forked from e-lab/pytorch-linknet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
273 lines (221 loc) · 9.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import numpy as np
from subprocess import call
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.autograd import Variable
from opts import get_args # Get all the input arguments
from test import Test
from train import Train
from confusion_matrix import ConfusionMatrix
import data.segmented_data as segmented_data
import transforms
print('\033[0;0f\033[0J')
# Color Palette
CP_R = '\033[31m'
CP_G = '\033[32m'
CP_B = '\033[34m'
CP_Y = '\033[33m'
CP_C = '\033[0m'
args = get_args() # Holds all the input arguments
def cross_entropy2d(x, target, weight=None, size_average=True):
# Taken from https://github.com/meetshah1995/pytorch-semseg/blob/master/ptsemseg/loss.py
n, c, h, w = x.size()
log_p = F.log_softmax(x, dim=1)
log_p = log_p.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c)
log_p = log_p[target.view(n * h * w, 1).repeat(1, c) >= 0]
log_p = log_p.view(-1, c)
mask = target >= 0
target = target[mask]
loss = F.nll_loss(log_p, target, ignore_index=250,
weight=weight, size_average=False)
if size_average:
loss /= mask.data.sum()
return loss
def save_model(checkpoint, class_names, conf_matrix, test_error, prev_error, avg_accuracy, class_iou, save_dir, save_all):
if test_error >= prev_error:
prev_error = test_error
print(CP_G + 'Saving model!!!' + CP_C)
torch.save(checkpoint, save_dir + '/model_best.pth')
np.savetxt(save_dir + '/confusion_matrix_best.txt', conf_matrix, fmt='%10s', delimiter=' ')
conf_file = open(save_dir + '/confusion_matrix_best.txt', 'a')
conf_file.write('{:-<80}\n'.format(''))
first = True
for value in class_iou:
if first:
conf_file.write("{:>10}".format("{:2.2f}".format(100*value)))
first = False
else:
conf_file.write("{:>14}".format("{:2.2f}".format(100*value)))
conf_file.write("\n")
first = True
for value in class_names:
if first:
conf_file.write("{:>10}".format(value))
first = False
else:
conf_file.write("{:>14}".format(value))
conf_file.write('\n{:-<80}\n\n'.format(''))
conf_file.write('mIoU : ' + str(test_error) + '\n')
conf_file.write('Average Accuracy : ' + str(avg_accuracy))
conf_file.close()
if save_all:
torch.save(checkpoint, save_dir + '/all/model_' + str(checkpoint['epoch']) + '.pth')
conf_file_path = save_dir + '/all/confusion_matrix_' + str(checkpoint['epoch']) + '.txt'
np.savetxt(conf_file_path, conf_matrix, fmt='%10s', delimiter=' ')
conf_file = open(conf_file_path, 'a')
conf_file.write('{:-<80}\n'.format(''))
first = True
for value in class_iou:
if first:
conf_file.write("{:>10}".format("{:2.2f}".format(100*value)))
first = False
else:
conf_file.write("{:>14}".format("{:2.2f}".format(100*value)))
conf_file.write("\n")
first = True
for value in class_names:
if first:
conf_file.write("{:>10}".format(value))
first = False
else:
conf_file.write("{:>14}".format(value))
conf_file.write('\n{:-<80}\n'.format(''))
conf_file.write('mIoU : ' + str(test_error) + '\n')
conf_file.write('Average Accuracy : ' + str(avg_accuracy))
conf_file.close()
torch.save(checkpoint, save_dir + '/model_resume.pth')
return prev_error
def main():
print(CP_R + "e-Lab Segmentation Training Script" + CP_C)
#################################################################
# Initialization step
torch.manual_seed(args.seed)
cudnn.benchmark = True
torch.set_default_tensor_type('torch.FloatTensor')
#################################################################
# Acquire dataset loader object
# Normalization factor based on ResNet stats
prep_data = transforms.Compose([
#transforms.Crop((512, 512)),
transforms.Resize((1024, 512)),
transforms.ToTensor(),
transforms.Normalize([[0.406, 0.456, 0.485], [0.225, 0.224, 0.229]])
])
prep_target = transforms.Compose([
#transforms.Crop((512, 512)),
transforms.Resize((1024, 512)),
transforms.ToTensor(basic=True),
])
if args.dataset == 'cs':
import data.segmented_data as segmented_data
print ("{}Cityscapes dataset in use{}!!!".format(CP_G, CP_C))
else:
print ("{}Invalid data-loader{}".format(CP_R, CP_C))
# Training data loader
data_obj_train = segmented_data.SegmentedData(root=args.datapath, mode='train',
transform=prep_data, target_transform=prep_target)
data_loader_train = DataLoader(data_obj_train, batch_size=args.bs, shuffle=True,
num_workers=args.workers, pin_memory=True)
data_len_train = len(data_obj_train)
# Testing data loader
data_obj_test = segmented_data.SegmentedData(root=args.datapath, mode='val',
transform=prep_data, target_transform=prep_target)
data_loader_test = DataLoader(data_obj_test, batch_size=args.bs, shuffle=False,
num_workers=args.workers, pin_memory=True)
data_len_test = len(data_obj_test)
class_names = data_obj_train.class_name()
n_classes = len(class_names)
#################################################################
# Load model
epoch = 0
prev_iou = 0.0001
# Load fresh model definition
print('{}{:=<80}{}'.format(CP_R, '', CP_C))
print('{}Models will be saved in: {}{}'.format(CP_Y, CP_C, str(args.save)))
if not os.path.exists(str(args.save)):
os.mkdir(str(args.save))
if args.saveAll:
if not os.path.exists(str(args.save)+'/all'):
os.mkdir(str(args.save)+'/all')
if args.model == 'linknet':
# Save model definiton script
call(["cp", "./models/linknet.py", args.save])
from models.linknet import LinkNet
from torchvision.models import resnet18
model = LinkNet(n_classes)
# # Copy weights of resnet18 into encoder
# pretrained_model = resnet18(pretrained=True)
# for i, j in zip(model.modules(), pretrained_model.modules()):
# if not list(i.children()):
# if not isinstance(i, nn.Linear) and len(i.state_dict()) > 0:
# i.weight.data = j.weight.data
model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), args.lr)#,
#momentum=args.momentum, weight_decay=args.wd)
if args.resume:
# Load previous model state
checkpoint = torch.load(args.save + '/model_resume.pth')
epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optim_state'])
prev_iou = checkpoint['min_error']
print('{}Loaded model from previous checkpoint epoch # {}({})'.format(CP_G, CP_C, epoch))
# Criterion
print("Model initialized for training...")
hist_path = os.path.join(args.save, 'hist')
if os.path.isfile(hist_path + '.npy'):
hist = np.load(hist_path + '.npy')
print('{}Loaded cached dataset stats{}!!!'.format(CP_Y, CP_C))
else:
# Get class weights based on training data
hist = np.zeros((n_classes), dtype=np.float)
for batch_idx, (x, yt) in enumerate(data_loader_train):
h, bins = np.histogram(yt.numpy(), list(range(n_classes + 1)))
hist += h
hist = hist/(max(hist)) # Normalize histogram
print('{}Saving dataset stats{}...'.format(CP_Y, CP_C))
np.save(hist_path, hist)
criterion_weight = 1/np.log(1.02 + hist)
criterion_weight[0] = 0
criterion = nn.NLLLoss(Variable(torch.from_numpy(criterion_weight).float().cuda()))
print('{}Using weighted criterion{}!!!'.format(CP_Y, CP_C))
#criterion = cross_entropy2d
# Save arguements used for training
args_log = open(args.save + '/args.log', 'w')
for k in args.__dict__:
args_log.write(k + ' : ' + str(args.__dict__[k]) + '\n')
args_log.close()
# Setup Metrics
metrics = ConfusionMatrix(n_classes, class_names, useUnlabeled=args.use_unlabeled)
train = Train(model, data_loader_train, optimizer, criterion, args.lr, args.wd, args.bs, args.visdom)
test = Test(model, data_loader_test, criterion, metrics, args.bs, args.visdom)
# Save error values in log file
logger = open(args.save + '/error.log', 'w')
logger.write('{:10} {:10}'.format('Train Error', 'Test Error'))
logger.write('\n{:-<20}'.format(''))
while epoch <= args.maxepoch:
train_error = 0
print('{}{:-<80}{}'.format(CP_R, '', CP_C))
print('{}Epoch #: {}{:03}'.format(CP_B, CP_C, epoch))
train_error = train.forward()
test_error, accuracy, avg_accuracy, iou, miou, conf_mat= test.forward()
logger.write('\n{:.6f} {:.6f} {:.6f}'.format(train_error, test_error, miou))
print('{}Training Error: {}{:.6f} | {}Testing Error: {}{:.6f} |{}Mean IoU: {}{:.6f}'.format(
CP_B, CP_C, train_error, CP_B, CP_C, test_error, CP_G, CP_C, miou))
# Save weights and model definition
prev_iou = save_model({
'epoch': epoch,
'model_def': model,
'state_dict': model.state_dict(),
'optim_state': optimizer.state_dict(),
'min_error': prev_iou
}, class_names, conf_mat, miou, prev_iou, avg_accuracy, iou, args.save, args.saveAll)
epoch += 1
logger.close()
if __name__ == '__main__':
main()