forked from LechengKong/MAG-GNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
154 lines (124 loc) · 4.13 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import time
import torch
from multiprocessing import Array, Manager
from dgl.dataloading.dataloader import GraphCollator
from collections import deque, namedtuple
from gp.utils.datasets import DatasetWithCollate
"""
Following namedtuple makes data collating nad referencing easier
"""
GraphLabelNT = namedtuple("GraphLabelNT", ["g", "labels", "index"])
ReplayBatch = namedtuple(
"ReplayBatch",
["g", "plabel", "nlabel", "select_node", "move_node", "reward"],
)
GraphNMLabel = namedtuple("GraphNMLabel", ["g", "rlabel", "labels", "index"])
ReplayBatchHist = namedtuple(
"ReplayBatchHist",
[
"g",
"plabel",
"nlabel",
"select_node",
"move_node",
"reward",
"context",
],
)
ReplayBatchSM = namedtuple(
"ReplayBatchSM",
[
"g",
"plabel",
"nlabel",
"select_node",
"move_node",
"reward",
],
)
class GraphLabelDataset(DatasetWithCollate):
def __init__(self, graphs, labels, ind=None) -> None:
super().__init__()
self.graphs = graphs
self.labels = labels
if ind is None:
self.ind = np.arange(len(self.graphs))
else:
self.ind = ind
def __getitem__(self, index):
return GraphLabelNT(
self.graphs[index], np.array([self.labels[index]]), self.ind[index]
)
def __len__(self):
return len(self.graphs)
def get_collate_fn(self):
return GraphCollator().collate
class GraphNMDataset(DatasetWithCollate):
def __init__(self, graphs, labels, r_labels) -> None:
super().__init__()
self.graphs = graphs
self.labels = labels
self.rlabels = r_labels
def __getitem__(self, index):
return GraphNMLabel(
self.graphs[index],
np.array(self.rlabels[index]),
np.array([self.labels[index]]),
index,
)
def __len__(self):
return len(self.graphs)
def get_collate_fn(self):
return GraphCollator().collate
class GraphReplayBuffer:
def __init__(self, capacity):
# self.buffer = deque(maxlen=capacity)
self.capacity = capacity
self.buffer = np.empty(capacity, dtype=object)
self.size_count = 0
self.pointer = 0
def __len__(self):
return self.size_count
def add(self, experience):
if isinstance(experience, list):
ct = len(experience)
self.size_count += ct
next_pointer = self.pointer + ct
if next_pointer > self.capacity:
reminder = self.capacity - self.pointer
self.buffer[self.pointer :] = experience[:reminder]
self.pointer = 0
next_pointer = next_pointer - self.capacity
ct = next_pointer
experience = experience[reminder:]
self.buffer[self.pointer : next_pointer] = experience
self.pointer = next_pointer
self.size_count = min(self.size_count, self.capacity)
else:
self.buffer[self.size_count] = experience
# if (len(self) / self.capacity) > 1.3:
# self.buffer = self.buffer[-self.capacity :]
def sample(self, batch_size):
if len(self) < batch_size:
return None
indices = np.random.choice(len(self), batch_size, replace=True)
return [self.buffer[idx] for idx in indices]
def reset(self):
self.buffer = deque(maxlen=self.capacity)
class ReplayDataset(DatasetWithCollate):
def __init__(self, graphs, buffer, replay_size=1, replay_type=ReplayBatch):
super().__init__()
self.graphs = graphs
self.buffer = buffer
self.replay_size = replay_size
self.replay_type = replay_type
def __getitem__(self, index):
# print(len(self.buffer))
replay = self.buffer.sample(1)[0]
replay_graph = self.graphs[int(replay[0])]
return self.replay_type(replay_graph, *map(np.array, replay[1:]))
def __len__(self):
return len(self.graphs) * self.replay_size
def get_collate_fn(self):
return GraphCollator().collate