diff --git a/models/google-gemma-2b.json b/models/google-gemma-2b.json new file mode 100644 index 0000000..60ff91b --- /dev/null +++ b/models/google-gemma-2b.json @@ -0,0 +1,42 @@ +{ + "_descriptorVersion": "0.0.1", + "datePublished": "2024-02-21T16:54:57.000Z", + "name": "Google's Gemma 2B Instruct", + "description": "** Requires LM Studio 0.2.15 or newer ** Gemma is a family of lightweight LLMs built from the same research and technology Google used to create the Gemini models. Gemma models are available in two sizes, 2 billion and 7 billion parameters. These models are trained on up to 6T tokens of primarily English web documents, mathematics, and code, using a transformer architecture with enhancements like Multi-Query Attention, RoPE Embeddings, GeGLU Activations, and advanced normalization techniques.", + "author": { + "name": "Google DeepMind", + "url": "https://deepmind.google", + "blurb": "We’re a team of scientists, engineers, ethicists and more, working to build the next generation of AI systems safely and responsibly." + }, + "numParameters": "2B", + "resources": { + "canonicalUrl": "https://huggingface.co/google/gemma-2b-it", + "paperUrl": "https://blog.google/technology/developers/gemma-open-models/", + "downloadUrl": "https://huggingface.co/lmstudio-ai/gemma-2b-it-GGUF" + }, + "trainedFor": "chat", + "arch": "gemma", + "files": { + "highlighted": { + "economical": { + "name": "gemma-2b-it-q8_0.gguf" + } + }, + "all": [ + { + "name": "gemma-2b-it-q8_0.gguf", + "url": "https://huggingface.co/lmstudio-ai/gemma-2b-it-GGUF/resolve/main/gemma-2b-it-q8_0.gguf", + "sizeBytes": 2669351840, + "quantization": "Q8_0", + "format": "gguf", + "sha256checksum": "ec68b50d23469882716782da8b680402246356c3f984e9a3b9bcc5bc15273140", + "publisher": { + "name": "LM Studio", + "socialUrl": "https://twitter.com/LMStudioAI" + }, + "respository": "lmstudio-ai/gemma-2b-it-GGUF", + "repositoryUrl": "https://huggingface.co/lmstudio-ai/gemma-2b-it-GGUF" + } + ] + } + } diff --git a/models/qwen-1.5.json b/models/qwen-1.5.json index c86aa6f..65c5be1 100644 --- a/models/qwen-1.5.json +++ b/models/qwen-1.5.json @@ -1,6 +1,6 @@ { "_descriptorVersion": "0.0.1", - "datePublished": "2024-02-03T11:59:54", + "datePublished": "2024-02-03T16:59:54.000Z", "name": "Qwen 1.5", "description": "Qwen1.5 is the large language model series developed by Qwen Team, Alibaba Group. It is a transformer-based decoder-only language model pretrained on large-scale multilingual data covering a wide range of domains and it is aligned with human preferences.", "author": { diff --git a/schema.json b/schema.json index 12cf4e7..fcfc55f 100644 --- a/schema.json +++ b/schema.json @@ -51,7 +51,7 @@ }, "numParameters": { "type": "string", - "enum": ["1.5B", "3B", "4B", "6.7B", "7B", "13B", "15B", "30B", "65B", "unknown"] + "enum": ["1.5B", "2B", "3B", "4B", "6.7B", "7B", "13B", "15B", "30B", "65B", "unknown"] }, "trainedFor": { "type": "string", @@ -59,7 +59,7 @@ }, "arch": { "type": "string", - "enum": ["llama", "pythia", "gpt-neo-x", "gpt-j", "mpt", "replit", "starcoder", "falcon", "mistral", "stablelm", "phi2", "qwen2"] + "enum": ["llama", "pythia", "gpt-neo-x", "gpt-j", "mpt", "replit", "starcoder", "falcon", "mistral", "stablelm", "phi2", "qwen2", "gemma"] }, "description": { "type": "string"