-
Notifications
You must be signed in to change notification settings - Fork 0
/
transformer.py
244 lines (193 loc) · 11.3 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from transformers import BertTokenizer, BertTokenizerFast, BertConfig
from transformers import AlbertForSequenceClassification
from transformers import AdamW, get_linear_schedule_with_warmup
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score
from torch.utils.data import TensorDataset, DataLoader, SequentialSampler, RandomSampler
import torch
import onnxruntime
import numpy as np
import os
import time
import pickle
# 配置
DATA_DIRECTORY = os.path.join(os.getcwd(), 'models')
MODEL = 'voidful/albert_chinese_tiny'
CACHE_DIRECTORY = os.path.join(DATA_DIRECTORY, 'pretrained_models_cache')
CHECKPOINT_DIRECTORY = os.path.join(DATA_DIRECTORY, 'trained_models')
TRAIN_BATCH_SIZE = 32
TEST_BATCH_SIZE = 128
MAX_LEN = 128
EPOCHS = 5
WEIGHT_DECAY = 0.01
LRATE = 2e-5
LOG_INTERVAL = 100
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# DEVICE = 'cpu'
class BertInferenceModel(torch.nn.Module):
def __init__(self):
super(MyBertModel, self).__init__()
self.max_len = MAX_LEN
self.device = DEVICE
# 由於 albert_chinese_tiny 模型沒有用 sentencepiece,用AlbertTokenizer會載不進詞表,因此需要改用BertTokenizer
self.tokenizer = BertTokenizerFast.from_pretrained(MODEL, cache_dir=CACHE_DIRECTORY, local_files_only=True)
# 此model是pytorch模型的子类,可以保存成支持C++调用的形式
self.bert = torch.load(f'{CHECKPOINT_DIRECTORY}/albert-tiny-zh-finetuned.pth').to(DEVICE)
self.bert.eval()
# self.bert = AlbertForSequenceClassification.from_pretrained(MODEL, cache_dir=CACHE_DIRECTORY, local_files_only=True, num_labels=4).to(DEVICE)
def forward(self, sentence1, sentence2s):
X = self.tokenizer.batch_encode_plus([(sentence1,sentence2) for sentence2 in sentence2s], max_length=self.max_len, padding='max_length', truncation='longest_first', return_tensors='pt')
input_ids = X['input_ids'].to(self.device)
token_type_ids = X['token_type_ids'].to(self.device)
attention_mask = X['attention_mask'].to(self.device)
outputs = self.bert(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
_, results = torch.max(outputs[0], dim=1)
return results
def generate_data_loaders(load, tokenizer):
if load == True:
with open('train_dataloader.pkl', 'rb') as f1:
train_dataloader = pickle.load(f1)
with open('test_dataloader.pkl', 'rb') as f2:
test_dataloader = pickle.load(f2)
else:
with open('query.txt.ground_truth', 'r') as f:
lines = [eval(line) for line in f.readlines()] # 变成字典
# 自动构造[CLS] SEQ_A [SEP] SEQ_B [SEP] 的输入格式
# https://blog.csdn.net/qq_34418352/article/details/106069042
# https://huggingface.co/transformers/internal/tokenization_utils.html?highlight=encode_plus#transformers.tokenization_utils_base.PreTrainedTokenizerBase.encode_plus
# 返回一个字典 d
# d['input_ids'] == [101, x..., 102, y..., 102]
# d['token_type_ids'] = [0,..., 0, 1, ...,1]
# d['attention_mask'] = [1,1,1, ..., 0] pad的为0
X = [ tokenizer.encode_plus(line['query'], line['summary'], max_length=MAX_LEN, padding='max_length', truncation='longest_first', return_tensors=None) for line in lines]
X = [ [dic['input_ids'], dic['token_type_ids'], dic['attention_mask']] for dic in X]
Y = [ int(line['label']) for line in lines ]
# stratify=Y,使训练集中Y的分布和全量数据中Y的分布一致,用于类分布不平衡的情况,不指定则类标签比例随机
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0, stratify=Y)
# https://pytorch.org/docs/stable/tensors.html
X_train_input_ids = torch.tensor([item[0] for item in X_train], dtype=torch.long)
X_train_token_type_ids = torch.tensor([item[1] for item in X_train], dtype=torch.long)
X_train_attention_mask = torch.tensor([item[2] for item in X_train], dtype=torch.long)
Y_train = torch.tensor(Y_train, dtype=torch.long)
X_test_input_ids = torch.tensor([item[0] for item in X_test], dtype=torch.long)
X_test_token_type_ids = torch.tensor([item[1] for item in X_test], dtype=torch.long)
X_test_attention_mask = torch.tensor([item[2] for item in X_test], dtype=torch.long)
Y_test = torch.tensor(Y_test)
train_dataset = TensorDataset(X_train_input_ids, X_train_token_type_ids, X_train_attention_mask, Y_train)
test_dataset = TensorDataset(X_test_input_ids, X_test_token_type_ids, X_test_attention_mask, Y_test)
train_dataloader = DataLoader(train_dataset, sampler=RandomSampler(train_dataset), batch_size=TRAIN_BATCH_SIZE)
test_dataloader = DataLoader(test_dataset, sampler=SequentialSampler(test_dataset), batch_size=TEST_BATCH_SIZE)
with open('train_dataloader.pkl', 'wb') as f1:
pickle.dump(train_dataloader, f1)
with open('test_dataloader.pkl', 'wb') as f2:
pickle.dump(test_dataloader, f2)
return train_dataloader, test_dataloader
def train(model, dataloader, optimizer, scheduler, epoch):
model.train()
loss_vec = []
for step, batch in enumerate(dataloader):
batch = tuple(t.to(DEVICE, dtype=torch.long) for t in batch)
input_ids, token_type_ids, attention_mask, labels = batch
outputs = model(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, labels=labels)
loss = outputs[0]
loss_vec.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
if step % LOG_INTERVAL == 0:
print(f'Epoch: {epoch} \t Step:{step} \t Average Loss:{np.mean(loss_vec):.4f}')
loss_vec = []
def test(model, dataloader, mode='batch'):
# 测试
model.eval()
pred_correct_samples, total_samples = 0, 0
original_labels, predicted_labels = [], []
for batch in dataloader:
T_start = time.perf_counter()
batch = tuple(t.to(DEVICE, dtype=torch.long) for t in batch)
input_ids, token_type_ids, attention_mask, labels = batch
with torch.no_grad():
outputs = model(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
_, predictions = torch.max(outputs[0], dim=1)
# out_logits = outputs[0].detach().cpu().numpy()
# predictions = np.argmax(out_logits, axis=1)
T_end = time.perf_counter()
# print(f'inference time (batchsize {TEST_BATCH_SIZE}): {1000 * (T_end - T_start) } ms')
pred_correct_samples += (predictions == labels).sum().item()
total_samples += labels.size(0)
original_labels.extend(labels.tolist())
predicted_labels.extend(predictions.tolist())
accuracy = pred_correct_samples / total_samples
f1 = f1_score(original_labels, predicted_labels, average="macro")
print(f'Accuracy: [{pred_correct_samples}/{total_samples}] {accuracy:.4f}\n')
print(f'f1_score: {f1:.4f}\n')
return accuracy
def benchmark():
# tokenizer = BertTokenizerFast.from_pretrained(MODEL, cache_dir=CACHE_DIRECTORY, local_files_only=True)
# model = torch.load(f'{CHECKPOINT_DIRECTORY}/albert-tiny-zh-finetuned.pth')
docs = ['北京的天气从来都不好,但是我们取就打开了索科洛夫克拉的手放开的撒开了防晒第六课'] * TEST_BATCH_SIZE
query = '北京的天气'
bert_inference_model = BertInferenceModel()
# 性能评测,batchsize=128时, GPU 跑的时间第一次为600ms,后面为80ms
for i in range(10):
T_start = time.perf_counter()
with torch.no_grad():
prediction_type = bert_inference_model(query, docs)
print(prediction_type)
T_end = time.perf_counter()
print(f'inference time (batchsize {TEST_BATCH_SIZE}): {1000 * (T_end - T_start) } ms')
# 保存模型
# torch.onnx.export(bert_inference_model, 'albert-tiny-zh-finetuned-inference.onnx')
def run():
# 1、加载预训练模型和tokenizer
print('start loading pretrain-model and tokenizer')
tokenizer = BertTokenizerFast.from_pretrained(MODEL, cache_dir=CACHE_DIRECTORY, local_files_only=True) # 由於 albert_chinese_tiny 模型沒有用 sentencepiece,用AlbertTokenizer會載不進詞表,因此需要改用BertTokenizer
model = AlbertForSequenceClassification.from_pretrained(MODEL, cache_dir=CACHE_DIRECTORY, local_files_only=True, num_labels=4) # 此model是pytorch模型的子类,可以保存成支持C++调用的形式
model.to(DEVICE)
# print(model)
# 2、获取数据
print('start getting data')
train_dataloader, test_dataloader = generate_data_loaders(load=False, tokenizer=tokenizer)
# 3、配置训练信息
print('start configuring model')
loss_function = torch.nn.CrossEntropyLoss()
warmup_steps = int(0.2 * len(train_dataloader))
no_decay = ['bias', 'LayerNorm.weight']
optimizer_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': WEIGHT_DECAY},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_parameters, lr=LRATE, eps=1e-8)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=len(train_dataloader) * EPOCHS)
# 4、迭代模型
print('start training model')
accuracy_benchmark = 0.0
model_to_save = None
for epoch in range(1, EPOCHS + 1):
train(model, train_dataloader, optimizer, scheduler, epoch)
accuracy = test(model, test_dataloader)
if accuracy > accuracy_benchmark:
model_to_save = model
accuracy_benchmark = accuracy
torch.save(model_to_save, f'{CHECKPOINT_DIRECTORY}/albert-tiny-zh-finetuned-full.pth')
# 保存模型时
torch.save(model_to_save, f'{CHECKPOINT_DIRECTORY}/albert-tiny-zh-finetuned-full_for_low_version.pth', _use_new_zipfile_serialization=False)
print('Size(MB)',os.path.getsize(f'{CHECKPOINT_DIRECTORY}/albert-tiny-zh-finetuned.pth') / (1024*1024))
# 5、模型量化 Ref:https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/quantization/notebooks/bert/Bert-GLUE_OnnxRuntime_quantization.ipynb
print('start quantized model')
pytorch_model = torch.load(f'{CHECKPOINT_DIRECTORY}/albert-tiny-zh-finetuned.pth')
# quantized_pytorch_model = torch.quantization.quantize_dynamic(
# pytorch_model,
# {torch.nn.Linear},
# dtype=torch.qint8
# )
# # test(quantized_pytorch_model, test_dataloader)
# torch.save(quantized_pytorch_model, f'{CHECKPOINT_DIRECTORY}/albert-tiny-zh-finetuned-quantized.pth')
# print('Size(MB)',os.path.getsize(f'{CHECKPOINT_DIRECTORY}/albert-tiny-zh-finetuned-quantized.pth') / (1024*1024))
# 6、模型导出为onnx
if __name__ == '__main__':
run()
# benchmark()
# model = torch.load(f'{CHECKPOINT_DIRECTORY}/albert-tiny-zh-finetuned.pth')
# torch.save(model, f'{CHECKPOINT_DIRECTORY}/albert-tiny-zh-finetuned_for_low_version.pth', _use_new_zipfile_serialization=False)