forked from e-lab/pytorch-linknet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnobypass.py
195 lines (155 loc) · 8.9 KB
/
nobypass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from torch import FloatTensor as tensor
from torch import nn as nn
import torch
import math
from torch import cuda
import os
from collections import OrderedDict as od
class Model(object):
def __init__(self, opt):
self.opt = opt
print '\n\27[31m\27[4mConstructing Neural Network\27[0m'
print 'Using pretrained ResNet-18'
# loading model
self.oModel = torch.load(opt['pretrained'])
self.classes = opt['Classes']
self.histClasses = opt['histClasses']
# Getting rid of classifier
self.oModel.remove(11)
self.oModel.remove(10)
self.oModel.remove(9)
# Last layer is size 512x8x8
# Function and variable definition
self.iChannels = 64
self.Convolution = nn.ConvTranspose2d
self.Avg = nn.AvgPool2d
self.ReLU = nn.ReLU
self.Max = nn.MaxPool2d
self.SBatchNorm = nn.BatchNorm2d
self.model = None
self.loss = None
if os.path.isfile(self.opt['save'] + '/all/model-last.net'):
model = torch.load(self.opt['save'] + '/all/model-last.net')
else:
layers = od([("oModel layer 1", self.oModel.get(1)), ("oModel layer 2", self.oModel.get(2)),
("oModel layer 3", self.oModel.get(3)), ("oModel layer 4", self.oModel.get(4)),
("enc_Dec layer", self.model.add_module(self.enc_dec(64, 1, 1, 0))),
("spacial layer 1", nn.ConvTranspose2d(64, 32, (3, 3), padding=(1, 1), output_padding=(1, 1),
stride=(2, 2))),
("batch norm layer 1", self.SBatchNorm(32)), ("ReLu layer 1", self.ReLU(True)),
("conv layer 1", self.Convolution(32, 32, 3, 3, 1, 1, 1, 1).type(cuda.FloatTensor)),
("batch norm layer 2", self.SBatchNorm(32, eps=1e-3)), ("rectified layer 2", self.ReLU(True)),
("spacial layer 2", nn.ConvTranspose2d(32, len(self.classes), (2, 2), stride=(2, 2),
padding=(0, 0), output_padding=(0, 0)))])
"""
model.add_module("oModel layer 1", self.oModel.get(1))
model.add_module("oModel layer 2", self.oModel.get(2))
model.add_module("oModel layer 3", self.oModel.get(3))
model.add_module("oModel layer 4", self.oModel.get(4))
model.add_module("bypass2dec layer", self.bypass2dec(64, 1, 1, 0))
# -- Decoder section without bypassed information
model.add_module("spacial layer 1", nn.ConvTranspose2d(64, 32, (3, 3), padding=(1, 1), output_padding=(1, 1)
, stride=(2, 2)))
model.add_module("batch norm layer 1", self.SBatchNorm(32))
model.add_module("ReLu layer 1", self.ReLU(True))
# -- 64x128x128
model.add_module("conv layer 1", self.Convolution(32, 32, 3, 3, 1, 1, 1, 1))
model.add_module("batch norm layer 2", self.SBatchNorm(32, eps=1e-3))
model.add_module("rectified layer 2", self.ReLU(True))
# -- 32x128x128
model.add_module("spacial layer 2", nn.ConvTranspose2d(32, len(self.classes), (2, 2), stride=(2, 2),
padding=(0, 0), output_padding=(0, 0)))
"""
# -- Model definition ends here
# -- Initialize convolutions and batch norm existing in later stage of decoder
for i in range(1, 2):
self.ConvInit(layers.items()[len(layers)-1][1])
self.ConvInit(layers.items()[len(layers)-1][1])
self.ConvInit(layers.items()[len(layers) - 4][1])
self.ConvInit(layers.items()[len(layers) - 4][1])
self.ConvInit(layers.items()[len(layers) - 7][1])
self.ConvInit(layers.items()[len(layers) - 7][1])
self.BNInit(layers.items()[len(layers) - 3][1])
self.BNInit(layers.items()[len(layers) - 3][1])
self.BNInit(layers.items()[len(layers) - 6][1])
self.BNInit(layers.items()[len(layers) - 6][1])
model = nn.Sequential(layers)
if torch.cuda.device_count() > 1:
gpu_list = []
for i in range(0, torch.cuda.device_count()):
gpu_list.append(i)
model = nn.DataParallel(1, True, False).add(model.cuda(), gpu_list) # check this
print('\27[32m' + str(self.opt['nGPU']) + " GPUs being used\27[0m")
print('Defining loss function...')
classWeights = torch.pow(torch.log(1.02 + self.histClasses / self.histClasses.max()), -1)
-- classWeights[0] = 0
self.loss = torch.nn.CrossEntropyLoss(weight=classWeights)
model.cuda()
self.loss.cuda()
self.model = model
self.model = model
@staticmethod
def ConvInit(vector):
n = vector.kernel_size(0) * vector.kernel_size(1) * vector.out_channels
vector.weight = torch.nn.Parameter(tensor(vector.in_channels, vector.out_channels // vector.groups,
*vector.kernel_size).normal_(0, math.sqrt(2 / n)))
# removed the weight:normal
@staticmethod
def BNInit(vector):
vector.weight = torch.nn.Parameter(tensor(vector.in_channels, vector.out_channels // vector.groups,
*vector.kernel_size).fill(1))
vector.bias = torch.nn.Parameter(tensor(vector.out_channels).zero_())
def decode(self, iFeatures, oFeatures, stride, adjS):
"""
mainBlock = nn.Sequential()
mainBlock.add_module("conv layer 1", self.Convolution(iFeatures, iFeatures / 4, 1, 1, 1, 1, 0, 0))
mainBlock.add_module("batch norm 1", self.SBatchNorm(iFeatures / 4, eps=1e-3))
mainBlock.add_module("rectifier layer 1", nn.ReLU(True))
mainBlock.add_module("spacial layer 1", nn.ConvTranspose2d(iFeatures / 4, iFeatures / 4, (3, 3), stride=
(stride, stride), padding=(1, 1), output_padding=(adjS, adjS)))
mainBlock.add_module("batch norm layer 2", self.SBatchNorm(iFeatures / 4, eps=1e-3))
mainBlock.add_module("rectifier layer 2", nn.ReLU(True))
mainBlock.add_module("conv layer 2", self.Convolution(iFeatures / 4, oFeatures, 1, 1, 1, 1, 0, 0))
mainBlock.add_module("batch norm layer 3", self.SBatchNorm(oFeatures, eps=1e-3))
mainBlock.add_module("rectifier layer 3", nn.ReLU(True))
"""
layers = od([("conv layer 1", self.Convolution(iFeatures, iFeatures / 4, 1, 1, 1, 1, 0, 0).type(cuda.FloatTensor)),
("batch norm 1", self.SBatchNorm(iFeatures / 4, eps=1e-3)),
("rectifier layer 1", nn.ReLU(True)),
("spacial layer 1", nn.ConvTranspose2d(iFeatures / 4, iFeatures / 4, (3, 3),
stride=(stride, stride), padding=(1, 1), output_padding=(adjS, adjS))),
("batch norm layer 2", self.SBatchNorm(iFeatures / 4, eps=1e-3)),
("rectifier layer 2", nn.ReLU(True)),
("conv layer 2", self.Convolution(iFeatures / 4, oFeatures, 1, 1, 1, 1, 0, 0).type(cuda.FloatTensor)),
("batch norm layer 3", self.SBatchNorm(oFeatures, eps=1e-3)),
("rectifier layer 3", nn.ReLU(True))])
for i in xrange(1, 2):
self.ConvInit(layers.items()[0][1])
self.ConvInit(layers.items()[3][1])
self.ConvInit(layers.items()[6][1])
self.BNInit(layers.items()[1][1])
self.BNInit(layers.items()[4][1])
self.BNInit(layers.items()[7][1])
mainBlock = nn.Sequential(layers)
return mainBlock
def layer(self, layerN, features):
self.iChannels = features
s = nn.Sequential()
for i in xrange(1, 2):
s.add_module("Feature layer" + str(i), list(list(self.oModel.children())[4+layerN].children)[i])
return s
# -- Creates bypass modules for decoders
def enc_dec(self, features, layers, stride, adjS):
accum = nn.Sequential()
oFeatures = self.iChannels
# -- Add the bottleneck modules
accum.add_module("Bottleneck_layer_"+str(layers), self.layer(layers, features))
if layers == 4:
# --DECODER
accum.add_module("bottleneck_Decoder_layer_"+str(layers), self.decode(features, oFeatures, 2, 1))
return accum
# -- Move on to next bottleneck
accum.add_module("enc_dec_layer_"+str(layers), self.enc_dec(2 * features, layers + 1, 2, 1))
# -- Add decoder module
accum.add_module("bypass_decoder_layer_"+str(layers), self.decode(features, oFeatures, stride, adjS))
return accum