-
Notifications
You must be signed in to change notification settings - Fork 1
/
HandExtractor.cpp
905 lines (799 loc) · 27 KB
/
HandExtractor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
/***********************************************************************
HandExtractor - Class to identify hands from a depth image.
Copyright (c) 2015-2016 Oliver Kreylos
This file is part of the Augmented Reality Sandbox (SARndbox).
The Augmented Reality Sandbox is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The Augmented Reality Sandbox is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with the Augmented Reality Sandbox; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
***********************************************************************/
#include "HandExtractor.h"
#include <Misc/Utility.h>
#include <Misc/FunctionCalls.h>
#include <Math/Math.h>
#include <Math/Interval.h>
#include <Geometry/Vector.h>
// DEBUGGING
#include <iostream>
namespace {
/**************
Helper classes:
**************/
struct Span // Helper structure to extract foreground blobs from a depth image
{
/* Elements: */
public:
unsigned int y; // Row index of the span
unsigned int start; // Starting column of span
unsigned int end; // Ending column of span
unsigned int parent; // Span's parent span
unsigned int numPixels; // Number of pixels in the span's subtree
unsigned int blobId; // Blob ID of a root span
};
struct BlobOrigin // Helper structure to store a point on the border of a foreground blob
{
/* Elements: */
public:
bool assigned; // Flag if the blob origin has already been assigned
unsigned int x,y; // Coordinates of blob origin in depth frame
const unsigned short* biPtr; // Pointer to blob origin in blob ID image
};
struct Corner // Helper class to store corners in blob images
{
/* Elements: */
public:
int cornerType; // Corner type, +1: finger tip, -1: finger nook
unsigned start; // Boundary pixel index at which the corner started
int x,y; // Corner position in depth frame
};
typedef Math::Interval<float> Interval;
typedef Geometry::Point<float,2> Point2;
typedef Geometry::Vector<float,2> Vector2;
/****************
Helper functions:
****************/
void drawLine(Images::RGBImage& image,const Point2& p0,const Point2& p1,const Images::RGBImage::Color& color)
{
int w=int(image.getWidth());
int h=int(image.getHeight());
int x0=int(Math::floor(p0[0]));
int y0=int(Math::floor(p0[1]));
int x1=int(Math::floor(p1[0]));
int y1=int(Math::floor(p1[1]));
int dx=x1-x0;
int dy=y1-y0;
ptrdiff_t stride=w;
if(Math::abs(dx)>Math::abs(dy))
{
/* X direction leads: */
if(dx<0)
{
x0=x1;
y0=y1;
dx=-dx;
dy=-dy;
}
Images::RGBImage::Color* lPtr=image.modifyPixels()+y0*stride+x0;
int yf=dx/2;
int y=0;
for(int x=0;x<=dx;++x,++lPtr)
{
if(x0+x>=0&&x0+x<w&&y0+y>=0&&y0+y<h)
*lPtr=color;
yf+=dy;
if(yf>=dx)
{
++y;
lPtr+=stride;
yf-=dx;
}
else if(yf<=-dx)
{
--y;
lPtr-=stride;
yf+=dx;
}
}
}
else
{
/* Y direction leads: */
if(dy<0)
{
x0=x1;
y0=y1;
dx=-dx;
dy=-dy;
}
Images::RGBImage::Color* lPtr=image.modifyPixels()+y0*stride+x0;
int xf=dy/2;
int x=0;
for(int y=0;y<=dy;++y,lPtr+=stride)
{
if(x0+x>=0&&x0+x<w&&y0+y>=0&&y0+y<h)
*lPtr=color;
xf+=dx;
if(xf>=dy)
{
++x;
++lPtr;
xf-=dy;
}
else if(xf<=-dy)
{
--x;
--lPtr;
xf+=dy;
}
}
}
}
void drawCircle(Images::RGBImage& image,const Point2& center,float radius,const Images::RGBImage::Color& color)
{
Images::RGBImage::Color* imgBase=image.modifyPixels();
int size[2];
size[0]=int(image.getSize(0));
size[1]=int(image.getSize(1));
/* Draw the circle: */
int cx=int(Math::floor(center[0]));
int cy=int(Math::floor(center[1]));
int r=int(Math::floor(radius+0.5f));
ptrdiff_t stride=ptrdiff_t(size[0]);
#if 1 // Draw a filled rain circle
int ymin=cy-r>=0?cy-r:0;
int ymax=cy+r<=size[1]-1?cy+r:size[1]-1;
for(int y=ymin;y<=ymax;++y)
{
int ry=int(Math::floor(Math::sqrt(float(r*r)-float((y-cy)*(y-cy)))+0.5f));
int xmin=cx-ry>=0?cx-ry:0;
int xmax=cx+ry<=size[0]-1?cx+ry:size[0]-1;
Images::RGBImage::Color* iPtr=imgBase+(y*stride+xmin);
for(int x=xmin;x<=xmax;++x,++iPtr)
*iPtr=color;
}
#else // Draw a hollow rain circle
Images::RGBImage::Color* imgCenter=imgBase+(cy*stride+cx);
for(int y=0;;++y)
{
int x=int(Math::floor(Math::sqrt(float(r*r)-float(y*y))+0.5f));
if(x<y)
break;
if(cy+y<size[1])
{
if(cx+x<size[0])
imgCenter[y*stride+x]=color;
if(cx-x>=0)
imgCenter[y*stride-x]=color;
}
if(cy+x<size[1])
{
if(cx+y<size[0])
imgCenter[x*stride+y]=color;
if(cx-y>=0)
imgCenter[x*stride-y]=color;
}
if(cy-y>=0)
{
if(cx+x<size[0])
imgCenter[-y*stride+x]=color;
if(cx-x>=0)
imgCenter[-y*stride-x]=color;
}
if(cy-x>=0)
{
if(cx+y<size[0])
imgCenter[-x*stride+y]=color;
if(cx-y>=0)
imgCenter[-x*stride-y]=color;
}
}
#endif
}
}
/**************************************
Static elements of class HandExtractor:
**************************************/
const unsigned short HandExtractor::invalidBlobId=0xffffU;
const int HandExtractor::walkDx[8]={ 1, 1, 0,-1,-1,-1, 0, 1};
const int HandExtractor::walkDy[8]={ 0, 1, 1, 1, 0,-1,-1,-1};
/******************************
Methods of class HandExtractor:
******************************/
void* HandExtractor::extractorThreadMethod(void)
{
unsigned int lastInputFrameVersion=0;
while(true)
{
Kinect::FrameBuffer frame;
{
Threads::MutexCond::Lock inputLock(inputCond);
/* Wait until a new frame arrives or the program shuts down: */
while(runExtractorThread&&lastInputFrameVersion==inputFrameVersion)
inputCond.wait(inputLock);
/* Bail out if the program is shutting down: */
if(!runExtractorThread)
break;
/* Work on the new frame: */
frame=inputFrame;
lastInputFrameVersion=inputFrameVersion;
}
/* Prepare a new output hand list: */
HandList& newHandList=extractedHands.startNewValue();
/* Extract hands from the new input frame: */
extractHands(frame.getData<DepthPixel>(),newHandList,0);
/* Finalize the new extracted hands list in the output buffer: */
extractedHands.postNewValue();
/* Pass the new output frame to the registered receiver: */
if(handsExtractedFunction!=0)
(*handsExtractedFunction)(newHandList);
}
return 0;
}
HandExtractor::HandExtractor(const unsigned int sDepthFrameSize[2],const HandExtractor::PixelDepthCorrection* sPixelDepthCorrection,const PTransform& sDepthProjection)
:pixelDepthCorrection(sPixelDepthCorrection),depthProjection(sDepthProjection),
inputFrameVersion(0),runExtractorThread(false),
maxFgDepth(0x07ffU-1U),maxDepthDist(1),minBlobSize(1500),maxBlobSize(150000),
blobIdImage(0),
snakeLength(50),snake(0),
maxCornerEnterDist(28),minCenterDist(10),minCornerExitDist(32),
minHandProbability(0.15f),
handsExtractedFunction(0)
{
/* Copy the depth frame size: */
for(int i=0;i<2;++i)
depthFrameSize[i]=sDepthFrameSize[i];
/* Allocate the blob ID image: */
blobIdImage=new unsigned short[(depthFrameSize[1]+2)*(depthFrameSize[0]+2)];
biStride=depthFrameSize[0]+2;
/* Initialize the border of the blob ID image: */
unsigned short* biPtr=blobIdImage;
for(unsigned int x=1;x<depthFrameSize[0]+2;++x,++biPtr)
*biPtr=invalidBlobId;
for(unsigned int y=1;y<depthFrameSize[1]+2;++y,biPtr+=biStride)
*biPtr=invalidBlobId;
for(unsigned int x=1;x<depthFrameSize[0]+2;++x,--biPtr)
*biPtr=invalidBlobId;
for(unsigned int y=1;y<depthFrameSize[1]+2;++y,biPtr-=biStride)
*biPtr=invalidBlobId;
/* Calculate the array of edge walking pointer offsets: */
for(int i=0;i<8;++i)
walkOffsets[i]=walkDy[i]*biStride+walkDx[i];
/* Initialize the edge walking snake: */
setSnakeLength(snakeLength);
/* Start the hand extraction thread: */
runExtractorThread=true;
extractorThread.start(this,&HandExtractor::extractorThreadMethod);
}
HandExtractor::~HandExtractor(void)
{
/* Shut down the extraction thread: */
{
Threads::MutexCond::Lock inputLock(inputCond);
runExtractorThread=false;
inputCond.signal();
}
extractorThread.join();
delete[] blobIdImage;
delete[] snake;
}
void HandExtractor::setMaxFgDepth(DepthPixel newMaxFgDepth)
{
maxFgDepth=newMaxFgDepth;
}
void HandExtractor::setMaxDepthDist(unsigned int newMaxDepthDist)
{
maxDepthDist=newMaxDepthDist;
}
void HandExtractor::setBlobSizeRange(unsigned int newMinBlobSize,unsigned int newMaxBlobSize)
{
minBlobSize=newMinBlobSize;
maxBlobSize=newMaxBlobSize;
}
void HandExtractor::setSnakeLength(unsigned int newSnakeLength)
{
snakeLength=newSnakeLength;
/* Re-allocate the snake array: */
delete[] snake;
snake=new EdgePixel[snakeLength];
}
void HandExtractor::setCornerDists(int newMaxCornerEnterDist,int newMinCenterDist,int newMinCornerExitDist)
{
maxCornerEnterDist=newMaxCornerEnterDist;
minCenterDist=newMinCenterDist;
minCornerExitDist=newMinCornerExitDist;
}
void HandExtractor::extractHands(const HandExtractor::DepthPixel* depthFrame,HandExtractor::HandList& hands,Images::RGBImage* blobImage)
{
Images::RGBImage::Color* imgPtr=0;
if(blobImage!=0)
{
/* Create the result image: */
blobImage->clear(Images::RGBImage::Color(0,0,0));
imgPtr=blobImage->replacePixels();
}
/* Extract all four-connected foreground blobs from the given depth frame: */
std::vector<Span> spans;
unsigned int numSpans=0;
unsigned int lastRowSpan=0;
const DepthPixel* dfRowPtr=depthFrame;
for(unsigned int y=0;y<depthFrameSize[1];++y,dfRowPtr+=depthFrameSize[0])
{
const DepthPixel* dfPtr=dfRowPtr;
unsigned int rowSpan=numSpans;
unsigned int x=0;
while(true)
{
/* Find the beginning of the next foreground span: */
for(;x<depthFrameSize[0]&&*dfPtr>maxFgDepth;++x,++dfPtr)
;
if(x>=depthFrameSize[0])
break;
/* Start a new foreground span: */
Span newSpan;
newSpan.y=y;
newSpan.start=x;
/* Trace out the current foreground span: */
DepthPixel lastDepth=*dfPtr;
++x;
++dfPtr;
for(;x<depthFrameSize[0]&&*dfPtr<=maxFgDepth&&*dfPtr+maxDepthDist>=lastDepth&&*dfPtr<=lastDepth+maxDepthDist;++x,++dfPtr)
lastDepth=*dfPtr;
/* Finalize and store the new foreground span: */
newSpan.end=x;
newSpan.parent=numSpans;
newSpan.numPixels=newSpan.end-newSpan.start;
newSpan.blobId=invalidBlobId;
spans.push_back(newSpan);
++numSpans;
/* Skip any spans from the previous row that were just passed by: */
for(;lastRowSpan<rowSpan&&spans[lastRowSpan].end<newSpan.start;++lastRowSpan)
;
/* Check if the current span links up with any from the previous row: */
for(unsigned int lrs=lastRowSpan;lrs<rowSpan&&spans[lrs].start<=newSpan.end;++lrs)
{
/* Check if the two spans have depth in common: */
unsigned int o1=Misc::max(newSpan.start,spans[lrs].start);
unsigned int o2=Misc::min(newSpan.end,spans[lrs].end);
const DepthPixel* lrsPtr1=dfRowPtr+o1;
const DepthPixel* lrsPtr0=lrsPtr1-depthFrameSize[0];
bool canLink=false;
for(unsigned int o=o1;o<o2&&!canLink;++o,++lrsPtr0,++lrsPtr1)
canLink=*lrsPtr0+maxDepthDist>=*lrsPtr1&&*lrsPtr0<=*lrsPtr1+maxDepthDist;
/* Merge the two spans if they can link: */
if(canLink)
{
/* Find the roots of the two spans' respective subtrees: */
unsigned int root1=lrs;
while(root1!=spans[root1].parent)
root1=spans[root1].parent;
unsigned int root2=numSpans-1;
while(root2!=spans[root2].parent)
root2=spans[root2].parent;
if(root1<root2)
{
/* Make the first span the new root: */
spans[root2].parent=root1;
spans[root1].numPixels+=spans[root2].numPixels;
}
else if(root1>root2)
{
/* Make the second span the new root: */
spans[root1].parent=root2;
spans[root2].numPixels+=spans[root1].numPixels;
}
}
}
}
/* Skip any leftover spans from the previous row: */
lastRowSpan=rowSpan;
}
/* Assign consecutive blob IDs to all root spans: */
unsigned int nextBlobId=0;
for(unsigned int i=0;i<numSpans;++i)
{
/* Check if the span is a root span: */
if(spans[i].parent==i)
{
if(spans[i].numPixels>=minBlobSize&&spans[i].numPixels<=maxBlobSize)
{
spans[i].blobId=nextBlobId;
++nextBlobId;
}
}
else
{
/* Find the root of the span's subtree: */
unsigned int root=spans[i].parent;
while(root!=spans[root].parent)
root=spans[root].parent;
/* Assign the span's blob ID from the root: */
spans[i].blobId=spans[root].blobId;
}
}
#if 0
/* Create the result color image: */
static const Images::RGBImage::Color blobColors[18]=
{
Images::RGBImage::Color(255,0,0),
Images::RGBImage::Color(255,255,0),
Images::RGBImage::Color(0,255,0),
Images::RGBImage::Color(0,255,255),
Images::RGBImage::Color(0,0,255),
Images::RGBImage::Color(255,0,255),
Images::RGBImage::Color(128,0,0),
Images::RGBImage::Color(128,128,0),
Images::RGBImage::Color(0,128,0),
Images::RGBImage::Color(0,128,128),
Images::RGBImage::Color(0,0,128),
Images::RGBImage::Color(128,0,128),
Images::RGBImage::Color(255,128,128),
Images::RGBImage::Color(255,255,128),
Images::RGBImage::Color(128,255,128),
Images::RGBImage::Color(128,255,255),
Images::RGBImage::Color(128,128,255),
Images::RGBImage::Color(255,128,255)
};
for(unsigned int i=0;i<numSpans;++i)
{
/* Find the span's root: */
int root=i;
while(spans[root].parent!=root)
root=spans[root].parent;
if(spans[root].blobId!=invalidBlobId)
{
/* Fill in the span: */
Images::RGBImage::Color* cPtr=result.modifyPixelRow(spans[i].y)+spans[i].start;
for(int x=spans[i].start;x<spans[i].end;++x,++cPtr)
*cPtr=blobColors[spans[root].blobId%18];
}
}
#endif
/* Create an array of blob origin points: */
BlobOrigin* blobOrigins=new BlobOrigin[nextBlobId];
for(unsigned int i=0;i<nextBlobId;++i)
blobOrigins[i].assigned=false;
/* Create the blob ID image: */
unsigned short* biRowPtr=blobIdImage+biStride+1;
unsigned int spanIndex=0;
for(unsigned int y=0;y<depthFrameSize[1];++y,biRowPtr+=biStride)
{
/* Process all spans and spaces between spans in the current row: */
unsigned int x=0;
unsigned short* biPtr=biRowPtr;
while(true)
{
/* Find the start of the next span in the current row: */
unsigned int nextSpanStart=depthFrameSize[0];
if(spanIndex<numSpans&&spans[spanIndex].y==y)
nextSpanStart=spans[spanIndex].start;
/* Assign the invalid blob IDs until the start of the next span: */
for(;x<nextSpanStart;++x,++biPtr)
*biPtr=invalidBlobId;
/* Bail out if the current row is done: */
if(x==depthFrameSize[0])
break;
/* Check if the current span's blob is valid, and encountered for the first time: */
unsigned int blobId=spans[spanIndex].blobId;
if(blobId<nextBlobId&&!blobOrigins[blobId].assigned)
{
/* Store the beginning of the current span as the blob's origin: */
blobOrigins[blobId].assigned=true;
blobOrigins[blobId].x=x;
blobOrigins[blobId].y=y;
blobOrigins[blobId].biPtr=biPtr;
}
/* Assign the current span's blob ID: */
for(;x<spans[spanIndex].end;++x,++biPtr)
*biPtr=blobId;
/* Go to the next span: */
++spanIndex;
}
}
/* Initialize the result list: */
hands.clear();
/* Walk around the edges of all foreground blobs in counter-clockwise order and decide whether they are hand-shaped: */
EdgePixel* snakeEnd=snake+snakeLength;
int enterDist2=Math::sqr(maxCornerEnterDist);
int centerDist2=Math::sqr(minCenterDist);
int exitDist2=Math::sqr(minCornerExitDist);
std::vector<Corner> corners;
corners.reserve(10);
for(unsigned int blobId=0;blobId<nextBlobId;++blobId)
{
/* Initialize the edge-walking snake: */
EdgePixel* snakeHead=snake;
snakeHead->x=int(blobOrigins[blobId].x);
snakeHead->y=int(blobOrigins[blobId].y);
snakeHead->biPtr=blobOrigins[blobId].biPtr;
unsigned int walkDir=0; // The blob origin is the bottom-left pixel of the blob, so 0 is the correct initial walking direction
for(unsigned int i=1;i<snakeLength;++i)
{
/* Turn 90 degrees clockwise: */
walkDir=(walkDir+6)&0x7U;
/* Turn counter-clockwise until the next step stays in the same blob: */
while(snakeHead->biPtr[walkOffsets[walkDir]]!=blobId)
walkDir=(walkDir+1)&0x7U;
/* Walk one step along the blob edge: */
snakeHead[1].x=snakeHead->x+walkDx[walkDir];
snakeHead[1].y=snakeHead->y+walkDy[walkDir];
snakeHead[1].biPtr=snakeHead->biPtr+walkOffsets[walkDir];
/* Move the snake head forward: */
++snakeHead;
}
EdgePixel* snakeTail=snake;
EdgePixel* snakeMid=snake+snakeLength/2;
/* Walk the snake exactly once around the blob: */
Corner corner;
corner.cornerType=0;
int cornerDist2=0;
unsigned int pixelIndex=0;
int firstCornerDist2=0;
unsigned int firstCornerStart=0;
do
{
/* Check if the current snake sits on a corner: */
int newCornerType=0;
int headTailDist2=Math::sqr(snakeHead->x-snakeTail->x)+Math::sqr(snakeHead->y-snakeTail->y);
int centerElevation2=0;
if(headTailDist2<=enterDist2)
{
/* Determine the type of corner by comparing the snake's center point against the line defined by its head and tail: */
int nx=snakeTail->y-snakeHead->y;
int ny=snakeHead->x-snakeTail->x;
int d=nx*(snakeMid->x-snakeTail->x)+ny*(snakeMid->y-snakeTail->y);
if(Math::sqr(d)>=centerDist2*headTailDist2)
{
/* Enter corner state: */
if(d<0)
newCornerType=1; // Finger tip
else
newCornerType=-1; // Finger nook
if(headTailDist2>0)
centerElevation2=Math::sqr(d)/headTailDist2;
else
centerElevation2=Math::sqr(snakeMid->x-snakeTail->x)+Math::sqr(snakeMid->y-snakeTail->y);
}
}
/* Check if the snake changed corner type since the last step: */
if(corner.cornerType!=newCornerType)
{
if(corner.cornerType!=0)
{
/* If the previous corner is the first, remember its corner distance: */
if(corners.empty())
firstCornerDist2=cornerDist2;
/* Store the previous corner: */
corners.push_back(corner);
}
if(newCornerType!=0)
{
/* Start a new corner: */
corner.start=pixelIndex;
corner.x=snakeMid->x;
corner.y=snakeMid->y;
cornerDist2=centerElevation2;
/* If this is the first corner, remember its starting pixel: */
if(corners.empty())
firstCornerStart=pixelIndex;
}
/* Change the type of the current corner: */
corner.cornerType=newCornerType;
}
else if(corner.cornerType!=0&&cornerDist2<centerElevation2)
{
/* Update the current corner: */
corner.x=snakeMid->x;
corner.y=snakeMid->y;
cornerDist2=centerElevation2;
}
if(imgPtr!=0)
{
/* Draw the snake's center point: */
Images::RGBImage::Color* cPtr=imgPtr+(snakeMid->y*depthFrameSize[0]+snakeMid->x);
if(corner.cornerType==1)
*cPtr=Images::RGBImage::Color(96,160,96);
else if(corner.cornerType==-1)
*cPtr=Images::RGBImage::Color(160,96,160);
else
{
#if 1
*cPtr=Images::RGBImage::Color(128,128,128);
#else
for(int i=0;i<3;++i)
(*cPtr)[i]=(*cPtr)[i]+(255U-(*cPtr)[i])/2;
#endif
}
}
/* Walk one step along the blob edge: */
walkDir=(walkDir+6)&0x7U; // Turn 90 degrees counter-clockwise
while(snakeHead->biPtr[walkOffsets[walkDir]]!=blobId)
walkDir=(walkDir+1)&0x7U;
snakeTail->x=snakeHead->x+walkDx[walkDir];
snakeTail->y=snakeHead->y+walkDy[walkDir];
snakeTail->biPtr=snakeHead->biPtr+walkOffsets[walkDir];
/* Move the snake head forward: */
snakeHead=snakeTail;
if(++snakeMid==snakeEnd)
snakeMid=snake;
if(++snakeTail==snakeEnd)
snakeTail=snake;
++pixelIndex;
}
while(snakeTail->biPtr!=blobOrigins[blobId].biPtr);
if(corner.cornerType!=0)
{
if(!corners.empty()&&firstCornerStart==0&&corners.front().cornerType==corner.cornerType)
{
/* Merge the first and last corners: */
if(firstCornerDist2<cornerDist2)
{
corners.front().x=corner.x;
corners.front().y=corner.y;
}
}
else
{
/* Store the last corner: */
corners.push_back(corner);
}
}
if(imgPtr!=0)
{
/* Draw all corners: */
for(std::vector<Corner>::iterator cIt=corners.begin();cIt!=corners.end();++cIt)
{
Images::RGBImage::Color* cPtr=imgPtr+(cIt->y*depthFrameSize[0]+cIt->x);
if(cIt->cornerType==1)
*cPtr=Images::RGBImage::Color(0,255,0);
else if(cIt->cornerType==-1)
*cPtr=Images::RGBImage::Color(255,0,255);
}
}
/* Check if the extracted set of corners matches a hand model: */
float maxProb=minHandProbability;
Point2 center=Point2::origin; // Hand center point
float depth=0.0f; // Hand's average depth value
float radius=0.0f; // Hand radius
size_t numCorners=corners.size();
if(numCorners>=8) // At least four finger tips, three nooks, and a thumb tip (thumb nook optional)
{
for(size_t i=0;i<numCorners;++i)
{
/* Check if the current corner starts a sequence of four tips interleaved with three nooks: */
Corner& t0=corners[i];
Corner& n1=corners[(i+1)%numCorners];
Corner& t1=corners[(i+2)%numCorners];
Corner& n2=corners[(i+3)%numCorners];
Corner& t2=corners[(i+4)%numCorners];
Corner& n3=corners[(i+5)%numCorners];
Corner& t3=corners[(i+6)%numCorners];
if(t0.cornerType==1&&
n1.cornerType==-1&&t1.cornerType==1&&
n2.cornerType==-1&&t2.cornerType==1&&
n3.cornerType==-1&&t3.cornerType==1)
{
/* Construct a hand model: */
Point2 tp0(float(t0.x)+0.5f,float(t0.y)+0.5f);
Point2 np1(float(n1.x)+0.5f,float(n1.y)+0.5f);
Point2 tp1(float(t1.x)+0.5f,float(t1.y)+0.5f);
Point2 np2(float(n2.x)+0.5f,float(n2.y)+0.5f);
Point2 tp2(float(t2.x)+0.5f,float(t2.y)+0.5f);
Point2 np3(float(n3.x)+0.5f,float(n3.y)+0.5f);
Point2 tp3(float(t3.x)+0.5f,float(t3.y)+0.5f);
/* Calculate the range of finger tip distances: */
Interval tipDistance(Geometry::dist(tp0,tp1));
tipDistance.addValue(Geometry::dist(tp1,tp2));
tipDistance.addValue(Geometry::dist(tp2,tp3));
/* Calculate the range of finger nook distances: */
Interval nookDistance(Geometry::dist(np1,np2));
nookDistance.addValue(Geometry::dist(np2,np3));
/* Calculate finger root points: */
Vector2 curve=Geometry::mid(np1,np3)-np2;
Point2 rp0=np1+(np1-np2)*0.5f+curve;
Point2 rp1=Geometry::mid(np1,np2);
Point2 rp2=Geometry::mid(np2,np3);
Point2 rp3=np3+(np3-np2)*0.5f+curve;
/* Calculate the range of finger lengths: */
Interval fingerLength(Geometry::dist(tp0,rp0));
fingerLength.addValue(Geometry::dist(tp1,rp1));
fingerLength.addValue(Geometry::dist(tp2,rp2));
fingerLength.addValue(Geometry::dist(tp3,rp3));
/* Calculate the probability that this is a hand: */
float prob=1.0f;
prob*=Math::sqr(tipDistance.getMin()/tipDistance.getMax());
prob*=nookDistance.getMin()/nookDistance.getMax();
prob*=fingerLength.getMin()/fingerLength.getMax();
if(maxProb<prob)
{
/* Calculate finger length to nook distance ratio: */
float fdNdRatio=Math::mid(Geometry::dist(tp1,rp1),Geometry::dist(tp2,rp2))/Math::mid(Geometry::dist(np1,np2),Geometry::dist(np2,np3));
/* Calculate the hand center and radius: */
float centerOffset=1.0f/fdNdRatio;
center=Geometry::mid(Geometry::mid(rp0+(rp0-tp0)*centerOffset,rp1+(rp1-tp1)*centerOffset),
Geometry::mid(rp2+(rp2-tp2)*centerOffset,rp3+(rp3-tp3)*centerOffset));
center=Geometry::mid(rp1+(rp1-tp1)*centerOffset,rp2+(rp2-tp2)*centerOffset);
radius=(Geometry::dist(center,tp0)+Geometry::dist(center,tp1)+Geometry::dist(center,tp2)+Geometry::dist(center,tp3))*0.25f;
/* Calculate the hand's average depth in depth-corrected depth image space: */
depth=0.0f;
if(pixelDepthCorrection!=0)
{
ptrdiff_t t0Off=t0.y*depthFrameSize[0]+t0.x;
depth+=pixelDepthCorrection[t0Off].correct(float(depthFrame[t0Off]));
ptrdiff_t n1Off=n1.y*depthFrameSize[0]+n1.x;
depth+=pixelDepthCorrection[n1Off].correct(float(depthFrame[n1Off]));
ptrdiff_t t1Off=t1.y*depthFrameSize[0]+t1.x;
depth+=pixelDepthCorrection[t1Off].correct(float(depthFrame[t1Off]));
ptrdiff_t n2Off=n2.y*depthFrameSize[0]+n2.x;
depth+=pixelDepthCorrection[n2Off].correct(float(depthFrame[n2Off]));
ptrdiff_t t2Off=t2.y*depthFrameSize[0]+t2.x;
depth+=pixelDepthCorrection[t2Off].correct(float(depthFrame[t2Off]));
ptrdiff_t n3Off=n3.y*depthFrameSize[0]+n3.x;
depth+=pixelDepthCorrection[n3Off].correct(float(depthFrame[n3Off]));
ptrdiff_t t3Off=t3.y*depthFrameSize[0]+t3.x;
depth+=pixelDepthCorrection[t3Off].correct(float(depthFrame[t3Off]));
}
else
{
depth+=float(depthFrame[t0.y*depthFrameSize[0]+t0.x]);
depth+=float(depthFrame[n1.y*depthFrameSize[0]+n1.x]);
depth+=float(depthFrame[t1.y*depthFrameSize[0]+t1.x]);
depth+=float(depthFrame[n2.y*depthFrameSize[0]+n2.x]);
depth+=float(depthFrame[t2.y*depthFrameSize[0]+t2.x]);
depth+=float(depthFrame[n3.y*depthFrameSize[0]+n3.x]);
depth+=float(depthFrame[t3.y*depthFrameSize[0]+t3.x]);
}
depth/=7.0f;
maxProb=prob;
if(imgPtr!=0)
{
/* Draw the hand: */
drawLine(*blobImage,tp0,rp0,Images::RGBImage::Color(255,255,255));
drawLine(*blobImage,tp1,rp1,Images::RGBImage::Color(255,255,255));
drawLine(*blobImage,tp2,rp2,Images::RGBImage::Color(255,255,255));
drawLine(*blobImage,tp3,rp3,Images::RGBImage::Color(255,255,255));
drawCircle(*blobImage,center,radius,Images::RGBImage::Color(255,255,255));
}
}
}
}
}
/* Check if the blob matches a hand: */
if(maxProb>minHandProbability)
{
// DEBUGGING
// std::cout<<"Hand in depth space: "<<center[0]<<", "<<center[1]<<", "<<depth<<", "<<radius<<std::endl;
/* Store the hand in camera space: */
Hand newHand;
newHand.center=depthProjection.transform(Point(center[0],center[1],depth));
newHand.radius=Geometry::dist(newHand.center,depthProjection.transform(Point(center[0]+radius,center[1],depth)));
hands.push_back(newHand);
// DEBUGGING
// std::cout<<"Hand in camera space: "<<newHand.center[0]<<", "<<newHand.center[1]<<", "<<newHand.center[2]<<", "<<newHand.radius<<std::endl;
}
/* Clean up: */
corners.clear();
}
/* Clean up: */
delete[] blobOrigins;
}
void HandExtractor::setHandsExtractedFunction(HandExtractor::HandsExtractedFunction* newHandsExtractedFunction)
{
delete handsExtractedFunction;
handsExtractedFunction=newHandsExtractedFunction;
}
void HandExtractor::receiveRawFrame(const Kinect::FrameBuffer& newFrame)
{
Threads::MutexCond::Lock inputLock(inputCond);
/* Store the new buffer in the input buffer: */
inputFrame=newFrame;
++inputFrameVersion;
/* Signal the background thread: */
inputCond.signal();
}