-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathndarraytypes.h
1968 lines (1690 loc) · 67.1 KB
/
ndarraytypes.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef NDARRAYTYPES_H
#define NDARRAYTYPES_H
/* This is auto-generated by the installer */
#include "numpyconfig.h"
#include "npy_common.h"
#include "npy_endian.h"
#include "npy_cpu.h"
#include "utils.h"
#ifdef NPY_ENABLE_SEPARATE_COMPILATION
#define NPY_NO_EXPORT NPY_VISIBILITY_HIDDEN
#else
#define NPY_NO_EXPORT static
#endif
/* Only use thread if configured in config and python supports it */
#if defined WITH_THREAD && !NPY_NO_SMP
#define NPY_ALLOW_THREADS 1
#else
#define NPY_ALLOW_THREADS 0
#endif
/*
* There are several places in the code where an array of dimensions
* is allocated statically. This is the size of that static
* allocation.
*
* The array creation itself could have arbitrary dimensions but all
* the places where static allocation is used would need to be changed
* to dynamic (including inside of several structures)
*/
#define NPY_MAXDIMS 32
#define NPY_MAXARGS 32
/* Used for Converter Functions "O&" code in ParseTuple */
#define NPY_FAIL 0
#define NPY_SUCCEED 1
/*
* Binary compatibility version number. This number is increased
* whenever the C-API is changed such that binary compatibility is
* broken, i.e. whenever a recompile of extension modules is needed.
*/
#define NPY_VERSION NPY_ABI_VERSION
/*
* Minor API version. This number is increased whenever a change is
* made to the C-API -- whether it breaks binary compatibility or not.
* Some changes, such as adding a function pointer to the end of the
* function table, can be made without breaking binary compatibility.
* In this case, only the NPY_FEATURE_VERSION (*not* NPY_VERSION)
* would be increased. Whenever binary compatibility is broken, both
* NPY_VERSION and NPY_FEATURE_VERSION should be increased.
*/
#define NPY_FEATURE_VERSION NPY_API_VERSION
enum NPY_TYPES { NPY_BOOL=0,
NPY_BYTE, NPY_UBYTE,
NPY_SHORT, NPY_USHORT,
NPY_INT, NPY_UINT,
NPY_LONG, NPY_ULONG,
NPY_LONGLONG, NPY_ULONGLONG,
NPY_FLOAT, NPY_DOUBLE, NPY_LONGDOUBLE,
NPY_CFLOAT, NPY_CDOUBLE, NPY_CLONGDOUBLE,
NPY_OBJECT=17,
NPY_STRING, NPY_UNICODE,
NPY_VOID,
/*
* New 1.6 types appended, may be integrated
* into the above in 2.0.
*/
NPY_DATETIME, NPY_TIMEDELTA, NPY_HALF,
NPY_NTYPES,
NPY_NOTYPE,
NPY_CHAR, /* special flag */
NPY_USERDEF=256, /* leave room for characters */
/* The number of types not including the new 1.6 types */
NPY_NTYPES_ABI_COMPATIBLE=21
};
#define NPY_METADATA_DTSTR "__timeunit__"
/* basetype array priority */
#define NPY_PRIORITY 0.0
/* default subtype priority */
#define NPY_SUBTYPE_PRIORITY 1.0
/* default scalar priority */
#define NPY_SCALAR_PRIORITY -1000000.0
/* How many floating point types are there (excluding half) */
#define NPY_NUM_FLOATTYPE 3
/*
* These characters correspond to the array type and the struct
* module
*/
enum NPY_TYPECHAR {
NPY_BOOLLTR = '?',
NPY_BYTELTR = 'b',
NPY_UBYTELTR = 'B',
NPY_SHORTLTR = 'h',
NPY_USHORTLTR = 'H',
NPY_INTLTR = 'i',
NPY_UINTLTR = 'I',
NPY_LONGLTR = 'l',
NPY_ULONGLTR = 'L',
NPY_LONGLONGLTR = 'q',
NPY_ULONGLONGLTR = 'Q',
NPY_HALFLTR = 'e',
NPY_FLOATLTR = 'f',
NPY_DOUBLELTR = 'd',
NPY_LONGDOUBLELTR = 'g',
NPY_CFLOATLTR = 'F',
NPY_CDOUBLELTR = 'D',
NPY_CLONGDOUBLELTR = 'G',
NPY_OBJECTLTR = 'O',
NPY_STRINGLTR = 'S',
NPY_STRINGLTR2 = 'a',
NPY_UNICODELTR = 'U',
NPY_VOIDLTR = 'V',
NPY_DATETIMELTR = 'M',
NPY_TIMEDELTALTR = 'm',
NPY_CHARLTR = 'c',
/*
* No Descriptor, just a define -- this let's
* Python users specify an array of integers
* large enough to hold a pointer on the
* platform
*/
NPY_INTPLTR = 'p',
NPY_UINTPLTR = 'P',
/*
* These are for dtype 'kinds', not dtype 'typecodes'
* as the above are for.
*/
NPY_GENBOOLLTR ='b',
NPY_SIGNEDLTR = 'i',
NPY_UNSIGNEDLTR = 'u',
NPY_FLOATINGLTR = 'f',
NPY_COMPLEXLTR = 'c'
};
typedef enum {
NPY_QUICKSORT=0,
NPY_HEAPSORT=1,
NPY_MERGESORT=2
} NPY_SORTKIND;
#define NPY_NSORTS (NPY_MERGESORT + 1)
typedef enum {
NPY_SEARCHLEFT=0,
NPY_SEARCHRIGHT=1
} NPY_SEARCHSIDE;
#define NPY_NSEARCHSIDES (NPY_SEARCHRIGHT + 1)
typedef enum {
NPY_NOSCALAR=-1,
NPY_BOOL_SCALAR,
NPY_INTPOS_SCALAR,
NPY_INTNEG_SCALAR,
NPY_FLOAT_SCALAR,
NPY_COMPLEX_SCALAR,
NPY_OBJECT_SCALAR
} NPY_SCALARKIND;
#define NPY_NSCALARKINDS (NPY_OBJECT_SCALAR + 1)
/* For specifying array memory layout or iteration order */
typedef enum {
/* Fortran order if inputs are all Fortran, C otherwise */
NPY_ANYORDER=-1,
/* C order */
NPY_CORDER=0,
/* Fortran order */
NPY_FORTRANORDER=1,
/* An order as close to the inputs as possible */
NPY_KEEPORDER=2
} NPY_ORDER;
/* For specifying allowed casting in operations which support it */
typedef enum {
/* Only allow identical types */
NPY_NO_CASTING=0,
/* Allow identical and byte swapped types */
NPY_EQUIV_CASTING=1,
/* Only allow safe casts */
NPY_SAFE_CASTING=2,
/* Allow safe casts or casts within the same kind */
NPY_SAME_KIND_CASTING=3,
/* Allow any casts */
NPY_UNSAFE_CASTING=4
} NPY_CASTING;
/* The default casting to use for typical assignment operations */
#define NPY_DEFAULT_ASSIGN_CASTING NPY_SAME_KIND_CASTING
typedef enum {
NPY_CLIP=0,
NPY_WRAP=1,
NPY_RAISE=2
} NPY_CLIPMODE;
/* The special not-a-time (NaT) value */
#define NPY_DATETIME_NAT NPY_MIN_INT64
/*
* Upper bound on the length of a DATETIME ISO 8601 string
* YEAR: 21 (64-bit year)
* MONTH: 3
* DAY: 3
* HOURS: 3
* MINUTES: 3
* SECONDS: 3
* ATTOSECONDS: 1 + 3*6
* TIMEZONE: 5
* NULL TERMINATOR: 1
*/
#define NPY_DATETIME_MAX_ISO8601_STRLEN (21+3*5+1+3*6+6+1)
typedef enum {
NPY_FR_Y, /* Years */
NPY_FR_M, /* Months */
NPY_FR_W, /* Weeks */
NPY_FR_D, /* Days */
NPY_FR_h, /* hours */
NPY_FR_m, /* minutes */
NPY_FR_s, /* seconds */
NPY_FR_ms,/* milliseconds */
NPY_FR_us,/* microseconds */
NPY_FR_ns,/* nanoseconds */
NPY_FR_ps,/* picoseconds */
NPY_FR_fs,/* femtoseconds */
NPY_FR_as,/* attoseconds */
NPY_FR_GENERIC /* Generic, unbound units, can convert to anything */
} NPY_DATETIMEUNIT;
#define NPY_DATETIME_NUMUNITS (NPY_FR_GENERIC + 1)
#define NPY_DATETIME_DEFAULTUNIT NPY_FR_GENERIC
#define NPY_STR_Y "Y"
#define NPY_STR_M "M"
#define NPY_STR_W "W"
#define NPY_STR_D "D"
#define NPY_STR_h "h"
#define NPY_STR_m "m"
#define NPY_STR_s "s"
#define NPY_STR_ms "ms"
#define NPY_STR_us "us"
#define NPY_STR_ns "ns"
#define NPY_STR_ps "ps"
#define NPY_STR_fs "fs"
#define NPY_STR_as "as"
/*
* Business day conventions for mapping invalid business
* days to valid business days.
*/
typedef enum {
/* Go forward in time to the following business day. */
NPY_BUSDAY_FORWARD,
NPY_BUSDAY_FOLLOWING = NPY_BUSDAY_FORWARD,
/* Go backward in time to the preceding business day. */
NPY_BUSDAY_BACKWARD,
NPY_BUSDAY_PRECEDING = NPY_BUSDAY_BACKWARD,
/*
* Go forward in time to the following business day, unless it
* crosses a month boundary, in which case go backward
*/
NPY_BUSDAY_MODIFIEDFOLLOWING,
/*
* Go backward in time to the preceding business day, unless it
* crosses a month boundary, in which case go forward.
*/
NPY_BUSDAY_MODIFIEDPRECEDING,
/* Produce a NaT for non-business days. */
NPY_BUSDAY_NAT,
/* Raise an exception for non-business days. */
NPY_BUSDAY_RAISE
} NPY_BUSDAY_ROLL;
/*********************************************************************
* NumPy functions for dealing with masks, such as in masked iteration
*********************************************************************/
typedef npy_uint8 npy_mask;
#define NPY_MASK NPY_UINT8
/*
* Bit 0 of the mask indicates whether a value is exposed
* or hidden. This is compatible with a 'where=' boolean
* mask, because NumPy booleans are 1 byte, and contain
* either the value 0 or 1.
*/
static NPY_INLINE npy_bool
NpyMaskValue_IsExposed(npy_mask mask)
{
return (mask & 0x01) != 0;
}
/*
* Bits 1 through 7 of the mask contain the payload.
*/
static NPY_INLINE npy_uint8
NpyMaskValue_GetPayload(npy_mask mask)
{
return ((npy_uint8)mask) >> 1;
}
static NPY_INLINE npy_mask
NpyMaskValue_Create(npy_bool exposed, npy_uint8 payload)
{
return (npy_mask)(exposed != 0) | (npy_mask)(payload << 1);
}
#define NPY_ERR(str) fprintf(stderr, #str); fflush(stderr);
#define NPY_ERR2(str) fprintf(stderr, str); fflush(stderr);
#define NPY_STRINGIFY(x) #x
#define NPY_TOSTRING(x) NPY_STRINGIFY(x)
/*
* Macros to define how array, and dimension/strides data is
* allocated.
*/
/* Data buffer */
#define PyDataMem_NEW(size) ((char *)malloc(size))
#define PyDataMem_FREE(ptr) free(ptr)
#define PyDataMem_RENEW(ptr,size) ((char *)realloc(ptr,size))
#define NPY_USE_PYMEM 1
#if NPY_USE_PYMEM == 1
#define PyArray_malloc PyMem_Malloc
#define PyArray_free PyMem_Free
#define PyArray_realloc PyMem_Realloc
#else
#define PyArray_malloc malloc
#define PyArray_free free
#define PyArray_realloc realloc
#endif
/* Dimensions and strides */
#define PyDimMem_NEW(size) \
((npy_intp *)PyArray_malloc(size*sizeof(npy_intp)))
#define PyDimMem_FREE(ptr) PyArray_free(ptr)
#define PyDimMem_RENEW(ptr,size) \
((npy_intp *)PyArray_realloc(ptr,size*sizeof(npy_intp)))
/* forward declaration */
struct _PyArray_Descr;
/* These must deal with unaligned and swapped data if necessary */
typedef PyObject * (PyArray_GetItemFunc) (void *, void *);
typedef int (PyArray_SetItemFunc)(PyObject *, void *, void *);
typedef void (PyArray_CopySwapNFunc)(void *, npy_intp, void *, npy_intp,
npy_intp, int, void *);
typedef void (PyArray_CopySwapFunc)(void *, void *, int, void *);
typedef npy_bool (PyArray_NonzeroFunc)(void *, void *);
/*
* These assume aligned and notswapped data -- a buffer will be used
* before or contiguous data will be obtained
*/
typedef int (PyArray_CompareFunc)(const void *, const void *, void *);
typedef int (PyArray_ArgFunc)(void*, npy_intp, npy_intp*, void *);
typedef void (PyArray_DotFunc)(void *, npy_intp, void *, npy_intp, void *,
npy_intp, void *);
typedef void (PyArray_VectorUnaryFunc)(void *, void *, npy_intp, void *,
void *);
/*
* XXX the ignore argument should be removed next time the API version
* is bumped. It used to be the separator.
*/
typedef int (PyArray_ScanFunc)(FILE *fp, void *dptr,
char *ignore, struct _PyArray_Descr *);
typedef int (PyArray_FromStrFunc)(char *s, void *dptr, char **endptr,
struct _PyArray_Descr *);
typedef int (PyArray_FillFunc)(void *, npy_intp, void *);
typedef int (PyArray_SortFunc)(void *, npy_intp, void *);
typedef int (PyArray_ArgSortFunc)(void *, npy_intp *, npy_intp, void *);
typedef int (PyArray_FillWithScalarFunc)(void *, npy_intp, void *, void *);
typedef int (PyArray_ScalarKindFunc)(void *);
typedef void (PyArray_FastClipFunc)(void *in, npy_intp n_in, void *min,
void *max, void *out);
typedef void (PyArray_FastPutmaskFunc)(void *in, void *mask, npy_intp n_in,
void *values, npy_intp nv);
typedef int (PyArray_FastTakeFunc)(void *dest, void *src, npy_intp *indarray,
npy_intp nindarray, npy_intp n_outer,
npy_intp m_middle, npy_intp nelem,
NPY_CLIPMODE clipmode);
typedef struct {
npy_intp *ptr;
int len;
} PyArray_Dims;
typedef struct {
/*
* Functions to cast to most other standard types
* Can have some NULL entries. The types
* DATETIME, TIMEDELTA, and HALF go into the castdict
* even though they are built-in.
*/
PyArray_VectorUnaryFunc *cast[NPY_NTYPES_ABI_COMPATIBLE];
/* The next four functions *cannot* be NULL */
/*
* Functions to get and set items with standard Python types
* -- not array scalars
*/
PyArray_GetItemFunc *getitem;
PyArray_SetItemFunc *setitem;
/*
* Copy and/or swap data. Memory areas may not overlap
* Use memmove first if they might
*/
PyArray_CopySwapNFunc *copyswapn;
PyArray_CopySwapFunc *copyswap;
/*
* Function to compare items
* Can be NULL
*/
PyArray_CompareFunc *compare;
/*
* Function to select largest
* Can be NULL
*/
PyArray_ArgFunc *argmax;
/*
* Function to compute dot product
* Can be NULL
*/
PyArray_DotFunc *dotfunc;
/*
* Function to scan an ASCII file and
* place a single value plus possible separator
* Can be NULL
*/
PyArray_ScanFunc *scanfunc;
/*
* Function to read a single value from a string
* and adjust the pointer; Can be NULL
*/
PyArray_FromStrFunc *fromstr;
/*
* Function to determine if data is zero or not
* If NULL a default version is
* used at Registration time.
*/
PyArray_NonzeroFunc *nonzero;
/*
* Used for arange.
* Can be NULL.
*/
PyArray_FillFunc *fill;
/*
* Function to fill arrays with scalar values
* Can be NULL
*/
PyArray_FillWithScalarFunc *fillwithscalar;
/*
* Sorting functions
* Can be NULL
*/
PyArray_SortFunc *sort[NPY_NSORTS];
PyArray_ArgSortFunc *argsort[NPY_NSORTS];
/*
* Dictionary of additional casting functions
* PyArray_VectorUnaryFuncs
* which can be populated to support casting
* to other registered types. Can be NULL
*/
PyObject *castdict;
/*
* Functions useful for generalizing
* the casting rules.
* Can be NULL;
*/
PyArray_ScalarKindFunc *scalarkind;
int **cancastscalarkindto;
int *cancastto;
PyArray_FastClipFunc *fastclip;
PyArray_FastPutmaskFunc *fastputmask;
PyArray_FastTakeFunc *fasttake;
} PyArray_ArrFuncs;
/* The item must be reference counted when it is inserted or extracted. */
#define NPY_ITEM_REFCOUNT 0x01
/* Same as needing REFCOUNT */
#define NPY_ITEM_HASOBJECT 0x01
/* Convert to list for pickling */
#define NPY_LIST_PICKLE 0x02
/* The item is a POINTER */
#define NPY_ITEM_IS_POINTER 0x04
/* memory needs to be initialized for this data-type */
#define NPY_NEEDS_INIT 0x08
/* operations need Python C-API so don't give-up thread. */
#define NPY_NEEDS_PYAPI 0x10
/* Use f.getitem when extracting elements of this data-type */
#define NPY_USE_GETITEM 0x20
/* Use f.setitem when setting creating 0-d array from this data-type.*/
#define NPY_USE_SETITEM 0x40
/* A sticky flag specifically for structured arrays */
#define NPY_ALIGNED_STRUCT 0x80
/*
*These are inherited for global data-type if any data-types in the
* field have them
*/
#define NPY_FROM_FIELDS (NPY_NEEDS_INIT | NPY_LIST_PICKLE | \
NPY_ITEM_REFCOUNT | NPY_NEEDS_PYAPI)
#define NPY_OBJECT_DTYPE_FLAGS (NPY_LIST_PICKLE | NPY_USE_GETITEM | \
NPY_ITEM_IS_POINTER | NPY_ITEM_REFCOUNT | \
NPY_NEEDS_INIT | NPY_NEEDS_PYAPI)
#define PyDataType_FLAGCHK(dtype, flag) \
(((dtype)->flags & (flag)) == (flag))
#define PyDataType_REFCHK(dtype) \
PyDataType_FLAGCHK(dtype, NPY_ITEM_REFCOUNT)
typedef struct _PyArray_Descr {
PyObject_HEAD
PyTypeObject *typeobj; /*
* the type object representing an
* instance of this type -- should not
* be two type_numbers with the same type
* object.
*/
char kind; /* kind for this type */
char type; /* unique-character representing this type */
char byteorder; /*
* '>' (big), '<' (little), '|'
* (not-applicable), or '=' (native).
*/
char flags; /* flags describing data type */
int type_num; /* number representing this type */
int elsize; /* element size for this type */
int alignment; /* alignment needed for this type */
struct _arr_descr \
*subarray; /*
* Non-NULL if this type is
* is an array (C-contiguous)
* of some other type
*/
PyObject *fields; /* The fields dictionary for this type
* For statically defined descr this
* is always Py_None
*/
PyObject *names; /*
* An ordered tuple of field names or NULL
* if no fields are defined
*/
PyArray_ArrFuncs *f; /*
* a table of functions specific for each
* basic data descriptor
*/
PyObject *metadata; /* Metadata about this dtype */
} PyArray_Descr;
typedef struct _arr_descr {
PyArray_Descr *base;
PyObject *shape; /* a tuple */
} PyArray_ArrayDescr;
/*
* The main array object structure.
*
* It has been recommended to use the inline functions defined below
* (PyArray_DATA and friends) to access fields here for a number of
* releases. Direct access to the members themselves is deprecated.
* To ensure that your code does not use deprecated access,
* #define NPY_NO_DEPRECATED_API.
*/
/* This struct will be moved to a private header in a future release */
typedef struct tagPyArrayObject_fields {
PyObject_HEAD
/* Pointer to the raw data buffer */
char *data;
/* The number of dimensions, also called 'ndim' */
int nd;
/* The size in each dimension, also called 'shape' */
npy_intp *dimensions;
/*
* Number of bytes to jump to get to the
* next element in each dimension
*/
npy_intp *strides;
/*
* This object is decref'd upon
* deletion of array. Except in the
* case of UPDATEIFCOPY which has
* special handling.
*
* For views it points to the original
* array, collapsed so no chains of
* views occur.
*
* For creation from buffer object it
* points to an object that shold be
* decref'd on deletion
*
* For UPDATEIFCOPY flag this is an
* array to-be-updated upon deletion
* of this one
*/
PyObject *base;
/* Pointer to type structure */
PyArray_Descr *descr;
/* Flags describing array -- see below */
int flags;
/* For weak references */
PyObject *weakreflist;
/* New fields added as of NumPy 1.7 */
/*
* Descriptor for the mask dtype.
* If no mask: NULL
* If mask : bool/uint8/structured dtype of mask dtypes
*/
PyArray_Descr *maskna_dtype;
/*
* Raw data buffer for mask. If the array has the flag
* NPY_ARRAY_OWNMASKNA enabled, it owns this memory and
* must call PyArray_free on it when destroyed.
*/
char *maskna_data;
/*
* Just like dimensions and strides point into the same memory
* buffer, we now just make that buffer 3x the nd instead of 2x
* and use the same buffer. This is always allocated, regardless
* of whether there is an NA mask or not.
*/
npy_intp *maskna_strides;
} PyArrayObject_fields;
/*
* To hide the implementation details, we only expose
* the Python struct HEAD.
*/
#ifdef NPY_NO_DEPRECATED_API
typedef struct tagPyArrayObject {
PyObject_HEAD
} PyArrayObject;
#else
/*
* Can't put this in npy_deprecated_api.h like the others.
* PyArrayObject field access is deprecated as of NumPy 1.7.
*/
typedef PyArrayObject_fields PyArrayObject;
#endif
#define NPY_SIZEOF_PYARRAYOBJECT (sizeof(PyArrayObject_fields))
/* Array Flags Object */
typedef struct PyArrayFlagsObject {
PyObject_HEAD
PyObject *arr;
int flags;
} PyArrayFlagsObject;
/* Mirrors buffer object to ptr */
typedef struct {
PyObject_HEAD
PyObject *base;
void *ptr;
npy_intp len;
int flags;
} PyArray_Chunk;
typedef struct {
NPY_DATETIMEUNIT base;
int num;
/*
* 'den' and 'events are unused, kept here for ABI
* compatibility with 1.6.
*
* TODO: Remove for 2.0.
*/
int den;
int events;
} PyArray_DatetimeMetaData;
/*
* This structure contains an exploded view of a date-time value.
* NaT is represented by year == NPY_DATETIME_NAT.
*/
typedef struct {
npy_int64 year;
npy_int32 month, day, hour, min, sec, us, ps, as;
} npy_datetimestruct;
/* TO BE REMOVED - NOT USED INTERNALLY. */
typedef struct {
npy_int64 day;
npy_int32 sec, us, ps, as;
} npy_timedeltastruct;
typedef int (PyArray_FinalizeFunc)(PyArrayObject *, PyObject *);
/*
* Means c-style contiguous (last index varies the fastest). The data
* elements right after each other.
*
* This flag may be requested in constructor functions.
* This flag may be tested for in PyArray_FLAGS(arr).
*/
#define NPY_ARRAY_C_CONTIGUOUS 0x0001
/*
* Set if array is a contiguous Fortran array: the first index varies
* the fastest in memory (strides array is reverse of C-contiguous
* array)
*
* This flag may be requested in constructor functions.
* This flag may be tested for in PyArray_FLAGS(arr).
*/
#define NPY_ARRAY_F_CONTIGUOUS 0x0002
/*
* Note: all 0-d arrays are C_CONTIGUOUS and F_CONTIGUOUS. If a
* 1-d array is C_CONTIGUOUS it is also F_CONTIGUOUS
*/
/*
* If set, the array owns the data: it will be free'd when the array
* is deleted.
*
* This flag may be tested for in PyArray_FLAGS(arr).
*/
#define NPY_ARRAY_OWNDATA 0x0004
/*
* An array never has the next four set; they're only used as parameter
* flags to the the various FromAny functions
*
* This flag may be requested in constructor functions.
*/
/* Cause a cast to occur regardless of whether or not it is safe. */
#define NPY_ARRAY_FORCECAST 0x0010
/*
* Always copy the array. Returned arrays are always CONTIGUOUS,
* ALIGNED, and WRITEABLE.
*
* This flag may be requested in constructor functions.
*/
#define NPY_ARRAY_ENSURECOPY 0x0020
/*
* Make sure the returned array is a base-class ndarray
*
* This flag may be requested in constructor functions.
*/
#define NPY_ARRAY_ENSUREARRAY 0x0040
/*
* Make sure that the strides are in units of the element size Needed
* for some operations with record-arrays.
*
* This flag may be requested in constructor functions.
*/
#define NPY_ARRAY_ELEMENTSTRIDES 0x0080
/*
* Array data is aligned on the appropiate memory address for the type
* stored according to how the compiler would align things (e.g., an
* array of integers (4 bytes each) starts on a memory address that's
* a multiple of 4)
*
* This flag may be requested in constructor functions.
* This flag may be tested for in PyArray_FLAGS(arr).
*/
#define NPY_ARRAY_ALIGNED 0x0100
/*
* Array data has the native endianness
*
* This flag may be requested in constructor functions.
*/
#define NPY_ARRAY_NOTSWAPPED 0x0200
/*
* Array data is writeable
*
* This flag may be requested in constructor functions.
* This flag may be tested for in PyArray_FLAGS(arr).
*/
#define NPY_ARRAY_WRITEABLE 0x0400
/*
* If this flag is set, then base contains a pointer to an array of
* the same size that should be updated with the current contents of
* this array when this array is deallocated
*
* This flag may be requested in constructor functions.
* This flag may be tested for in PyArray_FLAGS(arr).
*/
#define NPY_ARRAY_UPDATEIFCOPY 0x1000
/*
* If this flag is set, then the array has an NA mask corresponding
* to the array data. If the flag NPY_ARRAY_OWNMASKNA is requested
* in a constructor, this flag is also implied even if it is not set.
*
* This flag may be requested in constructor functions.
* This flag may be tested for in PyArray_FLAGS(arr).
*/
#define NPY_ARRAY_MASKNA 0x2000
/*
* If this flag is set, then the array owns the memory for the
* missing values NA mask.
*
* This flag may be requested in constructor functions.
* This flag may be tested for in PyArray_FLAGS(arr).
*/
#define NPY_ARRAY_OWNMASKNA 0x4000
/*
* If this flag is set, then arrays which have an NA mask, or arrays
* which have an NA dtype are permitted to pass through. If not,
* an array with NA support causes an error to be thrown.
*
* This flag may be requested in constructor functions.
*/
#define NPY_ARRAY_ALLOWNA 0x8000
#define NPY_ARRAY_BEHAVED (NPY_ARRAY_ALIGNED | \
NPY_ARRAY_WRITEABLE)
#define NPY_ARRAY_BEHAVED_NS (NPY_ARRAY_ALIGNED | \
NPY_ARRAY_WRITEABLE | \
NPY_ARRAY_NOTSWAPPED)
#define NPY_ARRAY_CARRAY (NPY_ARRAY_C_CONTIGUOUS | \
NPY_ARRAY_BEHAVED)
#define NPY_ARRAY_CARRAY_RO (NPY_ARRAY_C_CONTIGUOUS | \
NPY_ARRAY_ALIGNED)
#define NPY_ARRAY_FARRAY (NPY_ARRAY_F_CONTIGUOUS | \
NPY_ARRAY_BEHAVED)
#define NPY_ARRAY_FARRAY_RO (NPY_ARRAY_F_CONTIGUOUS | \
NPY_ARRAY_ALIGNED)
#define NPY_ARRAY_DEFAULT (NPY_ARRAY_CARRAY)
#define NPY_ARRAY_IN_ARRAY (NPY_ARRAY_CARRAY_RO)
#define NPY_ARRAY_OUT_ARRAY (NPY_ARRAY_CARRAY)
#define NPY_ARRAY_INOUT_ARRAY (NPY_ARRAY_CARRAY | \
NPY_ARRAY_UPDATEIFCOPY)
#define NPY_ARRAY_IN_FARRAY (NPY_ARRAY_FARRAY_RO)
#define NPY_ARRAY_OUT_FARRAY (NPY_ARRAY_FARRAY)
#define NPY_ARRAY_INOUT_FARRAY (NPY_ARRAY_FARRAY | \
NPY_ARRAY_UPDATEIFCOPY)
#define NPY_ARRAY_UPDATE_ALL (NPY_ARRAY_C_CONTIGUOUS | \
NPY_ARRAY_F_CONTIGUOUS | \
NPY_ARRAY_ALIGNED)
/* This flag is for the array interface, not PyArrayObject */
#define NPY_ARR_HAS_DESCR 0x0800
/*
* Size of internal buffers used for alignment Make BUFSIZE a multiple
* of sizeof(cdouble) -- usually 16 so that ufunc buffers are aligned
*/
#define NPY_MIN_BUFSIZE ((int)sizeof(cdouble))
#define NPY_MAX_BUFSIZE (((int)sizeof(cdouble))*1000000)
#define NPY_BUFSIZE 8192
/* buffer stress test size: */
/*#define NPY_BUFSIZE 17*/
#define PyArray_MAX(a,b) (((a)>(b))?(a):(b))
#define PyArray_MIN(a,b) (((a)<(b))?(a):(b))
#define PyArray_CLT(p,q) ((((p).real==(q).real) ? ((p).imag < (q).imag) : \
((p).real < (q).real)))
#define PyArray_CGT(p,q) ((((p).real==(q).real) ? ((p).imag > (q).imag) : \
((p).real > (q).real)))
#define PyArray_CLE(p,q) ((((p).real==(q).real) ? ((p).imag <= (q).imag) : \
((p).real <= (q).real)))
#define PyArray_CGE(p,q) ((((p).real==(q).real) ? ((p).imag >= (q).imag) : \
((p).real >= (q).real)))
#define PyArray_CEQ(p,q) (((p).real==(q).real) && ((p).imag == (q).imag))
#define PyArray_CNE(p,q) (((p).real!=(q).real) || ((p).imag != (q).imag))
/*
* C API: consists of Macros and functions. The MACROS are defined
* here.
*/
#define PyArray_ISCONTIGUOUS(m) PyArray_CHKFLAGS(m, NPY_ARRAY_C_CONTIGUOUS)
#define PyArray_ISWRITEABLE(m) PyArray_CHKFLAGS(m, NPY_ARRAY_WRITEABLE)
#define PyArray_ISALIGNED(m) PyArray_CHKFLAGS(m, NPY_ARRAY_ALIGNED)
#define PyArray_IS_C_CONTIGUOUS(m) PyArray_CHKFLAGS(m, NPY_ARRAY_C_CONTIGUOUS)
#define PyArray_IS_F_CONTIGUOUS(m) PyArray_CHKFLAGS(m, NPY_ARRAY_F_CONTIGUOUS)
#if NPY_ALLOW_THREADS
#define NPY_BEGIN_ALLOW_THREADS Py_BEGIN_ALLOW_THREADS
#define NPY_END_ALLOW_THREADS Py_END_ALLOW_THREADS
#define NPY_BEGIN_THREADS_DEF PyThreadState *_save=NULL;
#define NPY_BEGIN_THREADS _save = PyEval_SaveThread();
#define NPY_END_THREADS do {if (_save) PyEval_RestoreThread(_save);} while (0);
#define NPY_BEGIN_THREADS_DESCR(dtype) \
do {if (!(PyDataType_FLAGCHK(dtype, NPY_NEEDS_PYAPI))) \
NPY_BEGIN_THREADS;} while (0);
#define NPY_END_THREADS_DESCR(dtype) \
do {if (!(PyDataType_FLAGCHK(dtype, NPY_NEEDS_PYAPI))) \
NPY_END_THREADS; } while (0);
#define NPY_ALLOW_C_API_DEF PyGILState_STATE __save__;
#define NPY_ALLOW_C_API __save__ = PyGILState_Ensure();
#define NPY_DISABLE_C_API PyGILState_Release(__save__);
#else
#define NPY_BEGIN_ALLOW_THREADS
#define NPY_END_ALLOW_THREADS
#define NPY_BEGIN_THREADS_DEF
#define NPY_BEGIN_THREADS
#define NPY_END_THREADS
#define NPY_BEGIN_THREADS_DESCR(dtype)
#define NPY_END_THREADS_DESCR(dtype)
#define NPY_ALLOW_C_API_DEF
#define NPY_ALLOW_C_API
#define NPY_DISABLE_C_API
#endif
/*****************************
* NA object, added in 1.7
*****************************/
/* Direct access to the fields of the NA object is just internal to NumPy. */
typedef struct tagNpyNA {
PyObject_HEAD
} NpyNA;
#define NpyNA_Check(op) PyObject_TypeCheck(op, &NpyNA_Type)
/**********************************
* The nditer object, added in 1.6
**********************************/
/* The actual structure of the iterator is an internal detail */
typedef struct NpyIter_InternalOnly NpyIter;
/* Iterator function pointers that may be specialized */
typedef int (NpyIter_IterNextFunc)(NpyIter *iter);
typedef void (NpyIter_GetMultiIndexFunc)(NpyIter *iter,