-
Notifications
You must be signed in to change notification settings - Fork 2
/
series_sc_dream.py
118 lines (97 loc) · 3.49 KB
/
series_sc_dream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
'''
Uses pretrained VAE to process dataset to get mu and logvar for each frame, and stores
all the dataset files into one dataset called series/series.npz
'''
import numpy as np
import os
import json
import tensorflow as tf
import random
import gc
from rnn.rnn_dream import reset_graph, ConvVAE
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="7"
DATA_DIR = "record_img_dream"
SERIES_DIR = "series_dream"
model_path_name = "tf_models"
IN_CHANNELS = 12
# Hyperparameters for ConvVAE
z_size=64
file_size=10000
batch_size=300 # use 100 instead # treat every episode as a batch of 1000!
learning_rate=0.0001
kl_tolerance=0.5 #0.5
if not os.path.exists(SERIES_DIR):
os.makedirs(SERIES_DIR)
def load_raw_data_list(filelist):
obs_list = []
img_list = []
action_list = []
reward_list = []
counter = 0
for i in range(len(filelist)):
filename = filelist[i]
raw_data = np.load(os.path.join(DATA_DIR, filename))
l = raw_data['obs'].shape[0]
if l < batch_size:
continue
#print('shape1:', raw_data['obs'][:batch_size].shape)
if random.random() < 0.5:
obs_list.append(raw_data['obs'][:batch_size])
img_list.append(raw_data['img'][:batch_size])
action_list.append(raw_data['action'][:batch_size])
reward_list.append(raw_data['reward'][:batch_size])
else:
obs_list.append(raw_data['obs'][-batch_size:])
img_list.append(raw_data['img'][-batch_size:])
action_list.append(raw_data['action'][-batch_size:])
reward_list.append(raw_data['reward'][-batch_size:])
#print('raw_data[action].shape:', raw_data['action'].shape)
if ((i+1) % 1000 == 0):
print("loading file", (i+1))
print("collect carbige", gc.collect())
gc.collect()
return obs_list, img_list, action_list, reward_list
def encode_batch(batch_img):
simple_obs = np.copy(batch_img).astype(np.float)
simple_obs = simple_obs.reshape(-1, 64, 64, IN_CHANNELS)
#print('simple_obs.shape:', simple_obs.shape)
mu, logvar = vae.encode_mu_logvar(simple_obs)
z = (mu + np.exp(logvar/2.0) * np.random.randn(*logvar.shape))
return mu, logvar, z
def decode_batch(batch_z):
# decode the latent vector
batch_img = vae.decode(z.reshape(batch_size, z_size))
#batch_img = np.round(batch_img).astype(np.uint8)
batch_img = batch_img.reshape(batch_size, 64, 64, IN_CHANNELS)
return batch_img
filelist = os.listdir(DATA_DIR)
filelist.sort()
filelist = filelist[0:file_size]
obs_dataset, img_list, action_dataset, reward_dataset = load_raw_data_list(filelist)
gc.collect()
reset_graph()
vae = ConvVAE(z_size=z_size,
batch_size=batch_size,
learning_rate=learning_rate,
kl_tolerance=kl_tolerance,
is_training=False,
reuse=False,
gpu_mode=True) # use GPU on batchsize of 1000 -> much faster
vae.load_json(os.path.join(model_path_name, 'vae.json'))
mu_dataset = []
logvar_dataset = []
for i in range(len(img_list)):
data_batch = img_list[i]
mu, logvar, z = encode_batch(data_batch)
mu_dataset.append(mu.astype(np.float16))
logvar_dataset.append(logvar.astype(np.float16))
if ((i+1) % 100 == 0):
print(i+1)
action_dataset = np.array(action_dataset)
obs_dataset = np.array(obs_dataset)
mu_dataset = np.array(mu_dataset)
logvar_dataset = np.array(logvar_dataset)
reward_dataset = np.array(reward_dataset)
np.savez_compressed(os.path.join(SERIES_DIR, "series.npz"), action=action_dataset, obs=obs_dataset,
mu=mu_dataset, logvar=logvar_dataset, reward=reward_dataset)