-
Notifications
You must be signed in to change notification settings - Fork 0
/
.Rhistory
512 lines (512 loc) · 20.4 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# if (!require("hrbrthemes") ) install.packages("hrbrthemes"); library("hrbrthemes");
if (!require("tidyverse") ) install.packages("tidyverse"); library("tidyverse");
if (!require("patchwork") ) install.packages("patchwork"); library("patchwork");
#######################################################################
# R code accompanying Beffara, Bret & Nalborczyk (2019)
# OSF projet: https://osf.io/mwtvk/
# ---------------------------------------------------------
# Sequential analyses procedure, main script
# Written by Ladislas Nalborczyk
# E-mail: [email protected]
# Last update: March 2, 2021
################################################################
#########################################################
# Installing / loading relevant packages
###################################################
# ggplot2 themes
# if (!require("hrbrthemes") ) install.packages("hrbrthemes"); library("hrbrthemes")
# Data formatting, manipulation, and ploting
if (!require("tidyverse") ) install.packages("tidyverse"); library("tidyverse")
# Running tasks on parallel cores
if (!require("parallel") ) install.packages("parallel"); library("parallel")
# Sending emails from R (via gmail)
if (!require("gmailr") ) install.packages("gmailr"); library("gmailr")
# Bayesian multilevel regression models
if (!require("brms") ) install.packages("brms"); library("brms")
# OSF interface
if (!require("osfr") ) {
install.packages("remotes")
remotes::install_github("centerforopenscience/osfr")
library("osfr")
}
?mime
results <- "babar"
email <- # writes email
mime(
To = "[email protected]",
To = "[email protected]",
To = "[email protected]",
From = "[email protected]",
Subject = "Sequential analysis",
body = results # results of the sequential analysis (stop or continue)
)
?gm_mime
email <- # writes email
gm_mime(
To = "[email protected]",
To = "[email protected]",
To = "[email protected]",
From = "[email protected]",
Subject = "Sequential analysis",
body = results # results of the sequential analysis (stop or continue)
)
# sends email
send_message(email)
# sends email
gm_send_message(email)
?gm_send_message
?gm_auth_configure
# configure gmail app
gm_auth_configure()
#######################################################################
# R code accompanying Beffara, Bret & Nalborczyk (2019)
# OSF projet: https://osf.io/mwtvk/
# ---------------------------------------------------------
# Sequential analyses procedure, main script
# Written by Ladislas Nalborczyk
# E-mail: [email protected]
# Last update: March 2, 2021
################################################################
#########################################################
# Installing / loading relevant packages
###################################################
# ggplot2 themes
# if (!require("hrbrthemes") ) install.packages("hrbrthemes"); library("hrbrthemes")
# Data formatting, manipulation, and ploting
if (!require("tidyverse") ) install.packages("tidyverse"); library("tidyverse")
# Running tasks on parallel cores
if (!require("parallel") ) install.packages("parallel"); library("parallel")
# Sending emails from R (via gmail)
if (!require("gmailr") ) install.packages("gmailr"); library("gmailr")
# Bayesian multilevel regression models
if (!require("brms") ) install.packages("brms"); library("brms")
# OSF interface
if (!require("osfr") ) {
install.packages("remotes")
remotes::install_github("centerforopenscience/osfr")
library("osfr")
}
#########################################################################
# set working directory to the script's parent folder
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# ! temporary solution, only works with RStudio... !
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# ---------------------------------------------------------------
# setwd(dirname(rstudioapi::getActiveDocumentContext()$path) )
###################################################################
# Scheduling task (retrieving data and running analyses)
#############################################################
####################################################
# For windows from R (not tested)
# Using the taskscheduleR package
# https://github.com/bnosac/taskscheduleR
###############################################
# if (!require("taskscheduleR") ) install.packages("taskscheduleR")
# library(taskscheduleR)
# get a data.frame of all tasks
# tasks <- taskscheduler_ls(id = "sequential_analysis")
# if it does not exist yet, create automation to run script every hour
# if (is.null(tasks) ) {
# taskscheduler_create(
# taskname = "sequential_analysis", rscript = "main_script.R",
# schedule = "HOURLY"
# )
# }
# delete the task
# taskscheduler_delete(taskname = "sequential_analysis")
# NB: tasks can also be created/deleted from RStudio using the
# taskscheduleR add-in (see the documentation on Github)
##################################################
# For Unix/Linux systems from R
# Using the cronR package
# https://github.com/bnosac/cronR
#########################################
if (!require("cronR") ) remotes::install_github("bnosac/cronR")
library(cronR)
# check whether the task already exists
tasks <- cron_ls(id = "sequential_testing")
# if it does not exist yet, create automation to run script every hour
if (is.null(tasks) ) {
script <- cron_rscript("scripts/main_script.R", log_append = FALSE)
cron_add(script, frequency = "hourly", id = "sequential_testing")
}
# delete the task
# cron_add(script, frequency = "minutely", id = "sequential_testing")
# cron_clear(ask = FALSE)
# NB: tasks can also be created/deleted from RStudio using the
# cronR add-in (see the documentation on Github)
##################################################################
# Retrieving the data files
######################################################
# count the number of datafiles that have already been downloaded
n_data <- list.files(path = "data/", pattern = "csv") %>% length %>% as.numeric
# retrieve OSF data
osf_data <-
# retrieve the OSF project
osf_retrieve_node("mwtvk") %>%
# list components
osf_ls_nodes() %>%
# retrieve the component containing the data
filter(name == "data_emo_stroop_xp") %>%
# list .csv files in this repository
osf_ls_files(pattern = "csv", n_max = Inf) %>%
# remove .csv files ending with "_1"
filter(!str_detect(name, "_1") )
# IF new data is present on OSF, download it, else, quit the script
if (nrow(osf_data) > n_data) {
osf_data %>%
# mutate(path = paste(here("data"), "/", .$name, sep = "") ) %>%
# for each line (each csv file)
{split(., 1:nrow(.) )} %>%
# download it
lapply(osf_download, conflicts = "overwrite")
# download it and put it in the "data" folder
# lapply(osf_download, path = paste(here("data"), .$name, sep = "/ "), overwrite = TRUE)
# lapply(osf_download, path = glue::glue(here("data"), .$name, sep = ""), overwrite = TRUE)
} else {
quit(save = "no")
}
#######################################################################
# R code accompanying Beffara, Bret & Nalborczyk (2019)
# OSF projet: https://osf.io/mwtvk/
# ---------------------------------------------------------
# Sequential analyses procedure, main script
# Written by Ladislas Nalborczyk
# E-mail: [email protected]
# Last update: March 2, 2021
################################################################
#########################################################
# Installing / loading relevant packages
###################################################
# ggplot2 themes
# if (!require("hrbrthemes") ) install.packages("hrbrthemes"); library("hrbrthemes")
# Data formatting, manipulation, and ploting
if (!require("tidyverse") ) install.packages("tidyverse"); library("tidyverse")
# Running tasks on parallel cores
if (!require("parallel") ) install.packages("parallel"); library("parallel")
# Sending emails from R (via gmail)
if (!require("gmailr") ) install.packages("gmailr"); library("gmailr")
# Bayesian multilevel regression models
if (!require("brms") ) install.packages("brms"); library("brms")
# OSF interface
if (!require("osfr") ) {
install.packages("remotes")
remotes::install_github("centerforopenscience/osfr")
library("osfr")
}
#########################################################################
# set working directory to the script's parent folder
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# ! temporary solution, only works with RStudio... !
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# ---------------------------------------------------------------
# setwd(dirname(rstudioapi::getActiveDocumentContext()$path) )
###################################################################
# Scheduling task (retrieving data and running analyses)
#############################################################
####################################################
# For windows from R (not tested)
# Using the taskscheduleR package
# https://github.com/bnosac/taskscheduleR
###############################################
# if (!require("taskscheduleR") ) install.packages("taskscheduleR")
# library(taskscheduleR)
# get a data.frame of all tasks
# tasks <- taskscheduler_ls(id = "sequential_analysis")
# if it does not exist yet, create automation to run script every hour
# if (is.null(tasks) ) {
# taskscheduler_create(
# taskname = "sequential_analysis", rscript = "main_script.R",
# schedule = "HOURLY"
# )
# }
# delete the task
# taskscheduler_delete(taskname = "sequential_analysis")
# NB: tasks can also be created/deleted from RStudio using the
# taskscheduleR add-in (see the documentation on Github)
##################################################
# For Unix/Linux systems from R
# Using the cronR package
# https://github.com/bnosac/cronR
#########################################
if (!require("cronR") ) remotes::install_github("bnosac/cronR")
library(cronR)
# check whether the task already exists
tasks <- cron_ls(id = "sequential_testing")
# if it does not exist yet, create automation to run script every hour
if (is.null(tasks) ) {
script <- cron_rscript("scripts/main_script.R", log_append = FALSE)
cron_add(script, frequency = "hourly", id = "sequential_testing")
}
# delete the task
# cron_add(script, frequency = "minutely", id = "sequential_testing")
# cron_clear(ask = FALSE)
# NB: tasks can also be created/deleted from RStudio using the
# cronR add-in (see the documentation on Github)
##################################################################
# Retrieving the data files
######################################################
# count the number of datafiles that have already been downloaded
n_data <- list.files(path = "data/", pattern = "csv") %>% length %>% as.numeric
# retrieve OSF data
osf_data <-
# retrieve the OSF project
osf_retrieve_node("mwtvk") %>%
# list components
osf_ls_nodes() %>%
# retrieve the component containing the data
filter(name == "data_emo_stroop_xp") %>%
# list .csv files in this repository
osf_ls_files(pattern = "csv", n_max = Inf) %>%
# remove .csv files ending with "_1"
filter(!str_detect(name, "_1") )
# IF new data is present on OSF, download it, else, quit the script
if (nrow(osf_data) > n_data) {
osf_data %>%
# mutate(path = paste(here("data"), "/", .$name, sep = "") ) %>%
# for each line (each csv file)
{split(., 1:nrow(.) )} %>%
# download it
lapply(osf_download, conflicts = "overwrite")
# download it and put it in the "data" folder
# lapply(osf_download, path = paste(here("data"), .$name, sep = "/ "), overwrite = TRUE)
# lapply(osf_download, path = glue::glue(here("data"), .$name, sep = ""), overwrite = TRUE)
} else {
quit(save = "no")
}
#######################################################################
# R code accompanying Beffara, Bret & Nalborczyk (2019)
# OSF projet: https://osf.io/mwtvk/
# ---------------------------------------------------------
# Sequential analyses procedure, main script
# Written by Ladislas Nalborczyk
# E-mail: [email protected]
# Last update: March 3, 2021
################################################################
#########################################################
# Installing / loading relevant packages
###################################################
# ggplot2 themes
# if (!require("hrbrthemes") ) install.packages("hrbrthemes"); library("hrbrthemes")
# Data formatting, manipulation, and ploting
if (!require("tidyverse") ) install.packages("tidyverse"); library("tidyverse")
# Running tasks on parallel cores
if (!require("parallel") ) install.packages("parallel"); library("parallel")
# Sending emails from R (via gmail)
if (!require("gmailr") ) install.packages("gmailr"); library("gmailr")
# Bayesian multilevel regression models
if (!require("brms") ) install.packages("brms"); library("brms")
# OSF interface
if (!require("osfr") ) {
install.packages("remotes")
remotes::install_github("centerforopenscience/osfr")
library("osfr")
}
#########################################################################
# set working directory to the script's parent folder
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# ! temporary solution, only works with RStudio... !
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# ---------------------------------------------------------------
# setwd(dirname(rstudioapi::getActiveDocumentContext()$path) )
###################################################################
# Scheduling task (retrieving data and running analyses)
#############################################################
####################################################
# For windows from R (not tested)
# Using the taskscheduleR package
# https://github.com/bnosac/taskscheduleR
###############################################
# if (!require("taskscheduleR") ) install.packages("taskscheduleR")
# library(taskscheduleR)
# get a data.frame of all tasks
# tasks <- taskscheduler_ls(id = "sequential_analysis")
# if it does not exist yet, create automation to run script every hour
# if (is.null(tasks) ) {
# taskscheduler_create(
# taskname = "sequential_analysis", rscript = "main_script.R",
# schedule = "HOURLY"
# )
# }
# delete the task
# taskscheduler_delete(taskname = "sequential_analysis")
# NB: tasks can also be created/deleted from RStudio using the
# taskscheduleR add-in (see the documentation on Github)
##################################################
# For Unix/Linux systems from R
# Using the cronR package
# https://github.com/bnosac/cronR
#########################################
if (!require("cronR") ) remotes::install_github("bnosac/cronR")
library(cronR)
# check whether the task already exists
tasks <- cron_ls(id = "sequential_testing")
# if it does not exist yet, create automation to run script every hour
if (is.null(tasks) ) {
script <- cron_rscript("scripts/main_script.R", log_append = FALSE)
cron_add(script, frequency = "hourly", id = "sequential_testing")
}
# delete the task
# cron_add(script, frequency = "minutely", id = "sequential_testing")
# cron_clear(ask = FALSE)
# NB: tasks can also be created/deleted from RStudio using the
# cronR add-in (see the documentation on Github)
##################################################################
# Retrieving the data files
######################################################
# count the number of datafiles that have already been downloaded
n_data <- list.files(path = "data/", pattern = "csv") %>% length %>% as.numeric
# retrieve OSF data
osf_data <-
# retrieve the OSF project
osf_retrieve_node("mwtvk") %>%
# list components
osf_ls_nodes() %>%
# retrieve the component containing the data
filter(name == "data_emo_stroop_xp") %>%
# list .csv files in this repository
osf_ls_files(pattern = "csv", n_max = Inf) %>%
# remove .csv files ending with "_1"
filter(!str_detect(name, "_1") )
# IF new data is present on OSF, download it, else, quit the script
if (nrow(osf_data) > n_data) {
osf_data %>%
# mutate(path = paste(here("data"), "/", .$name, sep = "") ) %>%
# for each line (each csv file)
{split(., 1:nrow(.) )} %>%
# download it
lapply(osf_download, conflicts = "overwrite")
# download it and put it in the "data" folder
# lapply(osf_download, path = paste(here("data"), .$name, sep = "/ "), overwrite = TRUE)
# lapply(osf_download, path = glue::glue(here("data"), .$name, sep = ""), overwrite = TRUE)
} else {
# quit(save = "no")
}
###############################################################
# Importing and formatting the data
######################################################
# listing all cvs files
data_files <-
list.files(path = "data/", pattern = "csv") %>%
# converting to dataframe
data.frame(file = ., stringsAsFactors = FALSE) %>%
# removing "deleted" files
filter(!stringr::str_detect(file, "DELETED") ) %>%
# splitting file name by date of acquisition
separate(col = file, into = c("day", "hour"), remove = FALSE, sep = "\\ ") %>%
mutate(day = sub(".*stroop_", "", day), hour = sub(".csv*", "", hour) ) %>%
# sorting files by date of acquisition
arrange(day, hour)
for (i in 1:nrow(data_files) ) {
if (i == 1) data <- NULL
# import data in a dataframe
d <- read.csv(paste0("data/", data_files$file[i]) ) # %>% data.frame
if (nrow(d) == 0) { # if file is empty
next # go to next iteration
} else {
temp_data <-
d %>%
# removing the last (empty) column
select(-ncol(.) ) %>%
# keeping only the relevant columns
select(
stimulus = stim, actor, emotion = emo, word = print_word,
congruency = congr, corr, resp.keys, resp.corr, resp.rt,
participant, date
) %>%
# convert response time to ms
mutate(resp.rt = resp.rt * 1000) %>%
# remove NAs
na.omit
}
if (is.null(data) ) data <- temp_data else data <- rbind(data, temp_data)
}
# remove all files except data
rm(list = setdiff(ls(), "data") )
##########################################################
# Sequential analyses
# ---------------------------------------
# 1) Defining the model of interest
# 2) Fitting it sequentially
################################################
# defining/fitting the model (multilevel ExGaussian model)
model <- brm(
resp.rt ~ 1 + congruency + (1 + congruency | participant),
# exgaussian model
family = exgaussian(),
# defining weakly informative priors (on the scale of the data)
prior = c(
# prior(normal(500, 100), class = Intercept),
prior(normal(0, 10), class = b)
# prior(exponential(0.01), class = sd),
# prior(exponential(0.01), class = sigma)
),
# specifying the dataset
data = data,
# number of chains
chains = 2,
# number of parallel cores
cores = parallel::detectCores(),
# number of iterations and warmup
warmup = 2000, iter = 5000,
control = list(adapt_delta = 0.95),
# sampling from prior (needed to compute the BF)
sample_prior = TRUE
)
# retrieving the sequential_analysis() function
source("scripts/sequential_analyses.R")
# running and storing the results of the sequential analysis (stop or continue)
# see sequential_analyses.R for documentation on the function arguments
results <- sequential_analysis(
model, cleaning = TRUE, type = "SBF",
nmin = 20, step = 1, hypothesis = "congruency = 0",
threshold = 20, rope = c(-0.1, 0.1), precision = 0.16, blind = FALSE
)
# saving the SBF evolution
# save(results, file = "sbf_evolution.rds")
# plotting the evolution
# results %>%
# ggplot(aes(x = participant, y = 1 / BF) ) +
# geom_hline(yintercept = 20, linetype = 2) +
# geom_segment(
# aes(x = 20, xend = 23, y = 1 / 0.03853322, yend = 1 / 0.03853322),
# colour = "orangered", linetype = 3
# ) +
# geom_segment(
# aes(x = 23, xend = 23, y = 10, yend = 1 / 0.03853322),
# colour = "orangered", linetype = 3
# ) +
# geom_line() +
# geom_smooth(colour = "black", method = "lm") +
# geom_point(pch = 21, fill = "white", size = 2) +
# hrbrthemes::theme_ipsum_rc() +
# labs(
# title = "Evolution of the sequential Bayes factor procedure",
# subtitle = expression(
# paste(
# "Evolution of the ", BF[10], " computed from ",
# n[min], " = 20 participants to ", n[max],
# " = 45 participants", sep = ""
# )
# ),
# x = "Sample size",
# y = expression(paste("Bayes factor (", BF[10], ")", sep = "") )
# )
############################################################
# Sending the results by e-mail (using gmailr)
######################################################
# configure gmail app
# gm_auth_configure()
email <- # writes email
gm_mime(
To = "[email protected]",
To = "[email protected]",
To = "[email protected]",
From = "[email protected]",
Subject = "Sequential analysis",
body = results # results of the sequential analysis (stop or continue)
)
# sends email
gm_send_message(email)
# quits rstudio
quit(save = "no")