@@ -44,65 +44,17 @@ func.func @torch.aten.matmul.2d(%arg0: !torch.vtensor<[8,16],f32>, %arg1: !torch
44
44
// -----
45
45
46
46
// CHECK-LABEL: func.func @torch.aten.matmul.4d
47
- // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[1,2,32,400],f32>,
48
- // CHECK-SAME: %[[ARG1:.*]]: !torch.vtensor<[1,2,400,32],f32>) -> !torch.vtensor<[1,2,400,400],f32> {
49
- // CHECK: %[[VAL_0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[1,2,32,400],f32> -> tensor<1x2x32x400xf32>
50
- // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[ARG1]] : !torch.vtensor<[1,2,400,32],f32> -> tensor<1x2x400x32xf32>
51
- // CHECK: %[[VAL_2:.*]] = arith.constant 1 : index
52
- // CHECK: %[[VAL_3:.*]] = arith.constant 2 : index
53
- // CHECK: %[[VAL_4:.*]] = arith.constant 1 : index
54
- // CHECK: %[[VAL_5:.*]] = arith.constant 2 : index
55
- // CHECK: %[[VAL_6:.*]] = arith.constant 2 : index
56
- // CHECK: %[[VAL_7:.*]] = arith.constant 0 : index
57
- // CHECK: %[[VAL_8:.*]] = arith.constant 1 : index
58
- // CHECK: %[[VAL_9:.*]] = arith.constant 0 : index
59
- // CHECK: %[[VAL_10:.*]] = arith.constant 1 : index
60
- // CHECK: %[[VAL_11:.*]] = arith.constant 1 : index
61
- // CHECK: %[[VAL_12:.*]] = arith.constant 2 : index
62
- // CHECK: %[[VAL_13:.*]] = arith.constant 400 : index
63
- // CHECK: %[[VAL_14:.*]] = arith.constant 3 : index
64
- // CHECK: %[[VAL_15:.*]] = arith.constant 32 : index
65
- // CHECK: %[[VAL_16:.*]] = arith.constant 2 : index
66
- // CHECK: %[[VAL_17:.*]] = arith.constant 32 : index
67
- // CHECK: %[[VAL_18:.*]] = arith.constant 3 : index
68
- // CHECK: %[[VAL_19:.*]] = arith.constant 400 : index
69
- // CHECK: %[[VAL_20:.*]] = arith.constant 32 : i64
70
- // CHECK: %[[VAL_21:.*]] = arith.constant 32 : i64
71
- // CHECK: %[[VAL_22:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_21]] : i64
72
- // CHECK: cf.assert %[[VAL_22]], "mismatching contracting dimension"
73
- // CHECK: %[[VAL_23:.*]] = arith.constant 1 : i64
74
- // CHECK: %[[VAL_24:.*]] = arith.constant 1 : i64
75
- // CHECK: %[[VAL_25:.*]] = arith.constant 2 : i64
76
- // CHECK: %[[VAL_26:.*]] = arith.constant 2 : i64
77
- // CHECK: %[[VAL_27:.*]] = arith.constant 400 : i64
78
- // CHECK: %[[VAL_28:.*]] = arith.constant 32 : i64
79
- // CHECK: %[[VAL_29:.*]] = arith.constant 32 : i64
80
- // CHECK: %[[VAL_30:.*]] = arith.constant 400 : i64
81
- // CHECK: %[[VAL_31:.*]] = arith.constant 0 : i64
82
- // CHECK: %[[VAL_32:.*]] = arith.constant 0 : index
83
- // CHECK: %[[VAL_33:.*]] = arith.constant 1 : index
84
- // CHECK: %[[VAL_34:.*]] = tensor.empty() : tensor<1x2x400x32xf32>
85
- // CHECK: %[[VAL_35:.*]] = tensor.cast %[[VAL_1]] : tensor<1x2x400x32xf32> to tensor<1x2x400x32xf32>
86
- // CHECK: %[[VAL_36:.*]] = arith.constant 0 : i64
87
- // CHECK: %[[VAL_37:.*]] = arith.constant 0 : index
88
- // CHECK: %[[VAL_38:.*]] = arith.constant 1 : index
89
- // CHECK: %[[VAL_39:.*]] = tensor.empty() : tensor<1x2x32x400xf32>
90
- // CHECK: %[[VAL_40:.*]] = tensor.cast %[[VAL_0]] : tensor<1x2x32x400xf32> to tensor<1x2x32x400xf32>
91
- // CHECK: %[[VAL_41:.*]] = tensor.collapse_shape %[[VAL_35]] {{\[\[}}0, 1], [2], [3]] : tensor<1x2x400x32xf32> into tensor<2x400x32xf32>
92
- // CHECK: %[[VAL_42:.*]] = tensor.collapse_shape %[[VAL_40]] {{\[\[}}0, 1], [2], [3]] : tensor<1x2x32x400xf32> into tensor<2x32x400xf32>
93
- // CHECK: %[[VAL_43:.*]] = arith.constant 2 : index
94
- // CHECK: %[[VAL_44:.*]] = tensor.empty() : tensor<2x400x400xf32>
95
- // CHECK: %[[VAL_45:.*]] = arith.constant 0.000000e+00 : f32
96
- // CHECK: %[[VAL_46:.*]] = linalg.fill ins(%[[VAL_45]] : f32) outs(%[[VAL_44]] : tensor<2x400x400xf32>) -> tensor<2x400x400xf32>
97
- // CHECK: %[[VAL_47:.*]] = linalg.batch_matmul ins(%[[VAL_41]], %[[VAL_42]] : tensor<2x400x32xf32>, tensor<2x32x400xf32>) outs(%[[VAL_46]] : tensor<2x400x400xf32>) -> tensor<2x400x400xf32>
98
- // CHECK: %[[VAL_48:.*]] = tensor.expand_shape %[[VAL_47]] {{\[\[}}0, 1], [2], [3]] output_shape [1, 2, 400, 400] : tensor<2x400x400xf32> into tensor<1x2x400x400xf32>
99
- // CHECK: %[[VAL_49:.*]] = tensor.cast %[[VAL_48]] : tensor<1x2x400x400xf32> to tensor<1x2x400x400xf32>
100
- // CHECK: %[[VAL_50:.*]] = torch_c.from_builtin_tensor %[[VAL_49]] : tensor<1x2x400x400xf32> -> !torch.vtensor<[1,2,400,400],f32>
101
- // CHECK: return %[[VAL_50]] : !torch.vtensor<[1,2,400,400],f32>
102
- // CHECK: }
47
+ // CHECK-DAG: %[[LHS:.+]] = torch_c.to_builtin_tensor %arg0 : !torch.vtensor<[1,2,32,400],f32> -> tensor<1x2x32x400xf32>
48
+ // CHECK-DAG: %[[RHS:.+]] = torch_c.to_builtin_tensor %arg1 : !torch.vtensor<[1,2,400,32],f32> -> tensor<1x2x400x32xf32>
49
+ // CHECK-DAG: %[[LHS_CAST:.*]] = tensor.cast %[[LHS]] : tensor<1x2x32x400xf32> to tensor<1x2x32x400xf32>
50
+ // CHECK-DAG: %[[RHS_CAST:.*]] = tensor.cast %[[RHS]] : tensor<1x2x400x32xf32> to tensor<1x2x400x32xf32>
51
+ // CHECK-DAG: %[[COLLAPSED_LHS:.+]] = tensor.collapse_shape %[[LHS_CAST]] {{\[\[}}0, 1], [2], [3]] : tensor<1x2x32x400xf32> into tensor<2x32x400xf32>
52
+ // CHECK-DAG: %[[COLLAPSED_RHS:.+]] = tensor.collapse_shape %[[RHS_CAST]] {{\[\[}}0, 1], [2], [3]] : tensor<1x2x400x32xf32> into tensor<2x400x32xf32>
53
+ // CHECK: %[[MATMUL:.+]] = linalg.batch_matmul ins(%[[COLLAPSED_RHS]], %[[COLLAPSED_LHS]] : tensor<2x400x32xf32>, tensor<2x32x400xf32>) outs(%{{.*}} : tensor<2x400x400xf32>) -> tensor<2x400x400xf32>
54
+ // CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[MATMUL]] {{\[\[}}0, 1], [2], [3]] output_shape [1, 2, 400, 400] : tensor<2x400x400xf32> into tensor<1x2x400x400xf32>
103
55
func.func @torch.aten.matmul.4d (%arg0: !torch.vtensor <[1 ,2 ,32 ,400 ],f32 >, %arg1: !torch.vtensor <[1 ,2 ,400 ,32 ],f32 >) -> !torch.vtensor <[1 ,2 ,400 ,400 ],f32 > {
104
- %0 = torch.aten.matmul %arg1 , %arg0 : !torch.vtensor <[1 ,2 ,400 ,32 ],f32 >, !torch.vtensor <[1 ,2 ,32 ,400 ],f32 > -> !torch.vtensor <[1 ,2 ,400 ,400 ],f32 >
105
- return %0 : !torch.vtensor <[1 ,2 ,400 ,400 ],f32 >
56
+ %0 = torch.aten.matmul %arg1 , %arg0 : !torch.vtensor <[1 ,2 ,400 ,32 ],f32 >, !torch.vtensor <[1 ,2 ,32 ,400 ],f32 > -> !torch.vtensor <[1 ,2 ,400 ,400 ],f32 >
57
+ return %0 : !torch.vtensor <[1 ,2 ,400 ,400 ],f32 >
106
58
}
107
59
108
60
// -----
0 commit comments