forked from wingsweihua/presslight
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
392 lines (338 loc) · 17.4 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import json
import os
import shutil
import xml.etree.ElementTree as ET
from generator import Generator
from construct_sample import ConstructSample
from updater import Updater
from multiprocessing import Process, Pool
# from model_pool import ModelPool
import random
import pickle
import model_test
import pandas as pd
import numpy as np
from math import isnan
import sys
import time
import traceback
class Pipeline:
_LIST_SUMO_FILES = [
"cross.tll.xml",
"cross.car.type.xml",
"cross.con.xml",
"cross.edg.xml",
"cross.net.xml",
"cross.netccfg",
"cross.nod.xml",
"cross.sumocfg",
"cross.typ.xml"
]
@staticmethod
def _set_traffic_file(sumo_config_file_tmp_name, sumo_config_file_output_name, list_traffic_file_name):
# update sumocfg
sumo_cfg = ET.parse(sumo_config_file_tmp_name)
config_node = sumo_cfg.getroot()
input_node = config_node.find("input")
for route_files in input_node.findall("route-files"):
input_node.remove(route_files)
input_node.append(
ET.Element("route-files", attrib={"value": ",".join(list_traffic_file_name)}))
sumo_cfg.write(sumo_config_file_output_name)
def _path_check(self):
# check path
if os.path.exists(self.dic_path["PATH_TO_WORK_DIRECTORY"]):
if self.dic_path["PATH_TO_WORK_DIRECTORY"] != "records/default":
raise FileExistsError
else:
pass
else:
os.makedirs(self.dic_path["PATH_TO_WORK_DIRECTORY"])
if os.path.exists(self.dic_path["PATH_TO_MODEL"]):
if self.dic_path["PATH_TO_MODEL"] != "model/default":
raise FileExistsError
else:
pass
else:
os.makedirs(self.dic_path["PATH_TO_MODEL"])
if os.path.exists(self.dic_path["PATH_TO_PRETRAIN_WORK_DIRECTORY"]):
pass
else:
os.makedirs(self.dic_path["PATH_TO_PRETRAIN_WORK_DIRECTORY"])
if os.path.exists(self.dic_path["PATH_TO_PRETRAIN_MODEL"]):
pass
else:
os.makedirs(self.dic_path["PATH_TO_PRETRAIN_MODEL"])
def _copy_conf_file(self, path=None):
# write conf files
if path == None:
path = self.dic_path["PATH_TO_WORK_DIRECTORY"]
json.dump(self.dic_exp_conf, open(os.path.join(path, "exp.conf"), "w"),
indent=4)
json.dump(self.dic_agent_conf, open(os.path.join(path, "agent.conf"), "w"),
indent=4)
json.dump(self.dic_traffic_env_conf,
open(os.path.join(path, "traffic_env.conf"), "w"), indent=4)
def _copy_sumo_file(self, path=None):
if path == None:
path = self.dic_path["PATH_TO_WORK_DIRECTORY"]
# copy sumo files
for file_name in self._LIST_SUMO_FILES:
shutil.copy(os.path.join(self.dic_path["PATH_TO_DATA"], file_name),
os.path.join(path, file_name))
for file_name in self.dic_exp_conf["TRAFFIC_FILE"]:
shutil.copy(os.path.join(self.dic_path["PATH_TO_DATA"], file_name),
os.path.join(path, file_name))
def _copy_anon_file(self, path=None):
# hard code !!!
if path == None:
path = self.dic_path["PATH_TO_WORK_DIRECTORY"]
# copy sumo files
shutil.copy(os.path.join(self.dic_path["PATH_TO_DATA"], self.dic_exp_conf["TRAFFIC_FILE"][0]),
os.path.join(path, self.dic_exp_conf["TRAFFIC_FILE"][0]))
shutil.copy(os.path.join(self.dic_path["PATH_TO_DATA"], self.dic_traffic_env_conf["TRAFFIC_FILE"]),
os.path.join(path, self.dic_traffic_env_conf["TRAFFIC_FILE"]))
shutil.copy(os.path.join(self.dic_path["PATH_TO_DATA"], self.dic_exp_conf["ROADNET_FILE"]),
os.path.join(path, self.dic_exp_conf["ROADNET_FILE"]))
def _modify_sumo_file(self, path=None):
if path == None:
path = self.dic_path["PATH_TO_WORK_DIRECTORY"]
# modify sumo files
self._set_traffic_file(os.path.join(self.dic_path["PATH_TO_WORK_DIRECTORY"], "cross.sumocfg"),
os.path.join(path, "cross.sumocfg"),
self.dic_exp_conf["TRAFFIC_FILE"])
def __init__(self, dic_exp_conf, dic_agent_conf, dic_traffic_env_conf, dic_path):
# load configurations
self.dic_exp_conf = dic_exp_conf
self.dic_agent_conf = dic_agent_conf
self.dic_traffic_env_conf = dic_traffic_env_conf
self.dic_path = dic_path
# do file operations
self._path_check()
self._copy_conf_file()
if self.dic_traffic_env_conf["SIMULATOR_TYPE"] == 'sumo':
self._copy_sumo_file()
self._modify_sumo_file()
elif self.dic_traffic_env_conf["SIMULATOR_TYPE"] == 'anon':
self._copy_anon_file()
# test_duration
self.test_duration = []
sample_num = 10 if self.dic_traffic_env_conf["NUM_INTERSECTIONS"]>=10 else min(self.dic_traffic_env_conf["NUM_INTERSECTIONS"], 9)
print("sample_num for early stopping:", sample_num)
self.sample_inter_id = random.sample(range(self.dic_traffic_env_conf["NUM_INTERSECTIONS"]), sample_num)
def early_stopping(self, dic_path, cnt_round): # Todo multi-process
print("decide whether to stop")
early_stopping_start_time = time.time()
record_dir = os.path.join(dic_path["PATH_TO_WORK_DIRECTORY"], "test_round", "round_"+str(cnt_round))
ave_duration_all = []
# compute duration
for inter_id in self.sample_inter_id:
try:
df_vehicle_inter_0 = pd.read_csv(os.path.join(record_dir, "vehicle_inter_{0}.csv".format(inter_id)),
sep=',', header=0, dtype={0: str, 1: float, 2: float},
names=["vehicle_id", "enter_time", "leave_time"])
duration = df_vehicle_inter_0["leave_time"].values - df_vehicle_inter_0["enter_time"].values
ave_duration = np.mean([time for time in duration if not isnan(time)])
ave_duration_all.append(ave_duration)
except FileNotFoundError:
error_dir = os.path.join(dic_path["PATH_TO_WORK_DIRECTORY"]).replace("records", "errors")
if not os.path.exists(error_dir):
os.makedirs(error_dir)
f = open(os.path.join(error_dir, "error_info.txt"), "a")
f.write("Fail to read csv of inter {0} in early stopping of round {1}\n".format(inter_id, cnt_round))
f.close()
pass
ave_duration = np.mean(ave_duration_all)
self.test_duration.append(ave_duration)
early_stopping_end_time = time.time()
print("early_stopping time: {0}".format(early_stopping_end_time - early_stopping_start_time) )
if len(self.test_duration) < 30:
return 0
else:
duration_under_exam = np.array(self.test_duration[-15:])
mean_duration = np.mean(duration_under_exam)
std_duration = np.std(duration_under_exam)
max_duration = np.max(duration_under_exam)
if std_duration/mean_duration < 0.1 and max_duration < 1.01 * mean_duration:
return 1
else:
return 0
def generator_wrapper(self, cnt_round, cnt_gen, dic_path, dic_exp_conf, dic_agent_conf, dic_traffic_env_conf,
best_round=None):
generator = Generator(cnt_round=cnt_round,
cnt_gen=cnt_gen,
dic_path=dic_path,
dic_exp_conf=dic_exp_conf,
dic_agent_conf=dic_agent_conf,
dic_traffic_env_conf=dic_traffic_env_conf,
best_round=best_round
)
print("make generator")
generator.generate()
print("generator_wrapper end")
return
def updater_wrapper(self, cnt_round, dic_agent_conf, dic_exp_conf, dic_traffic_env_conf, dic_path, best_round=None, bar_round=None):
updater = Updater(
cnt_round=cnt_round,
dic_agent_conf=dic_agent_conf,
dic_exp_conf=dic_exp_conf,
dic_traffic_env_conf=dic_traffic_env_conf,
dic_path=dic_path,
best_round=best_round,
bar_round=bar_round
)
updater.load_sample_for_agents()
updater.update_network_for_agents()
print("updater_wrapper end")
return
def downsample(self, path_to_log, i):
path_to_pkl = os.path.join(path_to_log, "inter_{0}.pkl".format(i))
with open(path_to_pkl, "rb") as f_logging_data:
try:
logging_data = pickle.load(f_logging_data)
subset_data = logging_data[::10]
os.remove(path_to_pkl)
with open(path_to_pkl, "wb") as f_subset:
try:
pickle.dump(subset_data, f_subset)
except Exception as e:
print("Error occurs when WRITING pickles when down sampling for inter {0}".format(i))
print('traceback.format_exc():\n%s' % traceback.format_exc())
except Exception as e:
print("Error occurs when READING pickles when down sampling for inter {0}".format(i))
print('traceback.format_exc():\n%s' % traceback.format_exc())
def downsample_for_system(self, path_to_log, dic_traffic_env_conf):
for i in range(dic_traffic_env_conf['NUM_INTERSECTIONS']):
self.downsample(path_to_log, i)
def construct_sample_multi_process(self, train_round, cnt_round, batch_size=200):
cs = ConstructSample(path_to_samples=train_round, cnt_round=cnt_round,
dic_traffic_env_conf=self.dic_traffic_env_conf)
if batch_size > self.dic_traffic_env_conf['NUM_INTERSECTIONS']:
batch_size_run = self.dic_traffic_env_conf['NUM_INTERSECTIONS']
else:
batch_size_run = batch_size
process_list = []
for batch in range(0, self.dic_traffic_env_conf['NUM_INTERSECTIONS'], batch_size_run):
start = batch
stop = min(batch + batch_size, self.dic_traffic_env_conf['NUM_INTERSECTIONS'])
process_list.append(Process(target=self.construct_sample_batch, args=(cs, start, stop)))
for t in process_list:
t.start()
for t in process_list:
t.join()
def construct_sample_batch(self, cs, start,stop):
for inter_id in range(start, stop):
print("make construct_sample_wrapper for ", inter_id)
cs.make_reward(inter_id)
def run(self, multi_process=False):
best_round, bar_round = None, None
f_time = open(os.path.join(self.dic_path["PATH_TO_WORK_DIRECTORY"],"running_time.csv"),"w")
f_time.write("generator_time\tmaking_samples_time\tupdate_network_time\ttest_evaluation_times\tall_times\n")
f_time.close()
# trainf
for cnt_round in range(self.dic_exp_conf["NUM_ROUNDS"]):
print("round %d starts" % cnt_round)
round_start_time = time.time()
process_list = []
print("============== generator =============")
generator_start_time = time.time()
if multi_process:
for cnt_gen in range(self.dic_exp_conf["NUM_GENERATORS"]):
p = Process(target=self.generator_wrapper,
args=(cnt_round, cnt_gen, self.dic_path, self.dic_exp_conf,
self.dic_agent_conf, self.dic_traffic_env_conf, best_round)
)
print("before")
p.start()
print("end")
process_list.append(p)
print("before join")
for i in range(len(process_list)):
p = process_list[i]
print("generator %d to join" % i)
p.join()
print("generator %d finish join" % i)
print("end join")
else:
for cnt_gen in range(self.dic_exp_conf["NUM_GENERATORS"]):
self.generator_wrapper(cnt_round=cnt_round,
cnt_gen=cnt_gen,
dic_path=self.dic_path,
dic_exp_conf=self.dic_exp_conf,
dic_agent_conf=self.dic_agent_conf,
dic_traffic_env_conf=self.dic_traffic_env_conf,
best_round=best_round)
generator_end_time = time.time()
generator_total_time = generator_end_time - generator_start_time
print("============== make samples =============")
# make samples and determine which samples are good
making_samples_start_time = time.time()
train_round = os.path.join(self.dic_path["PATH_TO_WORK_DIRECTORY"], "train_round")
if not os.path.exists(train_round):
os.makedirs(train_round)
cs = ConstructSample(path_to_samples=train_round, cnt_round=cnt_round,
dic_traffic_env_conf=self.dic_traffic_env_conf)
cs.make_reward_for_system()
# EvaluateSample()
making_samples_end_time = time.time()
making_samples_total_time = making_samples_end_time - making_samples_start_time
print("============== update network =============")
update_network_start_time = time.time()
if self.dic_exp_conf["MODEL_NAME"] in self.dic_exp_conf["LIST_MODEL_NEED_TO_UPDATE"]:
if multi_process:
p = Process(target=self.updater_wrapper,
args=(cnt_round,
self.dic_agent_conf,
self.dic_exp_conf,
self.dic_traffic_env_conf,
self.dic_path,
best_round,
bar_round))
p.start()
print("update to join")
p.join()
print("update finish join")
else:
self.updater_wrapper(cnt_round=cnt_round,
dic_agent_conf=self.dic_agent_conf,
dic_exp_conf=self.dic_exp_conf,
dic_traffic_env_conf=self.dic_traffic_env_conf,
dic_path=self.dic_path,
best_round=best_round,
bar_round=bar_round)
if not self.dic_exp_conf["DEBUG"]:
for cnt_gen in range(self.dic_exp_conf["NUM_GENERATORS"]):
path_to_log = os.path.join(self.dic_path["PATH_TO_WORK_DIRECTORY"], "train_round",
"round_" + str(cnt_round), "generator_" + str(cnt_gen))
self.downsample_for_system(path_to_log,self.dic_traffic_env_conf)
update_network_end_time = time.time()
update_network_total_time = update_network_end_time - update_network_start_time
print("============== test evaluation =============")
test_evaluation_start_time = time.time()
if multi_process:
p = Process(target=model_test.test,
args=(self.dic_path["PATH_TO_MODEL"], cnt_round, self.dic_exp_conf["RUN_COUNTS"], self.dic_traffic_env_conf, False))
p.start()
if self.dic_exp_conf["EARLY_STOP"]:
p.join()
else:
model_test.test(self.dic_path["PATH_TO_MODEL"], cnt_round, self.dic_exp_conf["RUN_COUNTS"], self.dic_traffic_env_conf, if_gui=False)
test_evaluation_end_time = time.time()
test_evaluation_total_time = test_evaluation_end_time - test_evaluation_start_time
print('============== early stopping =============')
if self.dic_exp_conf["EARLY_STOP"]:
flag = self.early_stopping(self.dic_path, cnt_round)
if flag == 1:
print("early stopping!")
print("training ends at round %s" % cnt_round)
break
print("Generator time: ",generator_total_time)
print("Making samples time:", making_samples_total_time)
print("update_network time:", update_network_total_time)
print("test_evaluation time:", test_evaluation_total_time)
print("round {0} ends, total_time: {1}".format(cnt_round, time.time()-round_start_time))
f_time = open(os.path.join(self.dic_path["PATH_TO_WORK_DIRECTORY"],"running_time.csv"),"a")
f_time.write("{0}\t{1}\t{2}\t{3}\t{4}\n".format(generator_total_time,making_samples_total_time,
update_network_total_time,test_evaluation_total_time,
time.time()-round_start_time))
f_time.close()