forked from autumn0409/Log-based-Anomaly-Detection-System
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Drain.py
344 lines (279 loc) · 12.2 KB
/
Drain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
"""
Description : This file implements the Drain algorithm for log parsing
Author : LogPAI team
License : MIT
"""
import regex as re
import os
import numpy as np
import pandas as pd
import hashlib
from datetime import datetime
class Logcluster:
def __init__(self, logTemplate='', logIDL=None):
self.logTemplate = logTemplate
if logIDL is None:
logIDL = []
self.logIDL = logIDL
class Node:
def __init__(self, childD=None, depth=0, digitOrtoken=None):
if childD is None:
childD = dict()
self.childD = childD
self.depth = depth
self.digitOrtoken = digitOrtoken
class LogParser:
def __init__(self, log_format, indir='./', outdir='./result/', depth=4, st=0.4,
maxChild=100, rex=[], keep_para=True):
"""
Attributes
----------
rex : regular expressions used in preprocessing (step1)
path : the input path stores the input log file name
depth : depth of all leaf nodes
st : similarity threshold
maxChild : max number of children of an internal node
logName : the name of the input file containing raw log messages
savePath : the output path stores the file containing structured logs
"""
self.path = indir
self.depth = depth - 2
self.st = st
self.maxChild = maxChild
self.logName = None
self.savePath = outdir
self.df_log = None
self.log_format = log_format
self.rex = rex
self.keep_para = keep_para
def hasNumbers(self, s):
return any(char.isdigit() for char in s)
def treeSearch(self, rn, seq):
retLogClust = None
seqLen = len(seq)
if seqLen not in rn.childD:
return retLogClust
parentn = rn.childD[seqLen]
currentDepth = 1
for token in seq:
if currentDepth >= self.depth or currentDepth > seqLen:
break
if token in parentn.childD:
parentn = parentn.childD[token]
elif '<*>' in parentn.childD:
parentn = parentn.childD['<*>']
else:
return retLogClust
currentDepth += 1
logClustL = parentn.childD
retLogClust = self.fastMatch(logClustL, seq)
return retLogClust
def addSeqToPrefixTree(self, rn, logClust):
seqLen = len(logClust.logTemplate)
if seqLen not in rn.childD:
firtLayerNode = Node(depth=1, digitOrtoken=seqLen)
rn.childD[seqLen] = firtLayerNode
else:
firtLayerNode = rn.childD[seqLen]
parentn = firtLayerNode
currentDepth = 1
for token in logClust.logTemplate:
#Add current log cluster to the leaf node
if currentDepth >= self.depth or currentDepth > seqLen:
if len(parentn.childD) == 0:
parentn.childD = [logClust]
else:
parentn.childD.append(logClust)
break
#If token not matched in this layer of existing tree.
if token not in parentn.childD:
if not self.hasNumbers(token):
if '<*>' in parentn.childD:
if len(parentn.childD) < self.maxChild:
newNode = Node(depth=currentDepth + 1, digitOrtoken=token)
parentn.childD[token] = newNode
parentn = newNode
else:
parentn = parentn.childD['<*>']
else:
if len(parentn.childD)+1 < self.maxChild:
newNode = Node(depth=currentDepth+1, digitOrtoken=token)
parentn.childD[token] = newNode
parentn = newNode
elif len(parentn.childD)+1 == self.maxChild:
newNode = Node(depth=currentDepth+1, digitOrtoken='<*>')
parentn.childD['<*>'] = newNode
parentn = newNode
else:
parentn = parentn.childD['<*>']
else:
if '<*>' not in parentn.childD:
newNode = Node(depth=currentDepth+1, digitOrtoken='<*>')
parentn.childD['<*>'] = newNode
parentn = newNode
else:
parentn = parentn.childD['<*>']
#If the token is matched
else:
parentn = parentn.childD[token]
currentDepth += 1
#seq1 is template
def seqDist(self, seq1, seq2):
assert len(seq1) == len(seq2)
simTokens = 0
numOfPar = 0
for token1, token2 in zip(seq1, seq2):
if token1 == '<*>':
numOfPar += 1
continue
if token1 == token2:
simTokens += 1
retVal = float(simTokens) / len(seq1)
return retVal, numOfPar
def fastMatch(self, logClustL, seq):
retLogClust = None
maxSim = -1
maxNumOfPara = -1
maxClust = None
for logClust in logClustL:
curSim, curNumOfPara = self.seqDist(logClust.logTemplate, seq)
if curSim>maxSim or (curSim==maxSim and curNumOfPara>maxNumOfPara):
maxSim = curSim
maxNumOfPara = curNumOfPara
maxClust = logClust
if maxSim >= self.st:
retLogClust = maxClust
return retLogClust
def getTemplate(self, seq1, seq2):
assert len(seq1) == len(seq2)
retVal = []
i = 0
for word in seq1:
if word == seq2[i]:
retVal.append(word)
else:
retVal.append('<*>')
i += 1
return retVal
def outputResult(self, logClustL):
log_templates = [0] * self.df_log.shape[0]
log_templateids = [0] * self.df_log.shape[0]
df_events = []
for logClust in logClustL:
template_str = ' '.join(logClust.logTemplate)
occurrence = len(logClust.logIDL)
template_id = hashlib.md5(template_str.encode('utf-8')).hexdigest()[0:8]
for logID in logClust.logIDL:
logID -= 1
log_templates[logID] = template_str
log_templateids[logID] = template_id
df_events.append([template_id, template_str, occurrence])
df_event = pd.DataFrame(df_events, columns=['EventId', 'EventTemplate', 'Occurrences'])
self.df_log['EventId'] = log_templateids
self.df_log['EventTemplate'] = log_templates
if self.keep_para:
self.df_log["ParameterList"] = self.df_log.apply(self.get_parameter_list, axis=1)
self.df_log.to_csv(os.path.join(self.savePath, self.logName + '_structured.csv'), index=False)
occ_dict = dict(self.df_log['EventTemplate'].value_counts())
df_event = pd.DataFrame()
df_event['EventTemplate'] = self.df_log['EventTemplate'].unique()
df_event['EventId'] = df_event['EventTemplate'].map(lambda x: hashlib.md5(x.encode('utf-8')).hexdigest()[0:8])
df_event['Occurrences'] = df_event['EventTemplate'].map(occ_dict)
df_event.to_csv(os.path.join(self.savePath, self.logName + '_templates.csv'), index=False, columns=["EventId", "EventTemplate", "Occurrences"])
def printTree(self, node, dep):
pStr = ''
for i in range(dep):
pStr += '\t'
if node.depth == 0:
pStr += 'Root'
elif node.depth == 1:
pStr += '<' + str(node.digitOrtoken) + '>'
else:
pStr += node.digitOrtoken
print(pStr)
if node.depth == self.depth:
return 1
for child in node.childD:
self.printTree(node.childD[child], dep+1)
def parse(self, logName):
print('Parsing file: ' + os.path.join(self.path, logName))
start_time = datetime.now()
self.logName = logName
rootNode = Node()
logCluL = []
self.load_data()
count = 0
for idx, line in self.df_log.iterrows():
logID = line['LineId']
logmessageL = self.preprocess(line['Content']).strip().split()
# logmessageL = filter(lambda x: x != '', re.split('[\s=:,]', self.preprocess(line['Content'])))
matchCluster = self.treeSearch(rootNode, logmessageL)
#Match no existing log cluster
if matchCluster is None:
newCluster = Logcluster(logTemplate=logmessageL, logIDL=[logID])
logCluL.append(newCluster)
self.addSeqToPrefixTree(rootNode, newCluster)
#Add the new log message to the existing cluster
else:
newTemplate = self.getTemplate(logmessageL, matchCluster.logTemplate)
matchCluster.logIDL.append(logID)
if ' '.join(newTemplate) != ' '.join(matchCluster.logTemplate):
matchCluster.logTemplate = newTemplate
count += 1
if count % 1000 == 0 or count == len(self.df_log):
print('Processed {0:.1f}% of log lines.'.format(count * 100.0 / len(self.df_log)))
if not os.path.exists(self.savePath):
os.makedirs(self.savePath)
self.outputResult(logCluL)
print('Parsing done. [Time taken: {!s}]'.format(datetime.now() - start_time))
def load_data(self):
headers, regex = self.generate_logformat_regex(self.log_format)
self.df_log = self.log_to_dataframe(os.path.join(self.path, self.logName), regex, headers, self.log_format)
def preprocess(self, line):
for currentRex in self.rex:
line = re.sub(currentRex, '<*>', line)
return line
def log_to_dataframe(self, log_file, regex, headers, logformat):
""" Function to transform log file to dataframe
"""
log_messages = []
linecount = 0
with open(log_file, 'r') as fin:
for line in fin.readlines():
try:
match = regex.search(line.strip())
message = [match.group(header) for header in headers]
log_messages.append(message)
linecount += 1
except Exception as e:
pass
logdf = pd.DataFrame(log_messages, columns=headers)
logdf.insert(0, 'LineId', None)
logdf['LineId'] = [i + 1 for i in range(linecount)]
return logdf
def generate_logformat_regex(self, logformat):
""" Function to generate regular expression to split log messages
"""
headers = []
splitters = re.split(r'(<[^<>]+>)', logformat)
regex = ''
for k in range(len(splitters)):
if k % 2 == 0:
splitter = re.sub(' +', '\\\s+', splitters[k])
regex += splitter
else:
header = splitters[k].strip('<').strip('>')
regex += '(?P<%s>.*?)' % header
headers.append(header)
regex = re.compile('^' + regex + '$')
return headers, regex
def get_parameter_list(self, row):
template_regex = re.sub(r"<.{1,5}>", "<*>", row["EventTemplate"])
if "<*>" not in template_regex: return []
template_regex = re.sub(r'([^A-Za-z0-9])', r'\\\1', template_regex)
template_regex = re.sub(r'\\ +', r'\s+', template_regex)
template_regex = "^" + template_regex.replace("\<\*\>", "(.*?)") + "$"
parameter_list = re.findall(template_regex, row["Content"])
parameter_list = parameter_list[0] if parameter_list else ()
parameter_list = list(parameter_list) if isinstance(parameter_list, tuple) else [parameter_list]
return parameter_list