-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlocal_funcs.py
557 lines (437 loc) · 20.2 KB
/
local_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
'''
Local functions that we might want to use in multiple scripts throughout the
Music-Coronavirus project
# Lauren Fink
'''
import os
from IPython.display import Image, HTML
import numpy as np
from collections import Counter
import seaborn as sns
import pandas as pd
import math
import local_dicts
import statistics
import matplotlib.pyplot as plt
# ---------------------------------------------------------------------------- #
# Cleaning Functions
# ---------------------------------------------------------------------------- #
''' Check for any word in specific col of a data frame.
Input:
- string to check for
- dataframe
- column to check
Output:
- indices of rows containing the string'''
def check_for_word(val, df, col):
a = df.index[df[col].str.contains(val, na=False)]
if a.empty:
return 'not found'
elif len(a) > 1:
return a.tolist()
else:
return a.item()
#------------------------------------------------------------------------------#
'''Function of LW to determine if any values are outliers.
# A good *a priori* rationale to delete participants is if they are outliers in some pre-defined way.
# Here, outlier is defined as a value more than 3 interquartile ranges away from the mean.
Takes a dataframe df of features and returns a list of the indices
corresponding to the observations containing more than n outliers according
to the Tukey method.'''
def detect_outliers(df, n, features):
outlier_indices = []
# iterate over features(columns)
for col in features:
# 1st quartile (25%)
Q1 = np.percentile(df[col], 25)
# 3rd quartile (75%)
Q3 = np.percentile(df[col], 75)
# Interquartile range (IQR)
IQR = Q3 - Q1
# outlier step
outlier_step = 3 * IQR
# Determine a list of indices of outliers for feature col
outlier_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step )].index
# append the found outlier indices for col to the list of outlier indices
outlier_indices.extend(outlier_list_col)
# select observations containing more than 2 outliers
outlier_indices = Counter(outlier_indices)
multiple_outliers = list( k for k, v in outlier_indices.items() if v > n )
return multiple_outliers
#------------------------------------------------------------------------------#
'''
Clean up free responses
Input:
- dataframe
- column to clean
Output:
- cleaned column
Clean the text columns using these steps:
- Make everything lower case
- Replace new line symbols (\n) with dashes (-) to make it easier to read
- Delete non-ASCII characters
- Remove some characters like * and „ because sometimes Excel doesn't handle these characters well
- Remove the white spaces at the beginning and ends of responses
'''
def textCleaning(data, colName):
colName = data.columns.get_loc(colName)
data.iloc[:,colName] = data.iloc[:,colName].str.lower()
data.iloc[:,colName] = data.iloc[:,colName].str.replace(r'\n', '-', regex=True)
data.iloc[:,colName] = data.iloc[:,colName].str.replace(r'[^\x00-\x7f]', '')
data.iloc[:,colName] = data.iloc[:,colName].str.replace(r"[\/*„:;?<>{}]", "", regex=True)
data.iloc[:,colName] = data.iloc[:,colName].str.strip()
return(data.iloc[:,colName])
#------------------------------------------------------------------------------#
def melt_category(df, key):
# function to organize by question with sub questions
# key input should be the unique header in the col name, e.g. 'Activities_'
# output will be long from df with country still included
# get all col names with this keyword
newcols = [col for col in df.columns if col.startswith(key)]
# deal with some bad keys (TODO could consider renaming all cols but don't want to break other code)
if key == 'Demographics_Health_':
newcols = [x for x in newcols if not x.startswith('Demographics_Health_Infected')]
# extract relevant data
newcols.append('Demographics_COVID_Current Country') # keep country
new_df = df[newcols]
# clean up any missing values
new_df = new_df.replace({99:np.nan})
new_df = new_df.replace({0:np.nan})
# melt to long form for future plotting
final_df = new_df.melt(id_vars='Demographics_COVID_Current Country')
return final_df
#------------------------------------------------------------------------------#
# Ranking Functions
#------------------------------------------------------------------------------#
# ---------------------------------------------------------------------------- #
''' Function to rank items in category
Input:
- df, category keyword (e.g. 'Activities_'), new column label, flag to rank based on mean change score or absolute value of change score
Output:
- column of rankings, rank at which the mean switches from positive to negative (if any)
'''
def rank_cols(data, keyword_str, colstring, abs_flag):
ml = [col for col in data.columns if col.startswith(keyword_str)]
mld = data[ml]
mld = mld.dropna()
mld = mld.reset_index(drop = True)
mld = mld - 4
# Display size of data frame and percent responses no change
print(mld.shape)
print('percent no change:', round( (mld.isin([0]).sum().sum() / (mld.shape[0]*mld.shape[1]))*100 , 4 ) )
# if user wants ranks from absolute values, rather than change scores with directionality
if abs_flag:
mld = abs(mld)
ranked = mld.mean().rank(ascending=False)
ranked = pd.DataFrame(ranked, columns=[colstring])
means = mld.mean()
# check for means that are negative
if any(means < 0):
#print('Some means < 0')
changepoint = max(means[means<0]) # find value where we switch to negative
changeind = list(means).index(changepoint)
changerank = ranked[colstring][changeind]
else:
changerank = 99 # no change flag
return ranked, changerank
# ---------------------------------------------------------------------------- #
'''
Function to return rankings to user
Input:
- df, category keyword (e.g. 'Activities_')
Output:
- rankings for each country
'''
def return_ranks(data, keyword):
print('All countries')
all_ranks_change, chgrank = rank_cols(data, keyword, 'All_Countries', 0)\
# loop through all countries
countries = data['Country_Country Name'].unique()
for i in countries:
print('\n',i)
newdata = data[data['Country_Country Name'] == i]
ranked_change = rank_cols(newdata, keyword, i, 0)[0]
all_ranks_change = all_ranks_change.join(ranked_change)
# drop all country rank (don't need)
all_ranks_change = all_ranks_change.drop(columns = ['All_Countries'], axis = 1)
# remove tag from index labels
all_ranks_change.index = all_ranks_change.index.str.split(keyword).str[1].str.lower()
return all_ranks_change, chgrank
# ---------------------------------------------------------------------------- #
''' Function to plot rankings
Input:
- df of ranks for each country in one category,
- category keyword (e.g. 'Activities_'),
- rank at which sign changes,
- flag whether using abs value or not
- figure file type to output (e.g. '.png')
- resolution of figure in dpi (e.g. 300)
- flag whether to save figure or not
Output:
- plot of ranks for each country, sorted by median rank across countries
'''
def plot_ranks(ranked_df, keyword, changerank, abs_flag, ftype, dpi, savefigure):
# Organize data for plotting
means = ranked_df.median(axis=1)
means.sort_values(ascending=True, inplace=True)
df = ranked_df
df['item'] = ranked_df.index
df = df.melt(id_vars='item')
# Plot
f,ax = plt.subplots(figsize=(11,means.shape[0]/2))
ax = sns.boxplot(x='value', y='item', data=df, order=means.index, color='white');
ax = sns.swarmplot(y=df['item'], x=df['value'], hue=df['variable'], order=means.index, size=6)
# Edit plot elements (want labels to be more meaningful for paper)
ax.set_yticks(np.arange(0, means.shape[0], step=1))
ylabs = means.index.tolist()
new_ylabs = []
if keyword == 'Activities_':
for string in ylabs:
alphlower = {k.lower(): v for k, v in local_dicts.activities_rename_dict.items()}
new_ylabs.append(alphlower[string])
elif keyword == 'Music Listening_Functions_':
for string in ylabs:
alphlower = {k.lower(): v for k, v in local_dicts.mus_lis_funcs_rename_dict.items()}
new_ylabs.append(alphlower[string])
elif keyword == 'Making Music_Functions_':
for string in ylabs:
alphlower = {k.lower(): v for k, v in local_dicts.mus_lis_funcs_rename_dict.items()}
new_ylabs.append(alphlower[string])
elif keyword == 'Music Listening_Situations_':
for string in ylabs:
alphlower = {k.lower(): v for k, v in local_dicts.mus_lis_situations_rename_dict.items()}
new_ylabs.append(alphlower[string])
elif keyword == 'Music Listening_Formats_':
for string in ylabs:
alphlower = {k.lower(): v for k, v in local_dicts.mus_list_formats_rename_dict.items()}
new_ylabs.append(alphlower[string])
elif keyword == 'Making Music_Situations_':
for string in ylabs:
alphlower = {k.lower(): v for k, v in local_dicts.mus_make_forms.items()}
new_ylabs.append(alphlower[string])
else:
for string in ylabs:
new_string = string.replace(" i ", " I ")
new_ylabs.append(new_string)
ax.set_yticklabels(new_ylabs, ha='right');
ax.set(ylabel=keyword.replace("_", " "), xlabel='Rank')#,title='Ranked change in importance, median-sorted');
plt.xticks(np.arange(1, means.shape[0], step=5))
ax.grid(False)
sns.despine(left=True, bottom=True)
ax.invert_xaxis()
if 0 < changerank < 99:
ax.axvline(x=changerank-.1, linestyle="dotted", color='0.5')
if changerank == 0:
ax.axvline(x=1, linestyle="dotted", color='0.5')
leg = ax.get_legend()
leg.set_title("Country")
if means.shape[0]/2.5 >= 10:
plt.legend(fontsize='medium', title='Country')
else:
plt.legend(fontsize='x-small', title='Country')
f.tight_layout()
# Create filename for plot
if abs_flag:
s = '_ranked_abs'
else:
s = '_ranked'
savestr = 'Figures/' + keyword + s + ftype
#ax.get_legend().remove()
if savefigure:
f.savefig(savestr, dpi=dpi);
return f, ax
# ---------------------------------------------------------------------------- #
''' Function to print spearman rank correlations, across countries / ratings
Input:
- df of ranks for each country in one category
Output:
- table and visualization of correlations
'''
def print_rank_corr(df):
res = df.corr(method='spearman')
# Plot
cmap = sns.diverging_palette(220, 10, as_cmap=True)
ax = sns.heatmap(res, cmap=cmap,
square=True, linewidths=.5, cbar_kws={"shrink": .5}, annot=True, vmin=-1, vmax=1, center=0)
print('\nMean corr coef:', np.nanmean(res.values[np.triu_indices_from(res.values,1)]), '\n')
print(df.rcorr(method='spearman', upper='pval', padjust='fdr_bh', stars = False))
#------------------------------------------------------------------------------#
# Additional Plotting Functions
#------------------------------------------------------------------------------#
'''
function to map numeric categorical data back onto labels and plot sns countplot
Input: data frame, column of interest, x axis label to plot, title to plot, flag whether plot should be percent or count (1 if percent)
Output: figure with sns countplot for var of interest
'''
def map_and_plot(df, col, xlab, title, percent):
if percent:
ax = sns.barplot(x=col, y=col, data=df, estimator=lambda x: len(x) / len(df) * 100)
if 'edu' in col:
ax.set(xticklabels=local_dicts.edu_dict[col].values())
else:
ax.set(xticklabels=local_dicts.answer_code_dict[col].values())
ax.set(xlabel=xlab, ylabel='Percent',title=title)
else:
newcol = df[col].map(local_dicts.answer_code_dict[col])
newcol.fillna('Other', inplace = True)
ax = sns.countplot(newcol)
ax.set(xlabel=xlab, ylabel='Count',title=title)
for p in ax.patches:
ax.text(p.get_x() + p.get_width()/2., p.get_height(), '{0:.2f}'.format(p.get_height()),
fontsize=12, color='black', ha='center', va='bottom')
sns.despine()
return ax
#------------------------------------------------------------------------------#
'''function to map numeric categorical data back onto labels and plot sns countplot
Input: data frame, column of interest, x axis label to plot, title to plot, flag whether plot should be percent or count (1 if percent)
Output: figure with sns countplot for var of interest, by country
'''
def map_and_plot_byCountry(df, col, xlab, title, ptype, standard):
# Specify ptype as:
# - perc = percentage of col of interest for each country
# - mean = mean and std of col of interest for each country
# - standard is flag as to whether we should look in dictionary for x labels (no if standard = 1)
# initialize figure
f,ax = plt.subplots(figsize=(11, 9))
# map country to string (easier for plot legends)
df['Country'] = df['Demographics_COVID_Current Country'].map(local_dicts.answer_code_dict['Demographics_COVID_Current Country'])
df = df.sort_values(by=['Country']) # do this to ensure country always plotted in same color
# plot by requested type
# percentage by country
if ptype == 'perc' or ptype == 'count':
if ptype == 'perc':
#ax = sns.barplot(x=col, y=col, data=df, hue='Country', estimator=lambda x: len(x) / len(df) * 100)
#ax = sns.barplot(x=col, y=col, data=df, estimator=lambda x: len(x) / len(df) * 100)
# AHH NOTE TODO CHECK - can't do length df because need to do len by country
prop_df = (df[col]
.groupby(df['Country'])
.value_counts(normalize=True)
.rename('prop')
.reset_index())
prop_df['prop'] = prop_df['prop'] * 100
ax = sns.barplot(x=col, y='prop', hue='Country', data=prop_df)
ylab = 'Percent'
if ptype == 'count':
ax = sns.countplot(x=col, data=df, hue='Country')
ylab = 'Count'
# print number at top of bar
for p in ax.patches:
ax.text(p.get_x() + p.get_width()/2., p.get_height(), '{0:.1f}'.format(p.get_height()),
fontsize=12, color='black', ha='center', va='bottom')
elif ptype == 'violin':
ax = sns.violinplot(x='Country', y=col, data=df)
ylab = 'Mean Rating'
# mean by country
elif ptype == 'mean':
# md = pd.melt(df, id_vars="Country", value_vars=col)
# ax = sns.barplot(x="value", y="value", hue='Country', data=md);
ax = sns.barplot(x='Country', y=col, data=df)#, hue='Country')#, estimator=lambda x: statistics.mean(x))
ax.set(ylabel='Mean Rating',title=title)
else:
raise Warning('unrecognized plot type')
# remap labels if this is education plot
if not standard:
if 'edu' in col:
ax.set(xticklabels=local_dicts.edu_dict[col].values())
else:
ax.set(xticklabels=local_dicts.answer_code_dict[col].values())
ax.set(xlabel=xlab, ylabel=ylab,title=title)
# add additional elements to plot
sns.despine()
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha='right');
f.tight_layout()
# legend
# TODO - only deal with legend if we have one
# leg = ax.get_legend()
# leg.set_title("Country")
return f, ax
# ---------------------------------------------------------------------------- #
# Correlation matrix
def corr_mat_plot(df):
corr = df.corr()
# Generate a mask for the upper triangle
mask = np.triu(np.ones_like(corr, dtype=np.bool))
# Plot
cmap = sns.diverging_palette(220, 10, as_cmap=True)
ax = sns.heatmap(corr, mask=mask, cmap=cmap,
square=True, linewidths=.5, cbar_kws={"shrink": .5}, annot=True, vmin=-1, vmax=1, center=0)
return ax
# ---------------------------------------------------------------------------- #
# horizontal bar plot
def hor_bar_plot(df, ylab, title, scale_dict, dictmin, dictmax):
ax = sns.barplot(x="value", y="variable", data=pd.melt(df));
ax.set(xlabel='Rating', ylabel=ylab,title=title);
#ax.set(xlim=(1,7))
xlabs = list(scale_dict.values())
xlabs = xlabs[dictmin:dictmax]
ax.set(xticklabels=xlabs);
ax.set_xticklabels(ax.get_xticklabels(), rotation=90);
return ax
# ---------------------------------------------------------------------------- #
# horizontal bar plot
def hor_bar_plot_byCountry(df, ylab, title, scale_dict, dictmin, dictmax):
# NOTE: using dictmin and max because some scales have ends that we might not want to keep, like "never do this" or "prefer not to say"
# TODO: could grab values from scale dict right? although still might want more control
# initialize figure
f,ax = plt.subplots(figsize=(11, 45))
# map country to string (easier for plot legends)
df['Demographics_COVID_Current Country'] = df['Demographics_COVID_Current Country'].map(local_dicts.answer_code_dict['Demographics_COVID_Current Country'])
df = df.sort_values(by=['Demographics_COVID_Current Country'])
# plot
ax = sns.barplot(x="value", y="variable", hue = 'Demographics_COVID_Current Country', data=df);
# add labels
ax.set(xlabel='Rating', ylabel=ylab,title=title);
xlabs = list(scale_dict.values())
xlabs = xlabs[dictmin:dictmax]
ax.set(xticklabels=xlabs);
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha='right');
# legend
leg = ax.get_legend()
leg.set_title("Country")
return f, ax
def hor_bar_plot_byCountry_and_musBehave(len, wid, df1_playing, df2_listening, ylab, title, scale_dict, dictmin, dictmax):
# TODO
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(len, wid))
plt.subplot(121)
ax1 = sns.barplot(x="value", y="variable", data=df1_playing, hue = 'Demographics_COVID_Current Country')#, ax = ax2)
plt.subplot(122)
ax2 = sns.barplot(x="value", y="variable", data=df2_listening, hue = 'Demographics_COVID_Current Country')#, ax = ax1)
#ax1.set(xlabel='Rating', ylabel='Function',title='Functions of music listening and playing');
ax1.set(xlim=(1,7))
ax1.set(xlabel='Rating', ylabel=ylab,title=title);
xlabs = list(scale_dict.values())
xlabs = xlabs[dictmin:dictmax]
ax1.set(xticklabels=xlabs);
ax1.set_xticklabels(ax1.get_xticklabels(), rotation=45, ha='right');
# legend
leg = ax1.get_legend()
leg.set_title("Country")
# clean up
return f, ax1, ax2
# ---------------------------------------------------------------------------- #
# print value counts
# important to have these output in question text order, otherwise jarbled. That is why dropping NA (because no NA mapping in answer code dicts)
def map_and_print(df, col, printstr):
print(printstr, '\n')
keys = df[col].value_counts(normalize=True, sort=False).sort_index().keys().tolist()
counts = df[col].value_counts(normalize=True, sort=False).sort_index().tolist()
for k,c in zip(keys,counts):
print(k, ':', local_dicts.answer_code_dict[col][k], ':', round(c*100,2), '%', '\n')
print('\n')
# ---------------------------------------------------------------------------- #
# View tab (Taken from Martin: https://stackoverflow.com/users/2575273/martin)
def View(df):
css = """<style>
table { border-collapse: collapse; border: 3px solid #eee; }
table tr th:first-child { background-color: #eeeeee; color: #333; font-weight: bold }
table thead th { background-color: #eee; color: #000; }
tr, th, td { border: 1px solid #ccc; border-width: 1px 0 0 1px; border-collapse: collapse;
padding: 3px; font-family: monospace; font-size: 10px }</style>
"""
s = '<script type="text/Javascript">'
s += 'var win = window.open("", "Title", "toolbar=no, location=no, directories=no, status=no, menubar=no, scrollbars=yes, resizable=yes, width=780, height=200, top="+(screen.height-400)+", left="+(screen.width-840));'
s += 'win.document.body.innerHTML = \'' + (df.to_html() + css).replace("\n",'\\') + '\';'
s += '</script>'
return(HTML(s+css))
files = os.listdir(os.curdir)