forked from envoyproxy/envoy
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathguarddog_impl_test.cc
336 lines (292 loc) · 13 KB
/
guarddog_impl_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#include <atomic>
#include <chrono>
#include <memory>
#include "envoy/common/time.h"
#include "common/api/api_impl.h"
#include "common/common/macros.h"
#include "common/common/utility.h"
#include "server/guarddog_impl.h"
#include "test/mocks/common.h"
#include "test/mocks/server/mocks.h"
#include "test/mocks/stats/mocks.h"
#include "test/test_common/simulated_time_system.h"
#include "test/test_common/test_time.h"
#include "test/test_common/utility.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using testing::InSequence;
using testing::NiceMock;
namespace Envoy {
namespace Server {
namespace {
class DebugTestInterlock : public GuardDogImpl::TestInterlockHook {
public:
// GuardDogImpl::TestInterlockHook
virtual void signalFromImpl(MonotonicTime time) {
impl_reached_ = time;
impl_.notifyAll();
}
virtual void waitFromTest(Thread::MutexBasicLockable& mutex, MonotonicTime time)
EXCLUSIVE_LOCKS_REQUIRED(mutex) {
while (impl_reached_ < time) {
impl_.wait(mutex);
}
}
private:
Thread::CondVar impl_;
MonotonicTime impl_reached_;
};
// We want to make sure guard-dog is tested with both simulated time and real
// time, to ensure that it works in production, and that it works in the context
// of integration tests which are much easier to control with simulated time.
enum class TimeSystemType { Real, Simulated };
class GuardDogTestBase : public testing::TestWithParam<TimeSystemType> {
protected:
GuardDogTestBase()
: time_system_(makeTimeSystem()), api_(Api::createApiForTest(stats_store_, *time_system_)) {}
static std::unique_ptr<Event::TestTimeSystem> makeTimeSystem() {
if (GetParam() == TimeSystemType::Real) {
return std::make_unique<Event::GlobalTimeSystem>();
}
ASSERT(GetParam() == TimeSystemType::Simulated);
return std::make_unique<Event::SimulatedTimeSystem>();
}
void initGuardDog(Stats::Scope& stats_scope, const Server::Configuration::Main& config) {
guard_dog_ = std::make_unique<GuardDogImpl>(stats_scope, config, *api_,
std::make_unique<DebugTestInterlock>());
}
std::unique_ptr<Event::TestTimeSystem> time_system_;
Stats::IsolatedStoreImpl stats_store_;
Api::ApiPtr api_;
std::unique_ptr<GuardDogImpl> guard_dog_;
};
INSTANTIATE_TEST_SUITE_P(TimeSystemType, GuardDogTestBase,
testing::ValuesIn({TimeSystemType::Real, TimeSystemType::Simulated}));
/**
* Death test caveat: Because of the way we die gcov doesn't receive coverage
* information from the forked process that is checked for successful death.
* This means that the lines dealing with the calls to PANIC are not seen as
* green in the coverage report. However, rest assured from the results of the
* test: these lines are in fact covered.
*/
class GuardDogDeathTest : public GuardDogTestBase {
protected:
GuardDogDeathTest()
: config_kill_(1000, 1000, 100, 1000), config_multikill_(1000, 1000, 1000, 500) {}
/**
* This does everything but the final forceCheckForTest() that should cause
* death for the single kill case.
*/
void SetupForDeath() {
InSequence s;
initGuardDog(fakestats_, config_kill_);
unpet_dog_ = guard_dog_->createWatchDog(api_->threadFactory().currentThreadId());
guard_dog_->forceCheckForTest();
time_system_->sleep(std::chrono::milliseconds(99)); // 1 ms shy of death.
}
/**
* This does everything but the final forceCheckForTest() that should cause
* death for the multiple kill case.
*/
void SetupForMultiDeath() {
InSequence s;
initGuardDog(fakestats_, config_multikill_);
auto unpet_dog_ = guard_dog_->createWatchDog(api_->threadFactory().currentThreadId());
guard_dog_->forceCheckForTest();
auto second_dog_ = guard_dog_->createWatchDog(api_->threadFactory().currentThreadId());
guard_dog_->forceCheckForTest();
time_system_->sleep(std::chrono::milliseconds(499)); // 1 ms shy of multi-death.
}
NiceMock<Configuration::MockMain> config_kill_;
NiceMock<Configuration::MockMain> config_multikill_;
NiceMock<Stats::MockStore> fakestats_;
WatchDogSharedPtr unpet_dog_;
WatchDogSharedPtr second_dog_;
};
INSTANTIATE_TEST_SUITE_P(TimeSystemType, GuardDogDeathTest,
testing::ValuesIn({TimeSystemType::Real, TimeSystemType::Simulated}));
// These tests use threads, and need to run after the real death tests, so we need to call them
// a different name.
class GuardDogAlmostDeadTest : public GuardDogDeathTest {};
INSTANTIATE_TEST_SUITE_P(
TimeSystemType, GuardDogAlmostDeadTest,
testing::ValuesIn({// TODO(#6464): TimeSystemType::Real -- fails in this suite 30/1000 times.
TimeSystemType::Simulated}));
TEST_P(GuardDogDeathTest, KillDeathTest) {
// Is it German for "The Function"? Almost...
auto die_function = [&]() -> void {
SetupForDeath();
time_system_->sleep(std::chrono::milliseconds(401)); // 400 ms past death.
guard_dog_->forceCheckForTest();
};
// Why do it this way? Any threads must be started inside the death test
// statement and this is the easiest way to accomplish that.
EXPECT_DEATH(die_function(), "");
}
TEST_P(GuardDogAlmostDeadTest, KillNoFinalCheckTest) {
// This does everything the death test does, except allow enough time to
// expire to reach the death panic. The death test does not verify that there
// was not a crash *before* the expected line, so this test checks that.
SetupForDeath();
}
TEST_P(GuardDogDeathTest, MultiKillDeathTest) {
auto die_function = [&]() -> void {
SetupForMultiDeath();
time_system_->sleep(std::chrono::milliseconds(2)); // 1 ms past multi-death.
guard_dog_->forceCheckForTest();
};
EXPECT_DEATH(die_function(), "");
}
TEST_P(GuardDogAlmostDeadTest, MultiKillNoFinalCheckTest) {
// This does everything the death test does not except the final force check that
// should actually result in dying. The death test does not verify that there
// was not a crash *before* the expected line, so this test checks that.
SetupForMultiDeath();
}
TEST_P(GuardDogAlmostDeadTest, NearDeathTest) {
// This ensures that if only one thread surpasses the multiple kill threshold
// there is no death. The positive case is covered in MultiKillDeathTest.
InSequence s;
initGuardDog(fakestats_, config_multikill_);
auto unpet_dog = guard_dog_->createWatchDog(api_->threadFactory().currentThreadId());
auto pet_dog = guard_dog_->createWatchDog(api_->threadFactory().currentThreadId());
// This part "waits" 600 milliseconds while one dog is touched every 100, and
// the other is not. 600ms is over the threshold of 500ms for multi-kill but
// only one is nonresponsive, so there should be no kill (single kill
// threshold of 1s is not reached).
for (int i = 0; i < 6; i++) {
time_system_->sleep(std::chrono::milliseconds(100));
pet_dog->touch();
guard_dog_->forceCheckForTest();
}
}
class GuardDogMissTest : public GuardDogTestBase {
protected:
GuardDogMissTest() : config_miss_(500, 1000, 0, 0), config_mega_(1000, 500, 0, 0) {}
NiceMock<Configuration::MockMain> config_miss_;
NiceMock<Configuration::MockMain> config_mega_;
};
INSTANTIATE_TEST_SUITE_P(TimeSystemType, GuardDogMissTest,
testing::ValuesIn({TimeSystemType::Real, TimeSystemType::Simulated}));
TEST_P(GuardDogMissTest, MissTest) {
// This test checks the actual collected statistics after doing some timer
// advances that should and shouldn't increment the counters.
initGuardDog(stats_store_, config_miss_);
// We'd better start at 0:
EXPECT_EQ(0UL, stats_store_.counter("server.watchdog_miss").value());
auto unpet_dog = guard_dog_->createWatchDog(api_->threadFactory().currentThreadId());
// At 300ms we shouldn't have hit the timeout yet:
time_system_->sleep(std::chrono::milliseconds(300));
guard_dog_->forceCheckForTest();
EXPECT_EQ(0UL, stats_store_.counter("server.watchdog_miss").value());
// This should push it past the 500ms limit:
time_system_->sleep(std::chrono::milliseconds(250));
guard_dog_->forceCheckForTest();
EXPECT_EQ(1UL, stats_store_.counter("server.watchdog_miss").value());
guard_dog_->stopWatching(unpet_dog);
unpet_dog = nullptr;
}
TEST_P(GuardDogMissTest, MegaMissTest) {
// TODO(#6464): This test fails in real-time 1/1000 times, but passes in simulated time.
if (GetParam() == TimeSystemType::Real) {
return;
}
// This test checks the actual collected statistics after doing some timer
// advances that should and shouldn't increment the counters.
initGuardDog(stats_store_, config_mega_);
auto unpet_dog = guard_dog_->createWatchDog(api_->threadFactory().currentThreadId());
// We'd better start at 0:
EXPECT_EQ(0UL, stats_store_.counter("server.watchdog_mega_miss").value());
// This shouldn't be enough to increment the stat:
time_system_->sleep(std::chrono::milliseconds(499));
guard_dog_->forceCheckForTest();
EXPECT_EQ(0UL, stats_store_.counter("server.watchdog_mega_miss").value());
// Just 2ms more will make it greater than 500ms timeout:
time_system_->sleep(std::chrono::milliseconds(2));
guard_dog_->forceCheckForTest();
EXPECT_EQ(1UL, stats_store_.counter("server.watchdog_mega_miss").value());
guard_dog_->stopWatching(unpet_dog);
unpet_dog = nullptr;
}
TEST_P(GuardDogMissTest, MissCountTest) {
// TODO(#6464): This test fails in real-time 9/1000 times, but passes in simulated time.
if (GetParam() == TimeSystemType::Real) {
return;
}
// This tests a flake discovered in the MissTest where real timeout or
// spurious condition_variable wakeup causes the counter to get incremented
// more than it should be.
initGuardDog(stats_store_, config_miss_);
auto sometimes_pet_dog = guard_dog_->createWatchDog(api_->threadFactory().currentThreadId());
// These steps are executed once without ever touching the watchdog.
// Then the last step is to touch the watchdog and repeat the steps.
// This verifies that the behavior is reset back to baseline after a touch.
for (unsigned long i = 0; i < 2; i++) {
EXPECT_EQ(i, stats_store_.counter("server.watchdog_miss").value());
// This shouldn't be enough to increment the stat:
time_system_->sleep(std::chrono::milliseconds(499));
guard_dog_->forceCheckForTest();
EXPECT_EQ(i, stats_store_.counter("server.watchdog_miss").value());
// And if we force re-execution of the loop it still shouldn't be:
guard_dog_->forceCheckForTest();
EXPECT_EQ(i, stats_store_.counter("server.watchdog_miss").value());
// Just 2ms more will make it greater than 500ms timeout:
time_system_->sleep(std::chrono::milliseconds(2));
guard_dog_->forceCheckForTest();
EXPECT_EQ(i + 1, stats_store_.counter("server.watchdog_miss").value());
// Spurious wakeup, we should still only have one miss counted.
guard_dog_->forceCheckForTest();
EXPECT_EQ(i + 1, stats_store_.counter("server.watchdog_miss").value());
// When we finally touch the dog we should get one more increment once the
// timeout value expires:
sometimes_pet_dog->touch();
}
time_system_->sleep(std::chrono::milliseconds(1000));
sometimes_pet_dog->touch();
// Make sure megamiss still works:
EXPECT_EQ(0UL, stats_store_.counter("server.watchdog_mega_miss").value());
time_system_->sleep(std::chrono::milliseconds(1500));
guard_dog_->forceCheckForTest();
EXPECT_EQ(1UL, stats_store_.counter("server.watchdog_mega_miss").value());
guard_dog_->stopWatching(sometimes_pet_dog);
sometimes_pet_dog = nullptr;
}
TEST_P(GuardDogTestBase, StartStopTest) {
NiceMock<Stats::MockStore> stats;
NiceMock<Configuration::MockMain> config(0, 0, 0, 0);
initGuardDog(stats, config);
}
TEST_P(GuardDogTestBase, LoopIntervalNoKillTest) {
NiceMock<Stats::MockStore> stats;
NiceMock<Configuration::MockMain> config(40, 50, 0, 0);
initGuardDog(stats, config);
EXPECT_EQ(guard_dog_->loopIntervalForTest(), 40);
}
TEST_P(GuardDogTestBase, LoopIntervalTest) {
NiceMock<Stats::MockStore> stats;
NiceMock<Configuration::MockMain> config(100, 90, 1000, 500);
initGuardDog(stats, config);
EXPECT_EQ(guard_dog_->loopIntervalForTest(), 90);
}
TEST_P(GuardDogTestBase, WatchDogThreadIdTest) {
NiceMock<Stats::MockStore> stats;
NiceMock<Configuration::MockMain> config(100, 90, 1000, 500);
initGuardDog(stats, config);
auto watched_dog = guard_dog_->createWatchDog(api_->threadFactory().currentThreadId());
EXPECT_EQ(watched_dog->threadId().debugString(),
api_->threadFactory().currentThreadId()->debugString());
guard_dog_->stopWatching(watched_dog);
}
// If this test fails it is because the std::chrono::steady_clock::duration type has become
// nontrivial or we are compiling under a compiler and library combo that makes
// std::chrono::steady_clock::duration require a lock to be atomically modified.
//
// The WatchDog/GuardDog relies on this being a lock free atomic for perf reasons so some workaround
// will be required if this test starts failing.
TEST_P(GuardDogTestBase, AtomicIsAtomicTest) {
std::atomic<std::chrono::steady_clock::duration> atomic_time;
ASSERT_EQ(atomic_time.is_lock_free(), true);
}
} // namespace
} // namespace Server
} // namespace Envoy