]
# Read images
# input
img = Image.open(path).convert('RGB')
img = transforms.Resize((256,256), Image.BICUBIC)(img)
img = np.array(img).astype(np.float32)
img = img / 255.0
img = torch.from_numpy(img.transpose(2, 0, 1).astype(np.float32)).contiguous()
# img = transforms.Normalize(mean=[0.5, 0.5, 0.5],
# std=[0.5, 0.5, 0.5])(img)
return img
def __len__(self):
return len(self.imgs)
class LXMERTDataset(Dataset):
def __init__(self, opt,namedict):
self.opt = opt
self.in_root = opt.in_root
self.namedict=namedict
fh = open(self.in_root, 'r')
imgs = []
for line in fh:
line = line.strip('\n')
line = line.rstrip()
words = line.split()
imgs.append((words[0]))
self.imgs = imgs
fh.close()
def img_aug(self, img):
# random rotate
if self.opt.angle_aug:
# rotate
rotate = random.randint(0, 3)
if rotate != 0:
IMG_EXTENSIONS = np.rot90(img)
# horizontal flip
if np.random.random() >= 0.5:
img = cv2.flip(img, flipCode = 1)
return img
# generate random number
def random_crop_start(self, h, w, crop_size, min_divide):
rand_h = random.randint(0, h - crop_size)
rand_w = random.randint(0, w - crop_size)
rand_h = (rand_h // min_divide) * min_divide
rand_w = (rand_w // min_divide) * min_divide
return rand_h, rand_w
def __getitem__(self, index):
# Define path
path= self.imgs[index]
stroke_order = self.namedict[path[-8:-4]]
# Read images
# input
img = Image.open(path).convert('RGB')
img = np.array(img).astype(np.float32)
img = cv2.copyMakeBorder(img, 30, 30, 30, 30, cv2.BORDER_CONSTANT, value=(255,255,255))
img = cv2.resize(img,(256,256),interpolation = cv2.INTER_CUBIC)
img = img / 255.0
# img = img[:,:,np.newaxis]
img = torch.from_numpy(img.transpose(2, 0, 1).astype(np.float32)).contiguous()
stroke_order = stroke_order[1:-2]
stroke_order=np.array(stroke_order)
return img,stroke_order
def __len__(self):
return len(self.imgs)
class PairDataset(Dataset):
def __init__(self, opt):
self.opt = opt
self.in_root = opt.in_root
fh = open(self.in_root, 'r')
imgs = []
target = []
for line in fh:
line = line.strip('\n')
line = line.rstrip()
words = line.split()
imgs.append((words[0]))
target.append(words[1])
self.imgs = imgs
self.target = target
fh.close()
# generate random number
def random_crop_start(self, h, w, crop_size, min_divide):
rand_h = random.randint(0, h - crop_size)
rand_w = random.randint(0, w - crop_size)
rand_h = (rand_h // min_divide) * min_divide
rand_w = (rand_w // min_divide) * min_divide
return rand_h, rand_w
def img_aug(self, noise, clean):
# random rotate
if self.opt.angle_aug:
# rotate
rotate = random.randint(0, 3)
if rotate != 0:
noise = np.rot90(noise, rotate)
clean = np.rot90(clean, rotate)
# horizontal flip
if np.random.random() >= 0.5:
noise = cv2.flip(noise, flipCode = 1)
clean = cv2.flip(clean, flipCode = 1)
return noise, clean
def NormMinandMax(self, npdarr, min=-1, max=1):
arr = npdarr.flatten()
Ymax = np.max(arr) # 计算最大值
Ymin = np.min(arr) # 计算最小值
k = (max - min) / (Ymax - Ymin)
last = min + k * (npdarr - Ymin)
return last
def __getitem__(self, index):
# Define path
src_path= self.imgs[index]
tar_path=self.target[index]
# Read images
img = Image.open(src_path).convert('RGB')
img = transforms.Resize((256,256), Image.BICUBIC)(img)
img = np.array(img).astype(np.float32)
img = img / 255.0
img = torch.from_numpy(img.transpose(2, 0, 1).astype(np.float32)).contiguous()
# img = transforms.Normalize(mean=[0.5, 0.5, 0.5],
# std=[0.5, 0.5, 0.5])(img)
gt = Image.open(tar_path).convert('RGB')
gt = transforms.Resize((256,256), Image.BICUBIC)(gt)
gt = np.array(gt).astype(np.float32)
gt = gt / 255.0
gt = torch.from_numpy(gt.transpose(2, 0, 1).astype(np.float32)).contiguous()
# gt = transforms.Normalize(mean=[0.5, 0.5, 0.5],
# std=[0.5, 0.5, 0.5])(gt)
return img, gt
def __len__(self):
return len(self.imgs)